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ABSTRACT 

 
Unexpected failure of industrial motors is costly in 

production loss and is time consuming in repairing 
process. Motor current signature analysis has been used 
for fault diagnosis and detection but this method is 
depended on the voltage input quality and motor loading 
level in order to achieve accurate results. In this study, a 
novel motor fault detection and diagnosis method is 
proposed. The method is a preliminary study of a new 
approach in model-based fault detection and diagnosis 
method. It works by analyzing the bode diagram of the 
induction motor that will be generated by using current 
per voltage ratio in frequency-domain. Five industrial 
induction motors with three different conditions are the 
examples in this study. Two induction motors are in 
healthy condition, two induction motors are operated 
under misalignment/unbalance fault, and one induction 
motor is operated under bearing fault condition. The 
study results show that the proposed bode diagram 
approach can be used to detect the motor faults and the 
difference patterns appeared are visibly notable for the 
fault detection and diagnosis (FDD) of motor condition. 
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INTRODUCTION 
Induction motors have been used to power board 

range of applications in industry. But often, motors run 
not in their proper condition which reduce its production 
efficiency and increase cost in energy consumption. 
While sudden failures and malfunction of these motors 
lead to discontinuity of production which mostly results 
in time consuming and expensive repairing process. In 
this era of industry 4.0, condition monitoring of 
induction motors has drawn significant consideration in 
building of motor health management system in order to 
improve the reliability and safety of the production 
system. In the past, a safe and reliable operation of motor 
is ensured by performing simple detections of 
overcurrent, overvoltage and earth-fault (Nandi, Toliyat 
and Li, 2005). These traditional techniques are unable to 
locate the specific failure features or provide 
classification information that leads directly to the root 
cause of the motor failures (Wang et al., 2019). As the 
operation of the motor becoming more complex, these 
simple detection techniques are not enough. Especially 
in the condition of which the unexpected motor shut 
down is not tolerated. 

In general, motor failures can be classified as 
bearing failures, stator winding failures, broken rotor 
bars, air gap eccentricity, and other failures (Thomson 
and Culbert, 2017).  As in the induction motor operation, 
bearing failures, stator short turn, broken rotor bar, 
misalignment, and air gap eccentricity are among the 
most common ones and thus require special attention and 
treatment. These failures generally bring one or more 
symptoms such as, air gap voltage and line current 
unbalance, high pulsations of torque, decline of average 
torque output, low in efficiency, and excessive increase 
in temperature (Nandi, Toliyat and Li, 2005). Early 
detection of these failure symptoms of the induction 
motor helps us to avoid the unexpected breakdown 
during the motor operation, and helps the motor to run in 
the proper condition with better energy efficiency. 
According to Sullivan et al., (2010), efficiently operated 
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induction motor can reduce the energy consumption up 
to 5 – 20 %. 

Currently, fault detection and diagnosis (FDD) are 
consisted of two major approaches such as, motor 
vibration spectrum analysis (MVSA) and motor current 
spectrum analysis (MCSA). Both can be analyzed 
through frequency-domain and time-frequency spectrum 
analyses. As the behavior of rotational machinery that 
react to internal or external forces, vibration can be used 
as the indication about the current condition of a 
rotational machinery. Excessive vibrations above the 
acceptable vibration limit (ISO 10816-3, 1998) can be an 
indicator that there are mechanical issues on the 
rotational machinery. ISO 10816-3, (1998) is a basic 
document describing a general criteria to analyze the 
vibration of various type of motor size, ranged from 
small to large motor sizes. A time-frequency spectrum 
analysis has proven that the vibration signal is a proper  
mechanical fault signature such as bearing faults (Liu 
and Weng, 2019). 

