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ABSTRACT 

 
This paper proposes a novel two degree of 

freedom (TDOF) control structure: a combination of 
Vidyasagar’s structure (VS) and the doubly coprime 
factorization based disturbance observer (DCFDOB). 
The DCFDOB-VS framework is aimed at providing 
a control structure and design procedure for a MIMO 
system with good characteristics of disturbance 
attenuation, tracking, and decoupling property. The 
structure can deal with stable/unstable and minimum 
phase/non-minimum phase plants. The advantage of 
the method is that two parameters can be designed 
for different purposes, independently. The parameter 
H  stabilizes the system and improves tracking 
property. Once the parameter H  has been 
designed, then the YQ  can be implemented via a 

parameter Q  for rejecting disturbances and 
improving the system robustness. 

 
INTRODUCTION 

 
In order to simultaneously achieve different 

requirements of a control system, such as attaining a 
desired response, tracking, stabilizing, decoupling, 
increasing robustness and attenuating disturbances, a 
control configuration with a two degree of freedom 
(TDOF) compensator is necessary. A two degree of 
freedom configuration is first discussed by Horowitz 
(1963). For multiple input multiple output (MIMO) 
system, Vidyasagar (1985) had a discussion of a 
two-parameter compensator using a factorization 
approach and Skogestad et al. (1996).  
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It also discussed TDOF design in classical 
control and the limitation when existing right-half 
plane zeros or poles.Therefore, there has been much 
research on the design and construct a two degree of 
freedom control system. Youla et al. (1985) designed 
all TDOF stabilizing controllers and also discussed 
the tradeoff between optimum performance, 
tracking-cost sensitivity, and stability margins. Sugie 
et al. (1986) parameterized a TDOF compensator 
with two free parameters to achieve the robust 
tracking with internal stability. Hara et al. (1988) 
also parameterized a TDOF compensator to achieve 
the robust tracking with internal stability, but results 
can deal with systems where its output vector is not 
coincident with the measurement vector. Sugie et al. 
(1989) formulated a general result for TDOF with 
robust tracking problem which include the case 
where the controlled output not available directly. 
Also, Umeno et al. (1993) proposed a robust servo 
system design method based on the TDOF controller 
to apply in advanced motion control for a robot 
manipulator. 

An important special case of the two parameter 
compensator is the observer controller structure 
proposing by Viswanadham (1981) and Vidyasagar 
(1985). The Vidyasagar’s structure (VS) use an 
observer-controller structure to observe the partial 
state and has a controller with a H parameter. And 
the H parameter is a unit over the set of proper and 
stable real rational functions. The VS structure has 
been extensively discussed in control problems. 
Banos  (1996, 1998) investigated the stabilization 

of a plant with an observer-controller structure and 
developed the parameterization of nonlinear 
stabilizing observer- controller compensators of a 
given nonlinear system. Huang et al. (2007) 
discussed the relationships among the Youla-Kucera 
parameterization, VS structure and both expanded 
parameterizations with generalizing all stabilizing 
compensators for finite-dimensional linear systems. 
Lee et al. (2010) proposed a robust 
observer-controller compensator design with the 
parameter H  which gives flexibility in tracking 
control. Thus, The VS can provide a stable control 
configuration within our proposed structure. 
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In addition, to eliminate disturbances and 
reduce the effect of uncertainties of a system, the 
concept of so-called disturbance-observer structure 
(DOB) can effectively handle these problems and 
provide a better performance. The original DOB 
structure proposed by Ohnishi (1987) is based on the 
concept of plant dynamics inversion and many other 
studies extended DOB to advanced researches. Lee 
et al. (1996) presented a design of robust digital 
DOB controller to deal with various uncertainties 
and external disturbances. Yi et al. (1999) proposed 
a TDOF controller for hard disk servo systems with 
DOB and adaptive robust control structure. Kim et al. 
(2003) proposed an advanced design method of 
DOB for mechanical positioning systems. Horng et 
al. (2006) proposed a method in designing DOB 
controller parameters to eliminate limit cycle 
problems while maintaining the system performance. 
Although the DOB has simple structure with strong 
robustness, these researches of DOB structure 
cannot be directly applied to all kind of plants such 
as non-minimum phase or unstable plants. On the 
other hand, for the disturbance rejection problem in 
the MIMO unstable non-minimum phase plant, Choi 
et al. (1996) provided solutions for DOB in H∞  
framework. Güvenç et al. (2010) proposed a robust 
MIMO disturbance-observer structure which can 
decouple the plant by treating the multiplicative 
model uncertainty as the extended disturbance and 
use the dynamics inversion method proposed by 
Ohnishi (1987). However, if the plant is strongly 
coupled or exist an unstable non-minimum phase 
plant, the studies is not capable of handling the 
system. 

