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ABSTRACT

This paper first presents design parameters for
developing six types of spatial 3-DOF isotropic
parallel manipulators. Many manipulators that can
simultaneously  reach isotropic  position and
orientation can be easily obtained using optimization
methods. An isotropic design can be developed in
about ten seconds, and at least three dimensions can
even be specified to obtain designs with desired
shapes or sizes. The 3-DOF manipulators are then
used as modules to develop 6-DOF or redundant
isotropic manipulators. The modules or the modules
and other serial or parallel designs can be joined in
parallel or in series to create different types of 6-DOF,
redundant or hybrid isotropic manipulators. Some
dimensions of manipulators of higher degrees of
freedom can also be given in the development
process.

INTRODUCTION

Isotropic manipulators are generally regarded as
designs with optimum dexterity. An isotropic
manipulator can be obtained if the condition number
gives the optimum value of one. The condition
number, however, is only applicable to 2-DOF or
3-DOF manipulators with dimensionally
homogeneous Jacobian matrices. For 6-DOF
manipulators whose first and last three rows of the
Jacobian matrix have different physical units, a
dimensionally homogeneous Jacobian matrix can be
developed using natural length or characteristic
length (Zanganeh et al, 1997; Fattah et al, 2002; Fassi
et al, 2005). The 6-DOF isotropic manipulators can
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also be developed using three isotropic conditions
(Klein et al, 1991). The method is independent of
the physical units of the Jacobian matrix. Many
6-DOF isotropic manipulators can be easily obtained
using an isotropic generator that comprises six
straight lines obtained by solving the system of
nonlinear equations developed from the isotropic
conditions (Tsai et al, 2003). Optimization methods
can also be employed to develop symmetrical
isotropic manipulators (Tsai et al, 2008). In general,
the existing methods can only be used for 6-DOF
serial manipulators or Stewart-Gough parallel
manipulators, and only one design parameter can be
specified to determine the size of the manipulators.
For other types of manipulators, it is extremely
complicated to express the required equations as
functions of link parameters, and directly solving a
large number of nonlinear equations might get
impractical designs with strange shapes or
unacceptable dimensions. Compared with 6-DOF
manipulators, 3-DOF isotropic parallel manipulators
are much easier to develop. However, most
manipulators, developed by most existing methods,
are special planar, orientational or translational
isotropic designs (Kircanski et al, 1994; Gogu et al,
2004; Kuo et al, 2011; Tsai et al, 2000; Wang et al,
2003). The 3-DOF parallel manipulators developed
by the proposed method are spatial designs that can
simultaneously  reach isotropic  position and
orientation, and they can be used to develop isotropic
manipulators of higher degrees of freedom. This
work first presents design parameters that can be used
to develop 3-RPS, 3-CS, 3-PPS, 3-US, 3-RRS and
3-UPU isotropic manipulators. By giving the
Jacobian matrix, an isotropic design can be easily
developed in about ten seconds using optimization
methods. For each type of manipulators, hundreds of
sample manipulators are developed to explore how
many dimensions can be specified in the
development process. The results show that at least
three parameters can be specified for developing
manipulators with desired shapes or sizes. The
3-DOF designs are then used as modules to develop



6-DOF or redundant isotropic manipulators. Two
modules can be joined in parallel into a 3-limb or
6-limb isotropic parallel manipulator or they can be
joined in series to create different types of hybrid or
redundant isotropic manipulators. Several design
parameters can also be specified in the development
of 6-DOF or redundant isotropic manipulators. Many
numerical examples are provided for illustration.

JACOBIAN MATRICES

The Jacobian matrices for some 3-DOF parallel
manipulators can be found in the literature (Gosselin
et al, 1989; Huanga et al, 2002; Li et al, 2002). The
twist of the moving platform of a 3-DOF parallel
manipulator can be expressed as a linear combination
of instantaneous twists:

{m} = qij $ij ’ @

Vv

where @ is the angular velocity of the moving
platform, v is the linear velocity of a reference
point on the platform, $; represents the j™ screw on
limb i, and ¢; denotes the corresponding joint rate.