Current spectrum can be used to observe the 
condition of the motor. It reflects the air-gap relationship 
between the stator and the rotor of the motor. Mostly, the 
presence of the faults will affect this relationship 
between the stator and the rotor in which can be observed 
from the stator current signal. If electrical or mechanical 
faults present on the motor, the current spectrum could 
be used to show that the faults are present. However, the 
current spectrum is not free from noises. Because noises 
may present due to the input voltage, and this causes the 
MCSA getting more difficult to be interpreted. Several 
methods have been developed in order to enhance the 
capability of MCSA based FDD. A detection of 
mechanical looseness of sleeve bearing is developed by 
only using the stator current spectrum (Jung et al., 2016). 
As noises may present in the current spectrum, the 
detection of mechanical faults such as bearing faults in 
frequency-domain spectrum analysis is obscure. A time-
frequency spectrum analysis is developed in order to 
overcome this such of limitation in detecting the fault 
signatures (Guo and Liu, 2018). Some characteristic 
frequencies identification related to mechanical and 
electrical faults rely on the accuracy of slip calculation. 
Thus, it may fail to detect the presence of the faults due 
to the inaccurate slip calculation. Another obstacle is the 
requirements of the detail of bearing type, model, and 
brand to calculate the characteristic frequencies of 
bearing faults. Without correct information, a slip 
calculation may be inaccurate. An MCSA based FDD is 
developed with optimal slip estimation to improve the 
accuracy of faults detection that requires the slip 
calculation (Jung, Lee and Kwon, 2006). 

A combination of MCSA and MVSA approaches 
may have been sought to improve the accuracy of FDD. 
Popaleny and Antonino-Daviu (2018) combined the 

MCSA and MVSA to improve the detection of these 
faults such as misalignment/unbalance, looseness, 
broken rotor bars and bearing faults. However, it is 
possible only to do that in a controlled laboratory 
environment. Industrial factories in fact are highly 
disturbing environment especially for vibration signal. 
One machine vibration signal may be affected by other 
machines’ vibration. The requirement of correct 
vibration sensor location for specific fault signal also 
makes it difficult to collect the exact vibration signal that 
represent some specific faults. For example, a non-drive 
end bearing faults detection require sensors to be located 
at non-drive end of the motor. Hence, it requires 
numbers of accelerometer transducers only for gathering 
the vibration signals for many specific faults detection. 
Therefore, this configuration will be costly only for one 
motor. In addition, the location or the configuration of 
the motor may not be accessible to place such of 
accelerometer transducer (Jung et al., 2016). Especially 
in some location where the sensor or transducer are 
exposed to extreme environment such as nuclear plant, 
this will reduce the time span of sensor and require the 
sensor to be replaced periodically. This in fact brings the 
MVSA difficult to be applied in such industrial factories 
despite that its fact that vibration signal is sensitive for 
finding the mechanical faults with the correct sensor 
location. 

In opposite of MVSA limitations, MCSA has 
advantages in collecting the current signals. MCSA 
needs only one phase of current data for analysis, while 
in many motors the current sensors have already 
installed during the motor installation in the factory. The 
source of noises that may present in the current signals 
come mostly from the voltage supply source. However, 
current spectrum magnitude is depended on the motor 
loading level. If the loading level is low, then the current 
spectrum magnitude is also low. Hence, this will also 
affect the fault frequency magnitude. The lower the load 
level the lower the fault frequency magnitude, and with 
a noisy spectrum, the identification of fault frequency in 
low loading level getting more difficult. Generally, the 
MCSA based FDD consider only for one phase of 
current signal to be analyzed which in fact requires good 
voltage supply and high loading level for the 
successfulness of faults detection. However, industrial 
factories may have inefficient loading and highly 
disturbing voltage source which makes the MCSA more 
challenging.  

In this study, a novel method of motor current per 
voltage bode diagram based analysis is proposed. This 
proposed method will consider the voltage input and the 
current output of the induction motor. Hence, it can be 
said that this method will be a preliminary and lower cost 
approach in model-based FDD. An assumption is made 
that the system is a linear time invariant system in a 
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quasi-steady state condition. A quasi-steady state is a 
condition in which a system is assumed to be in steady 
state condition but a small perturbation or small transient 
is allowed to be appear in the system output. Therefore, 
in this study a 6 seconds 3-phase voltage and current are 
acquired when the motor has passed the initial transient 
condition and run in stable operation frequency. By this 
assumption, it is expected that a particular solution of the 
system as a linear time invariant system can be drawn. 
At certain frequency a linear time invariant induction 
motor model will generate a bode diagram at certain 
magnitude and phase. Because bode diagram represents 
the relationship between the linear system model input 
and output, the system condition can be observed 
through this relationship. The proposed methodology 
works by finding the specific harmonics of motor in 
frequency spectrum of current per voltage waveform. 
Besides these harmonics, the presence of fault and other 
significant peaks frequencies will also be identified. The 
results of harmonics, fault, and significant peak 
frequencies identification will be plotted in logarithmic 
magnitude and phase plots. These plots will be employed 
to identify the presence of the faults.  