In this paper we propose a novel disturbance- 
observer compensator which is described in doubly 
coprime factorization Nett (1984) disturbance 
observer structure (DCFDOB). Unlike the way of 
traditional DOB using the inverse of a nominal 
model, the DCFDOB use factorization approach to 
construct a compensator with a parameter Q . The 
DCFDOB can estimate disturbances and the 
estimated states can be utilized to reject disturbances 
while providing satisfactory feedback properties 
such as sensitivity and robust stability in the 
presence of uncertainties and disturbances. In the 
meantime, the Vidyasagar’s structure is merged, 
which has the same structure in some parts of loop 
with DCFDOB. Thus, the whole structure forms a 
new two degree of freedom structure (DCFDOB-VS) 
while inheriting the advantages of both 
sub-structures. That is, the DCFDOB-VS can be 
used to design a two-degree-of-freedom 
compensator to stabilize all kinds of MIMO plants 
and achieve desired properties such as tracking, 
decoupling and disturbance rejection. 

The organization of the rest of this paper is as 
follows. The proposed DCFDOB-VS structure is 

introduced in Section 2. The proposed design proce-
dures of parameters ( )H s and )(sQ  for minimum 
and non-minimum phase systems are introduced in 
Section 3. The system robust stability condition with 
coprime factor uncertainties is analyzed and the 
relationships between the DCFDOB-VS structure 
and the Youla-Kucera parameterization are discussed 
in Section 4. In section 5, two design examples are 
used to demonstrate the design procedures and the 
discussion offers a comparison with different 
parameters design. The paper ends with conclusions 
in section 6 
 

THE PROPOSED FRAMEWORK 
 

The structure of DCFDOB-VS not only has an 
observer-controller compensator described in 
Vidyasagar’s structure (VS), but has a 
disturbance-observer compensator described in 
doubly coprime factorization based disturbance 
observer structure (DCFDOB). The concepts and 
properties of VS and DCFDOB are given in 
appendix A. In the following, we directly analyze the 
proposed DCFDOB-VS framework. 

Let the nominal plant 
 -1-1

n n nP = N M = M N  be the right coprime 
factorization (RCF) and the left coprime 
factorization (LCF) of nP  over RH∞ , respectively. 
By the coprime factorization approach, we have 
matrices ,  r r l lX ,Y ,X Y RH∞∈  that satisfy the 

Bezout identities r n r nX M +Y N = I  and 

 
n l n lM X + N Y = I  (McFarlane, 1990). The 

DCFDOB-VS framework is represented in Fig. 1  
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Fig. 1. The DCFDOB-VS framework 

 
The 4 4×  transfer function matrix 

from [ ]   T
i or d  d  ξ  to [ ]Tr di do ne   e   e   e  is 

obtained as follows equation (1) (details in appendix 
A) 
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We replace -1( ) lH I - Q Y RH∞∈  of the 2nd, 3rd 

and 4th columns in equation (1) with YQ RH∞∈  
and yield equation (2) (details in appendix A) and 
also form the TDOF control scheme contains two 
independent parameters. 
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   (2) 

To ensure the internal stability of the system, it 
is necessary and sufficient to test whether each of 
sixteen transfer matrices in equation (2) is in RH∞ . 
Because of the matrices 

 n nn n r r l lM ,N ,M ,N ,X ,Y ,X ,Y   RH∞∈  are 
all stable, if we check all transfer matrices of 
equation (2), the DCFDOB-VS is internally stable if 
and only if the parameter YQ RH∞∈ , 

i.e.,  Q RH∞∈  and the parameter ( )H RH∞∈U , 

i.e., -1(s) (s)H ,H RH∞∈  where the notation 

( )RH∞U  denotes a unit over RH∞ . These two 
parameters can be designed for different purposes, 
independently. The parameter H  stabilizes the 
system and improves tracking property. Once the 
parameter H  has been designed, then the YQ  

can be implemented via a parameter Q  for 
rejecting disturbances and improving the system 
robustness. 

The closed-loop transfer function from r  to 
y  is represented by 

)()()()( 1 srsHsNsy n
−=             (3) 

If one can design the parameter H  appropriately, 
then the tracking response can be improved 
obviously. The property of parameter H  has been 
discussed in detail by Vidyasagar (1985) and Huang 
(2007). Therefore, the system is internally stable if 
and only if the parameter ( )H RH∞∈U . 

The transfer functions of input/output 
sensitivity functions are represented as follows: 

( )ni n r YS = M X +Q N               (4) 



  -1

( )

( )

no n r Y

nn nn r Y

S = I - N Y - Q M  

= N X +Q N N M　　

　　

        (5) 

Thus, one can design YQ  and make the same term 

( )nr YX +Q N  in both input sensitivity function 

iS  and output sensitivity function oS  as small as 
possible. The smallness means to minimize 
frequency-dependent singular values 

( )nr YX +Q Nσ  in a certain range of low 
frequencies. Then the effects of both input and 
output disturbance are simultaneously eliminated 
over that frequency range. 
 