Joshi and Tsai presented a general method for
developing the Jacobian matrix of limited-DOF
parallel manipulators (Joshi et al, 2002). The general
equations for velocity analysis can be expressed as

M, M '
L\Al Mz}m:m’ @
3 4LV 0
where M, fori =1, 2, 3, 4 are 3x 3 matrices and

q=[d,,9,.6,]' with ¢ denotes the actuated joint
rate for limb i. The equations can be developed using

reciprocal screws. The last three equations,
M,0+M,v=0, give
o=-M;'M,v, 3)
v=-M,'M,o. 4)

Substituting Egs. (4) and (3) into the first three
equations of Eq. (2), M,@+M,v=q, respectively
yields

-1
o=(M,-M,M!M,) q=J,9, ©)

B -1
V:(Mz_MlelMA) a=J.0. 4)
3-DOF isotropic  manipulators can be

developed using the two Jacobian matrices, J_and
J,. Let x, and «x, denote the reciprocal of the
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condition numbers of J_and J, respectively. Then

a manipulator can reach both an isotropic orientation
and an isotropic position if x«, =1and x,=1.

3-DOF ISOTROPIC MANIPULATORS
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Fig. 1. Design paramefers for 3-RPS, 3-CS and 3-PPS
manipulators

This section presents design parameters and
kinematic constraints for developing different types
of 3-DOF isotropic manipulators. Optimization
methods are employed to search for the designs with
k,=1and x,= 1. Some parameters can be provided

to specify the shape of a desired manipulator.

The first pattern of straight lines for developing
symmetrical isotropic manipulators is shown in figure
1. All the design parameters are generated by rotating
one limb about the z-axis by 120° and 240°
respectively. Since manipulators developed from the
parameters have one special characteristic in that two
out of three singular values of the Jacobian matrix are
equal, an isotropic design (with three equal singular
values) is relatively easy to develop using the
proposed parameters. In this work, the local
coordinates of reference point P; for i = 1, 2, 3 are
defined by p; = (R,cos(30°+(i-1)*120°)

R,sin(30°+(i-1)*120°) 0) and the global
coordinates of the points are determined by
0
p; =rot(z,0,)p;+| 0 |, ()
h

p

where rot(z,6,) denotes the rotation matrix about
the z-axis by an angle of &, . For the reference

points in the figure, the coordinates of point A; are
determined by parameter Ry with 6,= h,= 0, the

coordinates of B; being functions of Ry , 6, andh,,
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and p = (0, 0, d +h,) for the position of the tool
center point (TCP). The unit vectors in the figure are
defined by @ = 2-% g - Uix2

ke o]
[001]' and € =rot((;,)s,. The pattern generated
by six parameters, R, Ry, d, hy, 6, and «, can be
employed to develop 3-RPS, 3-CS and 3-PPS
isotropic manipulators. For a 3-RPS manipulator, €.

with Z =

and 0, respectively define the direction of the first

revolute joint on the base and the direction of the
second prismatic joint on limb i that connects A; and
Bi. Vectors € and G, specify the directions of the
two prismatic joints on limb i of a 3-PPS manipulator,
and € defines the direction of the cylindrical joint

on limb i of a 3-CS manipulator.

AZ
P
A
) o
B, k d
R 120° v
/ ¥ B, A
B, 4 20
i, i, .
> u b
€, {’._\_I _ (;
A; YA ~ 1
e, = i
4] - Y
A
R, X AN
N 120 3
1
e, AT

- T
Fig. 2. Design parameters for a 3-US manipulator

The parameters in figure 2 for a 3-US
manipulator are the same as those of the pattern in
Fig. 1 except that €, =&, gives the direction of the
first revolute joint and the new unit vector €, for the
second revolute joint on limb i is defined by
€, =rot((;,8)é, . The coordinates of the three extra
points, C;, C, and Cs, on the pattern for 3-RRS
manipulators in figure 3 are functions of Rc, 6, and

h, (with h_ < h,). The unit vector &, for the second

revolute joint on limb i is defined by
8, = (6 =bi)x(c, ~a) and &, =rot(0,,»)é
iz_”(ci_bi)x(ci_ai)" in = i1/ )8

(with o = S —%

" fei-a
revolute joint.