In this paper, five sections are presented. First 
section is this section of introduction. The second section 
present the motor fault characteristic frequency 
identification. The third section presents the 
methodology proposed in this study. The fourth section 
presents the results and discussions. While the fifth 
section presents the conclusions, recommendations 
drawn from this study, and the future work. 
 
IDENTIFICATION OF MOTOR FAULTS 

AND ITS CHARACTERISTIC 
FREQUENCY SPECTRUMS 

 
ISO 20958 (2013) provides the standard of 

induction motor online condition monitoring and 
standard in finding the motor fault characteristic 
frequencies in motor current. Different fault 
characteristic frequencies are found in ISO 20958 and 
can be calculated by following its guidelines. 

 
Bearing Faults 

Defects on the bearing ball or rolling element will 
increase vibrations and noise level at each component 
rotational speed. About 40 – 50 % motor failures are 
related to bearing faults due to the internal operating 
stresses, and external issues such as poor lubrication, 
corrosion, contamination, and improper installation 
(Nandi, Toliyat and Li, 2005). These vibrations appear 
as characteristic frequencies in the frequency-domain 
spectrum. The characteristic frequencies are related to 
the bearing balls, inner and outer bearing raceways 

defects. As bearing supports the rotor position at motor 
non-drive end and drive end by providing balance in air 
gap between rotor and stator, the condition of the bearing 
can be determined from these characteristic frequencies 
which provide a relationship to the stator current 
spectrum (Schoen et al., 1995). 

Defected bearing will generate a radial motion 
between rotor and stator. This radial motion results in 
mechanical displacement when the rotor rotating and 
causes the air gap between rotor and stator varying. The 
variations of the air gap cause the air gap flux density to 
vary and induce the stator voltage resulting in the stator 
current to contain bearing fault characteristic 
frequencies (Schoen et al., 1995). The bearing fault 
characteristic frequencies in the current spectrum can be 
calculated by using Eq. (1) as follows, 

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = |𝑓𝑓𝑏𝑏 ± 𝑚𝑚 𝑓𝑓𝑣𝑣| (1) 

where 𝑚𝑚 = 1,2,3, … and 𝑓𝑓𝑣𝑣  is one of the bearing fault 
characteristic frequencies related to the bearing balls, 
inner and outer bearing raceways defects. These bearing 
fault characteristic frequencies can be calculated by 
using Eq. (2) to (4) as follows (Schoen et al., 1995)(Jung, 
Lee and Kwon, 2006) (Guo and Liu, 2018), 

𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑏𝑏 + 𝑁𝑁𝐵𝐵
2
𝑓𝑓𝑠𝑠ℎ𝑏𝑏𝑎𝑎𝑎𝑎 �1 + 𝐷𝐷𝑃𝑃

𝐷𝐷𝐵𝐵
cos𝛼𝛼�  (2) 

𝑓𝑓𝑜𝑜𝑜𝑜𝑎𝑎 = 𝑓𝑓𝑏𝑏 + 𝑁𝑁𝐵𝐵
2
𝑓𝑓𝑠𝑠ℎ𝑏𝑏𝑎𝑎𝑎𝑎 �1 − 𝐷𝐷𝑃𝑃

𝐷𝐷𝐵𝐵
cos𝛼𝛼�  (3) 

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑏𝑏 + 𝐷𝐷𝑃𝑃
𝐷𝐷𝐵𝐵
𝑓𝑓𝑠𝑠ℎ𝑏𝑏𝑎𝑎𝑎𝑎 �1 − �𝐷𝐷𝑃𝑃

𝐷𝐷𝐵𝐵
cos𝛼𝛼�

2
�  (4) 

where 𝑓𝑓𝑏𝑏𝑏𝑏, 𝑓𝑓𝑜𝑜𝑜𝑜𝑎𝑎, and 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  are bearing fault characteristic 
frequencies related to inner bearing raceways, outer 
bearing raceways and bearing balls defects respectively, 
𝑓𝑓𝑏𝑏  is the supply frequency, 𝑓𝑓𝑠𝑠ℎ𝑏𝑏𝑎𝑎𝑎𝑎  is the motor shaft 
rotational frequency, 𝑁𝑁𝐵𝐵 is number of ball bearings, 𝐷𝐷𝑃𝑃 
is the pitch diameter, 𝐷𝐷𝐵𝐵is the ball bearing diameter, and 
𝛼𝛼 is the bearing contact angle. 