THE DESIGN OF PARAMETERS 
 

The design of parameter H(s) 
A.  Minimum phase case 

For a minimum phase square plant, an inverse 
idea can be used to design the parameter )(sH  as 

follows. Let the plant 1−= nnn MNP , where 

( )nN s RH¥Î  is a nn×  matrix. Then, the 

parameter )(sH  is selected to be 

( ) ( ) ( )nH s s N sα= ⋅                 (6) 

where { }1 2( ) (s), (s), , (s)ns diaga a a a= L  

in which )(siα  for ni ~1=  are polynomials: 

1
, , 1 ,1( ) 1n n

i i n i n is s s sα α α α−
−= + + + +  (7) 

The roots of )(sα  are all in the open left-half 

plane such that ( ) ( ) ( )ns N s RHUα ∞∈ . In Fig. 1, 
the closed-loop transfer function from r  to y  is 
represented by 

  )()()()( 1 srsHsNsy n
−=            (8) 

Then in the case we 
have )()()( 1 srssy −≈ α . Obviously, the system 
response is determined by the pole locations of 

)(1 s−α  and thus the tracking can be improved. It 
is also easy to see that if N  is square, then 

1
nN H −  can always be made into a diagonal matrix 

to achieve decoupling for )(sα  is a diagonal 
matrix. Note that the degree of polynomial )(sα  

depends on the relative degree of )(sNn . 
 

B.  Non-minimum phase case  
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For a non-minimum phase square plant 
1−= nnn MNP , where ( )nN s RH¥Î  is a 

nn×  matrix with zeros in the open right-half plane. 
Then the inverse idea cannot be directly used 
for -1( )nN s RH¥Ï . In Fig. 1, the closed-loop 
transfer function from r  to y  is 

1( ) ( ) ( ) ( )= (s) (s)ny s N s H s r s G r-=    (9) 

The obvious way to design )(sH is using 
spectral factorization technique (Francis, 1987) 
on -1( )nN s to extract the stable and minimum-phase 
component from the rest, and applying the method 
discussed above to this component while leaving the 
rest part. However, the whole system does not have 
decoupled property by this approach. Here, we 
consider the case with a less stringent criterion, 
static decoupling, which involves only the 
steady-state behavior of the output response (Wang, 
2003). The system form equation (9) is said to be 
statically decoupled if it is stable and its static gain 
matrix (0)G  is diagonal and nonsingular, i.e., 

{ }(s)= (s), (s), , (s)1 2 nG diag g g gL  with that 

(0) 0ig ¹ , ni ~1= . Now, we have 

tlim (t)= (0) (t)i i iy g r恭 , ni ~1=    (10) 

In general, every input ir  may affect all of the 
output transient response, but equation (10) 
guarantees that each output iy  will be unchanged 

in a steady state. Assume that (0)nN  is 

nonsingular and (0)= G I  for tracking and 
decoupling are satisfied such that 

-1(0)= (0) (0)= nG N H I             (11) 

The equation (11) implies that the parameter (0)H  

equals to (0)nN . Furthermore, the system is 
internally stable if and only if the 
parameter ( )H RH∞∈U . Then, the parameter 

)(sH  is selected to be a unimodular matrix and to 

have a static gain matrix (0)= (0)nH N . 

Let ijn  be the static gain of elements 

of (0)nN . Also let 1 2, , mp p p  and 

1 2, , mz z z  be the open left-half plane poles and 

zeros of elements of )(sH , respectively. The 
relative location of these poles and zeros will affect 
the system response. We have  

11 12 1
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1

(0)

n

n

n nn

n n n
n

N

n n

 
 
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 
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where ,

1 1 ,

1
( )

1

m m
z kk

ij k
k kk p k

ss zh s K
s p s

η
η= =

++
= =

+ +∏ ∏  

and (0) 1ijh = , 1 ~ , 1 ~i n j n= = . 

For ( )H RH∞∈U , the numbers of poles and zeros 

of an element of )(sH  should be the same which 
can be arbitrarily assigned, but one should also 
consider the limitation of bandwidth of the system 
and the tracking to be improved. 
 
The design of parameter Q(s) 
A. Minimum phase case 

For a minimum phase square plant, suppose 

plant 1−= nnn MNP  is a n n´  matrix. In Fig. 1, 

the transfer function from id  to die  is represented 
by 

°(s)= ( )ndi n r Y ie M X +Q N d×         (14) 

Also, the transfer function from od  to doe  is 
represented by 

 
±

° ° ±-1

(s)= ( )

= ( )

ndo n r Y o

nn nn r Y o

e I - N Y - Q M d

N X +Q N N M d　　　

×

×
  (15) 

where -1= ( )Y lQ H I - Q Y . 
These two transfer function are so called as the input 
sensitivity matrix iS  and the output sensitivity 

matrix oS , respectively. To reject the disturbance, 

the simplest way in designing YQ  can be done as 

follows. Suppose that ° -1
(s)= nY rQ - X J N , where 

J  is a n n´  diagonal matrix which is composed 
of low-pass filters, i.e., 

{ }(s)= (s) (s) (s)1 2 nJ diag j , j , , jL . Then 
equation (14) and equation (15) can be rewritten as 
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(s)= ( ) = ( )di n r r i n r ie M X - X J d M X I - J d跂   (16) 

and 

° ±

° ±

-1

-1

(s)= ( )

= ( )

nndo n r r o

nnn r o

e N X - X J N M d

N X I - J N M d　　　

×

×
    (17) 

If we design the matrix ( ) IJ jw »  in a certain 
range of low frequencies, then the effects of both 
input and output disturbance are simultaneously 
eliminated over that frequency range. So, the 
parameter Q  can be obtained as 

° -1 -1(s)= nr lQ I + HX J N Y           (18) 

where the parameter H  is given in foregoing 
design. Note that the relative degree of each element 
of the low-pass filter (s)J  depends on the relative 

degree of (s)rX , ° (s)nN and (s)lY  so that 

° -1 -1
nr lX J N Y  is proper or strictly proper. 