For a 3-UPU manipulator, €, and €, in
figure 4 are the same as those of a 3-US manipulator,
~ b, -3,

a, :"b'—"defines the direction of the prismatic
i~

) gives the direction for the first

jointand €, and &, for the other universal joint at
point B; are specified by two sets of Euler angles:
(w., &) and (w,,&,). Unit vectors for the universal
joints on the platform for the second and the third
limbs are determined by rotating €,, and €, about
the z-axis by 120° and 240°, respectively.
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Fig. 3. Design para{meters for a 3-RRS manipulator
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Fig. 4. Design parameférs for a 3-UPU manipulator

Using the genetic algorithm (from the
optimization tool of MatLab), an isotropic design can
be developed in about 5 seconds for 3-RPS, 3-CS and
3-PPS manipulators and it takes about 15 seconds to
develop an isotropic 3-US, 3-RRS or 3-UPU
manipulator using a personal computer (Intel core 2
Quad CPU with 2.66 GHz). For 3-RPS, 3-CS and
3-PPS manipulators, some primary results show that
many isotropic designs can be easily developed by
specifying two parameters from R,, Ry, hy, and d. The
dimensions of those designs are analyzed to explore
if more dimensions can be provided or some
conditions can be developed to facilitate the search
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for isotropic designs. It is found that the dimensions
of three parameters have a similar property that the
ratio of the summation of two dimensions and the
third dimension is larger or smaller than a certain
value. To determine the exact value, additional 150
sample 3-RPS manipulators are developed using
random dimensions of R, Ry, and d. Figure 5a shows
the images of the manipulators and the related
dimensions. All the designs that are not isotropic
(identified by “+”) fall into the lower right region
with the straight line defined by (Ra+ Ry) = 2.5d as
the boundary, so (Ra+ Rp) > 2.5d is used as the
constraint to develop isotropic manipulators
(identified by “0”) at the upper left region.

(R, ARy)=2.5d
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Fig. 5. Isotropic designs and link dimensions

The images of other 150 sample manipulators
generated by random dimensions of hy, Ry, and d in
figure 5b show that (d + hy) < 1.5R, can be used as
the constraint to develop the isotropic designs at the
upper left region. Two other constraints for different
sets of three parameters are shown in figure 5¢ and 5d.
Figure 5 also shows that many isotropic designs can
still be developed if the related constraint is not
satisfied. The parameters that can be specified and the
constraints on the dimensions for 3-CS and 3-PPS
manipulators are  determined using  similar
approaches. There are more design parameters for
3-US, 3-RRS and 3-UPU manipulators, so many
isotropic designs can be developed by specifying at
least three parameters. However, the constraints on
those parameters are much more difficult to develop.
The work first uses 150 sample isotropic
manipulators to develop constraint equations. Then
additional 150 manipulators are developed using the
dimensions that satisfy the constraints. If any of the
obtained designs is not isotropic, then modify the
constraints until new 150 manipulators developed
using the new constraints are all isotropic. The
parameters that can be specified and the related
constraints on the dimensions for different types of
manipulator are listed in Table 1. Over 99% of the
manipulators developed using the constraints are
isotropic, and a further investigation shows that either
the first three joints or the second three joints of each
design can be chosen as the actuated joints. For
example, either the three revolute joints or the three
prismatic joints of a 3-RPS manipulator can be used
as the actuated joints.

6-DOF ISOTROPIC MANIPULATORS

This section proposes methods that use 3-DOF
modules to create different types of 6-DOF isotropic
manipulators. For a 6-DOF manipulator, the
closeness to kinematic isotropy can be evaluated by
an existing normalized isotropy measure (Tsai et al,
2008):
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1
3
U= &*&*(D , (8)
O O-pl
with
2
+
o (252 ©
2
where
0,,0, Smallest and largest singular values,

respectively, of the 3x 6 submatrix Jo consisting of
the first three rows of the Jacobian J

0,3, O, Smallest and largest singular values,
respectively, of the 3x 6 submatrix Jp consisting of
the last three rows of J

smallest and largest singular values,

p3?