Since ( )H RH∞∈U , then the parameter Q  is 
realizable. 
 
B. Non-minimum phase case 
    For a non-minimum phase square 

plant 1−= nnn MNP , where ( )nN s RH¥Î  is a 
nn×  matrix with zeros in the open right-half plane. 

Just as in the design of the parameter H , the inverse 
idea cannot be directly used for -1( )nN s RH¥Ï . 
In Fig. 1, the transfer function of input and output 
sensitivity functions are represented as equation 
(4-5). For the sensitivity minimization, our goal is to 
find a stable parameter Q  to reject the input and 
output disturbance. Thus, one can design the 
parameter Q  and make the same term of both the 

input sensitivity function iS  and output sensitivity 

function oS  as small as possible. The notion of 
smallness for these two transfer matrices especially 
in a certain range of low frequencies 0 bω ω≤ ≤  
can be made using frequency dependent singular 

values ( )nr YX Q Nσ + , where the matrix 

 nr YX Q N+  is the common term of iS  and oS  

with 1( )Y lQ H I Q Y−= − . Then, the effects of both 
input and output disturbance are simultaneously 
eliminated over that frequency range. To solve the 
problem, the objective function can be described as 

1min [ ( ) ] <1nr lQ RH
W X H I Q Y N

∞

−

∈ ∞
⋅ + −    (19) 

where the weighting function ( )W s  is a stable and 

minimum phase transfer function with the properties 

( ) 1W jω ≈ , 0 bω ω≤ ≤       (20) 

and 

    ( ) 1W jω  , bω ω>          (21) 

For practical purpose, a possible choice of ( )W s , 

by choosing suitable sM , bω  and ε  to satisfy 
the performance specifications (Zhou, 1998), is 
obtained as  

/ s b

b

s MW
s

ω
ω ε
+

=
+

            (22) 

where bω  and ε  are related to the bandwidth of 
the disturbance rejection and the steady-state error of 
the system response, respectively. For MIMO, the 
weighting function can be designed as a square 
matrix which is diagonal such as 

1 2( ) { ( ), ( ), , ( )}nW s diag W s W s W s=   with 

each term ( ), 1 ~iW s i n=  chosen in the form as 
equation (22). Now, we rewrite equation (19) as 

1min [ ( ) ]nr lQ RH
W X H I Q Y N

∞

−

∈ ∞
⋅ + −       (23) 

=  1 1min ]n nr l lQ RH
WX WH Y N WH QY N

∞

− −

∈ ∞
+ − (24) 

= 1 2 3min ]
Q RH

T T QT
∞

∞∈
+                    (25) 

where 1
1 nr lT WX WH Y N−= +　 , 1

2T WH −= −  

and 
3 nlT Y N= . 

This is known as the model matching problem 
because to solve it we need to choose the parameter 
Q  such that the matrix 2 3T QT−  ‘matches’ the 

1T  as well as possible. In the literature on H∞  
control theory (Glover, 1984 and Limebeer et al., 
1987) one can convert the model matching problem 
into the Nehari extension problem or the Hankel 
approximation problem. Let we assume the 
inner-outer factorizations of 2T  and 3T  as 

2 2 2i oT T T=  and 3 3 3o iT T T= , respectively. Then the 
equation (25) can be represented as 


1 2 3min min

Q RH Q RH
T T QT R Q

∞ ∞
∞∈ ∈ ∞

+ = −      (26) 

Where 2 1 3i iR T TT RL∞= ∈   and the other 

condition is  2 3o oQ T QT RH∞= − ∈ . Here we 

use ( )X s  to denote ( )TX s− . Finally, the Nehari 
problem of the parameter Q  can be solved 
(Maciejowski, 1989). 
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The parameter obtained by above procedure 
may have a higher order. It is useful to reduce as 
much as possible the parameter order which will 
simplify the implementation and increase the 
reliability. To do this one can use Optimum 
Hankel-norm Approximation method, Frequency 
Weighted Approximation method, or other controller 
reduction methods to find a reduced- order 
parameter (Obinata, 2001), but the stability and 
performance of the closed-loop system using 
reduced- order parameter should always be verified. 

 
SYSTEM ROBUSTNESS 

 
In this section, we will investigate the robust 

stability and the difference between the 
DCFDOB-VS structure and Youla-Kucera controller 
structure. The small gain theorem is used to derive 
robust stability test and the modeling error ( )s∆  is 
assumed to be stable (McFarlane, 1990). Let the 
nominal plant 1

n n nP N M −=  with the modeling 

error ( )s∆ as 

( ) ( )n N n MP N M= + ∆ ⋅ + ∆          (27) 

where ( ) N

M

s
∆ 

∆ =  ∆ 
 and ,n nN M RH∞∈ . 