O3, O
respectively, of J J¢ inwhich J, and J, are the

two matrices with orthonormal row vectors that span
the same row spaces of Jo and Jp respectively

Table 1. Design parameters and the related
constraints

Type Constraints
(a) d! hba Rb
(d+h, <15R, )
(b) d,Ra, Ry
SRPS 1 4 hy,4,, ( R, +R,>25d)
3-CS
3-PPS Ra, R, @ (c) d, hy, Ra
( d+h, <15R,)
(d) ho, Ra, Ry
( R,+R,>25h)
d, hy, 6, , d, ho, R, Ry
3-US | R, R; a, (é(d +h,) <Rs, Re< 2( d+hy))
Ra, Rb! RCy
hb,hc, d, Ra. Rb. Rc, hb. hc, d
3-RRS 0 0 (0.9(hy*+d) <Rs, Ry, Re=1.1(hy*d)
b e and h;>0.5h,)
Y
6, . d, ho,
d, hb, Ra. Rb
Ra, Rn,
3-UPU 2
B¢ ( E(d +h,) <Ry Ry< 2( d+hy))
e

An extra condition that two row spaces spanned
by Jo and Jp are orthogonal (with ® =1) is used in
the measure for the spatial isotropy for 6-DOF
manipulators. The angular velocity @ and the linear
velocity v are respectively generated by the
projection of g (the vector of input joint rates) onto
the row space of Jo and the row space of Jp. The two
projections, denoted by q, and q, , are

perpendicular and g, +q, =q if the two row spaces
are orthogonal. The measure (which is independent of
physical units and yields the optimum value of x4 =
1 for an isotropic configuration) is used as the

objective function to develop 6-DOF or redundant
isotropic manipulators.
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Fig. 6. A 6-DOF hybrid manipulator with R, =R’

The coordinates of the reference points of the
6-DOF manipulator in figure 6 are given by Eq. (7)
with Ra and 6,= h, = 0 for A;, (Ry,h,,6,) for B;,
(R'a, hb, 9'3) for A'i, (R'b, hb + h'b, 9'b) for B'i, and pP=
(0, 0, d + hy + h'p). With points Ai and B; replaced
respectively by A’ and B, the joint axes for the
module on the top can be determined following
similar steps. If a 6-DOF manipulator is developed by
placing one 3-DOF module on the platform of
another 3-DOF module with the same TCP, then the
twist of the platform of the 6-DOF design is the
summation of the two twists from the two modules:

A b S
v Vl V2 le JZV
ERIHE
le J2v QZ

where the four 3x 3 submatrices in the 6 x 6 Jacobian
matrix J are defined in Egs. (5) and (6). A 6-DOF
isotropic design can be generated by the same module
or two different modules. Many dimensions can be
specified if they satisfy their respective constraints in
Table 1. For example, the dimensions of R's, Ry, h'h,
d' for the upper module and the dimensions of R,, Ry,
hp, d = h'y + d' Ra, Ry, hp, d = 'y + d' for the lower

module in figure 7 must satisfy the constraints for the
upper module and the lower module respectively.

)
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Since conditions x,= 1 and x,= 1 for the two

H Ou3 GP3
modules are equivalent to —==1and —=1 for

o-ol Gpl

the two factors defined in Eq. (8), a 6-DOF isotropic
design can be obtained if the third factor also yields
the optimum value of ® = 1. Many different types of

hybrid isotropic manipulators with Ry R, and
their approximate values of function y developed
using optimization methods are listed in Table 2.
Except for the design that uses two 3-UPU modules,
the manipulators have very good dexterity with x >
0.96, which can be further improved for manipulators
with Ry # R. because more free parameters can be

used in the optimization methods.

hy'
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by,

é,

A\

Y,

A -
4 8,

(b) Lower module
Fig. 7. Design parameters for a hybrid manipulator

Two modules can be joined in parallel to
develop a 3-limb or 6-limb 6-DOF isotropic
manipulator. How to develop the Jacobian matrix for
a common 6-DOF parallel manipulator can be found
in the literature (Tsai et al, 1999). Figure 8a shows
the model that joins a 3-CS module with a 3-RPS
module into a 3-CPS manipulator with six actuated
prismatic joints. The design parameters are the same
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as those of the 3-CS module except that unit vectors
4,,0, and G, in Fig. 1 define the directions of the
three additional actuated prismatic joints. The model
in Fig. 8b for a 3-UPS manipulator with six actuated
revolute joints is developed from the 3-US module
with the three unit vectors, G,,0, and 0Q,, in Fig. 2

specifying the directions of the three additional
passive prismatic joints. A 3-URS manipulator with
the six actuated revolute joints (from the three
universal joints) can be developed from the model in
figure 8c. The directions for the two actuated revolute
axes of the universal joint on the first limb are
developed using the same way for the direction of the
first revolute axis for a 3-RRS module. The two
directions are determined by €, =rot({,,7)é,, and
é;, =rot(0,,&)é,,, where &, is defined in Fig. 3.
Unit vectors for the two universal joints on the other
limbs are developed by rotating €,, and €], about
the z-axis by 120°and 240°, respectively. Isotropic
3-CPS, 3-UPS and 3-URS parallel manipulators can
be developed if the specified dimensions satisfy the

constraints of 3-CS, 3-US and 3-RRS modules,
respectively.

Table 2. Dexterity of different hybrid manipulators
with Ry = R;
Type H
3-CS+3-CS 0.98
3-RPS+3-PPS 0.995
3-RPS+3-CS 0.97
3-RPS+3-RPS 0.99
3-PPS+3-CS 0.985
3-PPS+3-PPS 0.99
3-US+3-RPS 0.985
3-US+3-CS 0.97
3-US+3-US 0.98
3-UPU+3-RPS 0.96
3-UPU+3-CS 0.96
3-UPU+3-PPS 0.96
3-UPU+3-UPU 0.85
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(c) A3-URS manipulator
Fig. 8. 3-limb 6-DOF parallel manipulators

Two 3-UPS modules can be joined in parallel
into a Stewart-Gough manipulator with six actuated
prismatic joints. The 12 reference points in figure 9
are determined using Eq. (7) with R, and 6,= h, =
0 for Aj, (Ro, 1y, 6,) for Bi, (R,,h;=0,6;) for A/,
(R,.,h,,6,)forB;, and p = (0, 0, d +h,). The model
is similar to an existing model for developing
isotropic Stewart-Gough manipulators. The two
approaches can only specify one dimension in R,, Ry,
h,or d, and the manipulators obtained all have the
same value of u = 0.9667. Likewise, a 6-URS
isotropic manipulator can be developed using two
3-URS modules. Besides the 12 points in Fig. 9, the
six extra points for the revolute joints in the middle
(as shown in Fig. 8c) are defined by (R, h, , 8,) for C;
and (R_,h.,6) forC; with h < h . The steps for
the joint axes on each limb are the same as those for a

3-URS manipulator and the first axis of the universal
joint on each limb is chosen as the actuated axis. The

-105-

constraints on the specified dimensions of a 6-URS
manipulator are the same as those of the 3-RRS
module. The approximate values of the dexterity
measure u for 3-limb or 6-limb manipulators are

given in Table 3. Other 6-DOF or redundant isotropic
manipulators can also be developed using the
presented modules and other existing serial or
parallel manipulators.

Ay

.‘\3
Fig. 9. A6-UPS parallel manipulator

Table 3. Dexterity of 3-limb or 6-limb parallel
manipulators

Type H
3-CPS 0.95
3-UPS 0.92
3-URS 0.98
6-UPS 0.9667
6-URS 0.965

NUMERICAL EXAMPLES

For a 3-UPU parallel manipulator, four dimensions
can be provided if they satisfy the constraint in Table
1. Given Ry = 17, Rp = 13, h, =10, and d =5 such that

condition 6  with %(hb+d) < R,R, <

2(hb +d)is satisfied, the optimization software gives
K, 1, 1 with «a=290.3336°

[ =273.8301°, 6, =342.5454°, y, =235.2954°,
v, =44.0975°, £, =8.1006 and ¢,=8.2613. To
develop a 6-DOF hybrid manipulator with a 3-RPS
module on the platform of a 3-CS module, three
dimensions: R;=15, h/=5and d'= 3 (that satisfy
condition 1(c)) are given for the 3-RPS module on
the top. Next, let R,= 18 and R, = 15 such that
condition 2(b): R,+ Ry >2.5(d’'+h,) is satisfied for
the 3-CS module on the ground. The optimization
results give x = 0.9998 with h = 8.0253,

K

v l



6, =0.3549°, o =123.2173° for the 3-CS module
and R; = 13, 0,'=51.3387°, 6,'=59.8362° ,
a'=23.3473° for the 3-RPS module. The constraints

for a 6-DOF, 3-CPS manipulators are the same as
those for a 3-CS module. Given R,= 17, R, = 13

and h =10 with R,+ Rp > 2.5h, (condition 2(d)),

the optimization method yields the optimal design
with ¢ = 0.9576 with d = 5, a=211.798° and

6, =73.0327 . The specified dimensions for a 6-URS

manipulator must satisfy the constraints for a 3-RRS
module. A larger R, is suggested to avoid possible

link interactions. With R,= 17, Rp = 15.5, R_ =18,
h, =13, h,=8and d = 4, the optimization software
gives x = 09931 with 7=138.1725° |,
£=24.3610° , 6,'=7° , 6,=0.8060° |,
6,'=14.7989°, 6. =6.1077°and 6,'=59.7822°.