Then, we can modify Fig. 1 as Fig. 2 (details in 
appendix A) 
  To apply the small gain theorem, we modified Fig. 
3 as M∆ − ∆  loop as shown in the appendix A. 
According to the small gain theorem, the 
DCFDOB-VS is guaranteed internally stable for all 

, 0ε ε
∞

∆ < >  if and only if  

N
L R

M

A A 1
∞

∞

∆
⋅ ≤

∆
             (28) 

Where the element 1( )L r l nA Y H I Q Y M−= − + −  , 

and element 1( )R r l nA X H I Q Y MN−= − − −  . 

Let 1( )Y lQ H I Q Y−= −  is substituted into 

( )M s∆  of Equation (28), then, we have 

L RA A 1M∆ ∞ ∞
= ≤  

      1r Y n r Y nY Q M X Q N
∞

= − + − − ≤   (29) 

Obviously, the value of M∆ ∞
 is only influenced 

by the independent parameter YQ . Once the 

parameter H  is designed, the parameter YQ  is 

determined by the parameter Q . That is, in general, 

the system is internally stable for all 1
∞

∆ <  if 

and only if 1M∆ ∞
≤  and the value of M∆ ∞

 

is determined by the parameter YQ . The advantage 
of DCFDOB-VS is that it will simplify the 
robustness tuning procedure and disturbances 
rejection by using only one independent parameter 

YQ . 
    Furthermore, we can modify Fig. 2 to Fig. 4 
and Fig. 5 through I/O equivalence. 
In Fig. 4 and Fig. 5 which are shown in appendix A, 
the loop properties of the DCFDOB-VS structure are 
the same as those of the well-known Youla-Kucera 
controller structure (Youla, 1985) if rearranging the 
equation of controller as 

 1[ ( ) ] [ ( ) ]nnr l r lHX I Q Y N HY I Q Y M−+ − − −  

 1( ) ( )nnr Y r YX Q N Y Q M−= + −      (30) 

Where 1( ) ,Y l YQ H I Q Y Q RH−
∞= − ∈ .  

On the other hand, from Fig. 5, we knew that 
the DCFDOB-VS also can be modified as the 
Youla-Kucera controller structure with a 
pre-filter 1( )H s− . Obviously, the DCFDOB-VS 
structure is the same as the EYKP (expansion of the 
Youla-Kucera parameterization (Huang, 2007)) 
structure which also have the 
parameter H over ( )RH∞U . And according to the 
literature (Vidyasagar, 1985), the DCFDOB-VS 
structure has a so-called two-parameter compensator. 
Then, the inverse of parameter H  exhibits the 
pre-filter property. Thus, as discussed in the 
preceding sections, the DCFDOB-VS structure has 
two parameters which can be designed for different 
purpose, independently. The parameter H , which is 
omitted from the Youla-Kucera parameterization of 
all stabilizing controller, stabilizes the system and 
improves tracking property. The parameter YQ  can 
be implemented via a parameter Q for rejecting 
disturbances and improving the system robustness. 
Moreover, Fig. 5 can explain more clearly why the 
loop properties, e.g. M∆ ∞

, is only influenced by 

the independent parameter YQ . 
 

DESIGN EXAMPLES 
 

To illustrate the design method and the 
closed-loop behavior of the DCFDOB-VS structure, 
in the following section, we give two MIMO 
examples which demonstrate the flexibility of 
parameter design to deal with unstable minimum 
phase and unstable non-minimum phase plant 
respectively. 
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A. An unstable minimum phase case 
Suppose a square MIMO unstable minimum 

phase plant is given as 

10 2
5 6

5 3
7 8

n
s sP

s s

 
 − +=  
 
 + − 

              (31) 

By the coprime factorization approach, we have 

 11 12

21 22

n n
n

n n

N N
N

N N
 

=  
 

              (32) 

11 12

21 22

n n
n

n n

M M
M

M M
 

=  
 

             (33) 

where 1
n n nP N M −=  be the RCF of nP  

over RH∞ . The Smith-McMillan poles locate at -7, 
-6, 5, 8 and zeros locate at -24.225 and -1.775. Since 
the plant is of unstable minimum phase, according to 
equation (6) and equation (7), we can apply the 
inverse dynamic method to obtain the parameter 

( )H RH∞∈U such that   

11 12

21 22

( ) ( ) ( )n

H H
H s s N s

H H
α

 
= ⋅ =  

 
   (34) 

Where 
0.1 1 0

( )
0 0.1 1
s

s
s

α
+ 

=  + 
       (35) 

 
The details of equation (32-34) are given in 
appendix A. Although the roots of ( )sα  can 
arbitrarily assigned, one should consider the 
limitation of bandwidth of the system and the 
tracking behavior to be improved. Furthermore, 
according to equation (18), the order of the 
parameter Q RH∞∈  which contains four 
elements with transfer function is of order twelve 
and a reduced order one (Appendix A.) is given as  

 1 11 121

21 22
nr l

Q Q
Q I HX J N Y

Q Q
− −  

= + =  
 

    (36) 

where 

2

2

10000 0
141 10000( )

100000
141 10000

s sJ s

s s

 
 + +=  
 
 + + 

 is 

composed of low-pass filters and , ,nr lX N Y  can be 
obtained by the coprime factorization approach. The 
closed-loop transient response to the vectors of 

reference command r  and input disturbance id  is 
shown in Fig. 6, where 

1

2

1, 1sec
2, 2sec

r t
r

r t
≥   

= =   ≥  
, 

,1

,2

1, 3sec
1, 4sec

i
i

i

d t
d

d t
≥   

= =   ≥  
           (37) 

 
In Fig. 6, The DCFDOB-VS can stabilize and 
decouple the system for an unstable minimum phase 
plant. On the other hand, the output response 
influenced by the input disturbance can be rejected 
and the tracking is well controlled. 

The frequency responses from 1

2

r
r

r
 

=  
 

 to 

1

2

y
y

y
 

=  
 

, id  to y , and od  to y  are shown 

in Fig. 7, Fig. 8 and Fig. 9 respectively. 
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Fig. 6 The closed-loop transient response of an 

unstable minimum phase case 
 

Fig. 7 represents the frequency response from the 
command 1r  and 2r  to the output 1y  and 2y , 
respectively. Obviously, the system has good 
tracking property in two direct channels as shown in 
Fig. 7 (a) and (d) and is decoupled for two cross 
channels as shown in Fig. 7 (b) and (c). The 
frequency response from input disturbance id  to 
output y  is shown in Fig.8 and the frequency 

response from output disturbance od  to output y  
is shown in Fig. 9. Both results show that the 
magnitudes are much less than 1 in low frequency, 
implying the input and output disturbance can be 
effectively rejected at a certain range of low 
frequency. 
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Fig. 7 The frequency response from r  to y for 

an unstable minimum phase case 
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Fig. 8 The frequency response from id  to y  for 

an unstable minimum phase case 
 

 
To demonstrate the flexibility of 

DCFDOB-VS design, such as the tracking and 
disturbance rejection, we change three kind of the 
coefficient of ( )sα  and remain the bandwidth of 
the low-pass filter ( )J s  as 
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          (38) 

And 
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As different design, the step responses from 

1

2

r
r

r
 

=  
 

 to 1

2

y
y

y
 

=  
 

, id  to y , and od  to 

y  are shown in Fig. 10. Fig. 11 and Fig. 12, 
respectively. 
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Fig. 9 The frequency response from od  to y  

for an unstable minimum phase case 
 
In Fig. 10, the root of α  designed for 

parameter H  changes from -10 to -1 and the 
system transient leads to a slower response. That is, 
the system response is determined by the pole 
locations of 1α −  and the tracking can be improved. 
On the other hand, the input and output disturbance 
rejection of the closed-loop system with 
DCFDOB-VS is shown in Fig. 11 and Fig. 12. We 
see that the transient response of step output 
disturbance is larger than the result of step input 
disturbance. But both results show that the 
DCFDOB-VS structure have good ability of 
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disturbance attenuation simultaneously. Hence, it is 
clear that the change of coefficient of ( )sα  can 
improve the tracking but have no effect in 
disturbances attenuation. As mentioned earlier, the 
parameter H and the parameter Q  are designed 
for different purpose, independently. 
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Fig. 10 The step response from r  to y for 

an unstable minimum phase case 
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Fig. 11 The step response from id  to y  

for an unstable minimum phase case 
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Fig. 12 The step response from od  to y  

for an unstable minimum phase case 
 

B. An unstable non-minimum phase case 
Suppose a square MIMO unstable minimum 

phase plant is given as 

2
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     (40) 

By the coprime factorization approach, we have 

 11 12

21 22

n n
n

n n

N N
N

N N
 

=  
 

              (41) 
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             (42) 

where 1
n n nP N M −=  be the RCF of nP  

over RH∞  and the details of equation (41,42) are 

given in appendix A. The Smith-McMillan poles 
locate at -3, -3, -2, -4, 2, 6 and zeros locate at 8.6734, 
-4.4734 and -3. Since the plant is of unstable 
non-minimum phase, according to equation (12) and 
equation (13), the parameter ( )H RH∞∈U is 
selected to be a unimodular matrix such that 
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1
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where 

0.841 0.1212
(0) (0)

0.0399 0.8508nH N
− − 

= =  − 
   (44) 

For ( )H RH∞∈U , the numbers of poles and zeros 

of an element of H  should be the same which can 
be arbitrarily assigned, but one should consider the 
limitation of bandwidth of the system and the 
tracking to be improved. 

To design parameter Q , according to the 
equations from (19) to (26), by solving the Nehari 
extension problem the objective function can be 

1min [ ( ) ] <1nr lQ RH
W X H I Q Y N

∞

−

∈ ∞
⋅ + −    (45) 

The weighting function 1 2{ , }W diag W W=  is 
chosen as  

1 2
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s b

b

s M sW W
s s

ω
ω ε
+ +

= = =
+ +

 (46) 

where 500, 0.01sM ε= = and 2bω = . Then, 

the obtained parameter Q RH∞∈ contains four 
elements, each with a 28 orders transfer function and 
the reduced one is given as 

11 12

21 22

q q
Q

q q
 

=  
 

                 (47) 

Where details of equation (47) are given in 
Appendix A. 