Fixed base xo

P

Moving platform

Fig. 10. A 3-DOF Delta manipulator

For a hybrid design with a 3-RPS module placed on a
XYZ manipulator, J,, in Eq. (9) is a 3x3 zero

matrix and J,, a 3x 3 identity matrix. Dimensions
R,=17, Ry =13 and h =10 with R,+ Ry >2.5h,
(condition 2(d)) are given to determine the shape of

the 3-RPS module. The optimization results give
u = 09994 with d = 9.9994, « =49.5167° and
6, =75.6767 . If the XYZ manipulator is replaced by
a 3-DOF Delta manipulator, J,, is also a zero matrix
because Delta is a translational manipulator. The
elements of J,, are functions of link parameters, Ra,
Re, Rc, hg and hc, shown in figure 10. Different
combinations of specified link dimensions are tried
and the results show that isotropic designs can be
developed by specifying either three parameters for
the 3-RPS module and one parameter for the Delta
manipulator or two parameters for both manipulators.
Given R;=16, R;=12and h; =12 for the 3-RPS
module and Rc = 16 for the Delta manipulator, the
optimization method gives x = 0.9997 with Rg =
28.2697, Ra = 16.0029, hg = 29.9404, hc = 38.6199
for the Delta manipulator and d' = 5.247,
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0,'=210°, 6,'=211.1969° o'=288.5469° for
the 3-RPS module. An extra prismatic joint is placed
on the platform of 3-RPS module of the 3-RPS +
3-CS design to develop a hybrid 7-DOF redundant
manipulator. If the joint is in the direction of the
z-axis (the reference point on the platform of the
3-RPS module can move up and down along the
z-axis of the module in this case), then the 6 x 7
Jacobian matrix can be developed by adding one
more column: [0 0 0 0 O 1]* to the original 6 x 6
matrix. With the same specified dimensions given
above with R.=15, h/=5,d'=3, R,=18and Ry
= 15, the optimization software gives = 0.9684
with h = 4.3203, 6, =6.2788°, « =12.0958° for
the 3-CS module and Rj = 13, 6,'=178.6226°,
6,'=2374718° «'=118.5654° for the 3-RPS

module. Figure 11 shows some of the designs in their
initial assembly configurations.

Az

-—"“'
Ay

(b) A Delta + 3-RPS manipulator
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(c) A 7-DOF redundant manipulator
Fig. 11. Different types of isotropic manipulators

CONCLUSIONS

Developing an isotropic manipulator of six or

higher degrees-of-freedom is a complicated and
time-consuming task that usually involves solving a
large number of nonlinear equations and the obtained
results might be impractical designs with strange
shapes or unacceptable dimensions. This paper
presents design parameters and related kinematic
constraints for developing isotropic parallel or hybrid
manipulators. The proposed method is easy to
implement, and can be employed to develop many
different types of 3-DOF, 6-DOF or redundant
manipulators. Except for a few special cases such as
the Stewart-Gough manipulators, at least three design
parameters can be specified to determine the shape of
the isotropic manipulators. Other types of isotropic
manipulators can be developed by the proposed
methods if the design parameters of new 3-DOF
modules are generated by rotating one limb about the
z-axis by 120° and 240° respectively.
An existing dexterity measure is used as the objective
function to search for isotropic designs. The measure
yields the optimal value of one if a manipulator is
isotropic in both position and orientation and the two
row spaces defined in the measure are orthogonal (or
factor @ = 1). The two row spaces cannot be
orthogonal for 4-DOF and 5-DOF manipulators, so
the method is not applicable to those manipulators.
The method also cannot be employed to develop
isotropic manipulators with different types of
actuators. The elements of a row vector of the
Jacobian matrix have different physical units in this
case so the dexterity measure is not invariant to
changes of physical units.
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