The closed-loop transient response to the 
vectors of reference command r  and input 
disturbance id  is showed in Fig. 13 where 
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In Fig. 13, just as the above case, The 
DCFDOB-VS can stabilize and decouple the system 
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for an unstable non-minimum phase plant, too. 
Although the overshoot of the response is large, the 
output response influenced by the input disturbance 
can be rejected and the tracking is well controlled. 
Note that, for a non-minimum phase plant, the initial 
drop of response is due to the right-half plane zeros 
in the transfer function. 
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Fig. 13 The closed-loop transient response of an 

unstable non-minimum phase case 

-60

-40

-20

0

20
r1 --> y1

(a)

10
0

10
2

-60

-40

-20

0

20
r1 --> y2

(c)

r2 --> y1

(b)

10
0

10
2

r2 --> y2

(d)

Frequency response from  r  to  y

Frequency  (rad/sec)

M
ag

ni
tu

de
 (d

B)

 
Fig. 14 The frequency response from r  to y for 

an unstable non-minimum phase case 
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, id  to y , and od  to y  are shown 

in Fig. 14, Fig. 15 and Fig. 16, respectively. 
    Fig. 14 represents the frequency 

response from the command 1r  and 2r  to the 

output 1y  and 2y , respectively. Using 
DCFDOB-VS structure to deal with a unstable 
non-minimum phase plant, the control system has 
good tracking property in two direct channels as 
shown in Fig. 14 (a) and (d) and has less effect in 
two cross channels as shown in Fig. 14 (b) and (c). 
The frequency response from input disturbance id  
to output y  is shown in Fig. 15 and the frequency 

response from output disturbance od  to output y  
is shown in Fig. 16. Both results show that the 
magnitudes are much less than 1 in low frequency, 
implying the input and output disturbance can be 
effectively rejected at a certain range of low frequency. 
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Fig. 15 The frequency response from id  to y for an 

unstable non-minimum phase case 
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Fig. 16 The frequency response from od  to y for 

an unstable non-minimum phase case 
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To demonstrate the flexibility of DCFDOB-VS 
design, such as the tracking and disturbance 
rejection, we design three kind of ( )H s  and 
remain the weighting function ( )W s  as 
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For different designs, the step responses from 
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, id  to y , and od  to 

y  are shown in Fig. 17, Fig. 18 and Fig. 19, 
respectively. 

 

0 5 10 15
-1

-0.5

0

0.5

1

1.5

2

Time (secs)
(a)

y

0 5 10 15
-1

-0.5

0

0.5

1

1.5

2
C osed oop t a s e t espo se to t e step co a d

Time (secs)
(b)

y

0 5 10 15
-1

-0.5

0

0.5

1

1.5

2

Time (secs)
(c)

y

 

 
Step command
Output response of channel 1
Output response of channel 2

 
Fig. 17 The step response from r  to y  for an 

unstable non-minimum phase case 
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Fig. 18 The step response from id  to y for 

an unstable non-minimum phase case 
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Fig. 17 The step response from od  to y  for 

an unstable non-minimum phase case 
 

In Fig. 17, the zeros of the element of 
( )H s change from -2.5 to -1.11 and the poles of the 

element of ( )H s  remain at -1. The system 
transient leads to a slower response. That is, the 
bandwidth of system is determined by the relative 
location of zeros and poles of parameter ( )H s  and 
the tracking can be improved. To compare these 
three kinds of design, a faster response will lead to a 
higher overshoot and undershoot for the nature of 
second order and non-minimum phase plant. In 
addition, the responses of the input and output 
disturbance rejection are shown in Fig. 18 and Fig. 
19. We see that the transient response of step output 
disturbance is much larger than the result of step 
input disturbance, but both results show that the 
DCFDOB-VS structure have good ability of 
disturbance attenuation simultaneously. In this case, 
it also demonstrate that the property of parameter 
H  can improve the tracking but have no effect in 
disturbance attenuation. As mentioned earlier, the 
parameter H and the parameter Q  are designed 
for different purpose, independently. 

Overall, for an unstable minimum phase or an 
unstable non-minimum phase MIMO plant, the 
DCFDOB-VS structure can provide a two steps 
design method to yield satisfactory performance. By 
appropriately choosing two parameters H and Q , 
one can design a two-degree-of-freedom controller 
to stabilize the plant and provide desired properties. 

 
CONCLUSION 

 
The paper presented a new framework that 

combines the proposed DCFDOB structure with the 
Visyasagar’s structure which has the subset of 
stabilizing solutions of the Youla-Kucera 
parameterization. By sharing the common observer- 
controller configuration to form the DCFDOB-VS 
structure, we obtain two parameters, i.e., ( )H s  
and ( )Q s , for different control purposes, i.e., the 
DCFDOB-VS inherits the advantages of both 
structures. Therefore, the proposed DCFDOB-VS 
can deal with tracking, decoupling and input/output 
disturbance rejection objective, respectively. A 
two-step design method is proposed to yield 
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satisfactory performance. By appropriately choosing 
two parameters, one can design a 
two-degrees-of-freedom compensator to stabilize a 
MIMO plant and provide desired properties. In 
particular, the DCFDOB-VS not only can stabilize 
an unstable minimum phase MIMO plant, but can 
deal with an unstable non-minimum phase MIMO 
plant, too.  
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雙互質分解干擾觀測器 

陳宇賢 黃瑞宇 張時中 潘怡仁 李安謙 
國立交通大學機械工程學系 

 
摘要  

本文提出一新穎雙自由度的控制架構，其結

合雙互質分解 (Doubly coprime)觀測器以及

Vidyasagar’s structure。本文之控制方法提供

一完善的控制架構以及設計步驟使得一多輸入多

輸出系統可以具備良好的抑制干擾效能之外，並

給予優異的軌跡追蹤以及方便的解耦性能射表

現。本文所提出之雙自由度的控制架構可應用於

穩定、非穩定、極小相位及非極小相位等線性系

統，文中對於不同系統狀況之內部穩定及穩健性

皆有詳細分析，最後本文方法之優點為對於兩個

參數的有最佳的獨立設計步驟，其可獨立針對提

升系統追蹤性能表現做設計外，亦可透過另一參

數提升對干擾之抑制效果以及系統穩健性。 
 

 
  

APPENDIX A 
 

    The equation (1,2), (32-34), (36) and (41,42) are given in details as below 
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And each element of equation (47) are shown as below 
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And the Fig. 2~5 are given 
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Fig. 2 The DCFDOB-VS structure with perturbations 
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Fig.3 M∆ − ∆  loop of DCFDOB-VS structure 
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Fig. 4 The modification of DCFDOB-VS structure with perturbations 
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Fig. 5 The equivalent modification of DCFDOB-VS with two independent parameters, ( )H s  and ( )YQ s  
 

 
 

APPENDIX B 
 

An observer-controller compensator described in Vidyasagar’s structure (VS) is shown in Figure B.1 
(Vidyasagar, 1985). The VS can be equivalent to the well-known Youla-Kucera parameterization, the set of all 
proper controllers that stable the system, and provides the tracking property 
when v nK H M= − , ( )H RH∞∈U  is applied (Huang, 2007). However, The VS structure only has one 
parameter to trade-off tracking performance or feedback performance. That is, the VS structure has a 
one-degree-of-freedom controller. If we use the relationship of v nK H M= − to reconstruct the loop path of 
VS, then an equivalent structure is transformed as Figure B.2. 
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Figure B.1: The Vidyasagar’s structure 
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Figure B.2: The transformed Vidyasagar’s structure 

A disturbance-observer compensator described in doubly coprime factorization based disturbance observer 
structure (DCFDOB) is shown in Figure A.3. 
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Figure B.3: The DCFDOB structure    
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Let a plant  11
nn n n nP N M M N

−−= =  be the rcf and the lcf of nP  over RH∞ , respectively. By the 

coprime factorization approach, there exit matrices , , ,r r l lX Y X Y RH∞∈  that satisfy the Bezout identities. In 

Figure B.3, the 3 3×  transfer function matrix from [ ]  T
ir d  ξ  to [ ]Tr d ne   e   e  is obtained as follows. 

 

1 1 1
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r n r n r
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n n n n n n r n n n r
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        (B.1) 

 
To ensure the internal stability of the DCFDOB, it is necessary and sufficient to test whether each of ninth 

transfer matrices in equation (B.1) is in RH∞ . For a stable plant 1
n n nP N M −= , i.e. 1

nM RH−
∞∈ , then the 

system is internally stable if the parameter Q RH∞∈  is provided. To investigate the states in the loop, the 
DCFDOB can estimate disturbances and the estimate states can be utilized to reject disturbances while providing 
satisfactory feedback properties such as sensitivity and robust stability in the presence of uncertainties and 
disturbances. 

The transfer function from id  to die  is represented by  
 

( ) [ ( )]di n r ie s I Q I M X d= − − ⋅ .                         (B.2)  
 

Thus, the transfer function ( )i n rS I Q I M X= − −  denotes the input sensitivity function from input 

disturbances id  to compensated input signals die . Suppose one can design a parameter Q RH∞∈  such that 

the matrix ( )n rQ I M X I− ≈  is obtained or the frequency-dependent singular 

values ( ( ))n rI Q I M Xσ − −  as small as possible are existed in a certain range of low frequency. Then, the 
DCFDOB can effectively eliminate input disturbances over that low frequency range. 

The proposed DCFDOB and Vidyasagar’s structure are all extended from the basic structure and has the 
same structure in some parts of loop. Thus, we merge these two structures into a new two-degree-of-freedom 
structure. To inherit the advantages of both structures, the DCFDOB-VS, provides two parameter 

( ) ( )H s RH∞∈U  and ( )Q s RH∞∈ , can design a two-degree-of-freedom compensator to stabilize unstable 
plant and achieve desired properties such as tracking, decoupling and disturbance rejection. 
 