 
Shaft Misalignment/Unbalance 

Misalignment across the coupled motor shaft and 
the driven load causes an external pre-load force 
transmitted into the rotor. As the misalignment is higher, 
the transmitted pre-load force on the shaft and rotor 
getting higher, and pushing the shaft and the rotor to the 
side (Ortiz et al., 2019). Several factors that generate a 
misalignment are such as, bend in rotor shaft, 
mechanical resonance at critical speed, and bearing 
looseness (Nandi et al., 2010). Misalignment is one of 
the sources of motor dynamic eccentricity, while the 
static eccentricity is caused by either bearing faults and 
broken rotor bar. Static eccentricity appears when the 
rotor position is asymmetric and when the rotor is not 
installed properly. 
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Dynamic eccentricity is a condition where the rotor 
center is not located in the center of rotation and the 
smallest air-gap position rotates with the rotor (Nandi, 
Toliyat and Li, 2005). Therefore, air-gap in dynamic 
eccentricity is affected by the stator angle as the smallest 
air-gap position is rotated the rotor as the rotor rotates 
(Jung, Lee and Kwon, 2006). However, both static and 
dynamic eccentricity are likely to be found in induction 
motor during harsh or heavy duty cycle operation. For 
example, a static eccentricity due to broken rotor bar or 
bearing fault is not fixed properly. This eventually 
makes the static eccentricity getting more severe. In a 
case of severe static eccentricity, a high level of 
unbalanced magnetic pull (UMP) might be produced 
during a rotor rotation. This UMP generates 
misalignment and unbalance faults in motor shaft and 
rotor, and eventually leads to dynamic eccentricity 
(Nandi et al., 2010). 

When mix of both static and dynamic eccentricities 
appears during the motor operation, the variations of 
rotor position and oscillation in the radial air gap length 
will induce variations of air-gap flux density to the stator 
current. Therefore, two symmetrical sidebands may 
appear as the misalignment/unbalance characteristic 
fault frequency around the motor fundamental frequency 
given in Eq. (5) and (6) as follows (ISO 20958, 2013), 

𝑓𝑓𝑚𝑚𝑏𝑏𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑏𝑏 ± 𝑚𝑚𝑓𝑓𝑏𝑏 (5) 

𝑓𝑓𝑏𝑏 = (1−𝑠𝑠)
𝑃𝑃

𝑓𝑓𝑏𝑏  (6) 

where, 𝑓𝑓𝑚𝑚𝑏𝑏𝑠𝑠𝑠𝑠  is the misalignment/unbalance 
characteristic frequency, 𝑓𝑓𝑏𝑏  is the rotational speed 
frequency of the rotor,  𝑃𝑃 is the number of pole pairs and   
𝑠𝑠 is the slip. 
 

METHODOLOGY 
 
Experimental Setup and Data Collection Method 

Three CT current sensors and three voltage sensors 
are used to collect the 3-phase current and voltage data 
of the induction motors. A data acquisition device with 
2.5 kHz sampling rate is used. Fig 1. shows the 
configuration of current and voltage sensors during the 
data acquisition process. 3-phase current and voltage 
data is collected synchronously from the primary side of 
the induction motors. The length of the data collected for 
the analysis is 6 seconds length of time. The data 
collection is performed when the induction motor 
operating at steady state condition at certain rated 
frequency with fixed loading condition depended on 
what operation is the motor addressed. This provides 
steady state current and voltage data for further analysis. 

 
Fast Fourier Transform 

Frequency-domain spectrum provides rich 
information regarding to a signal’s unique frequency 
characteristic compare to time-domain signature. These 
unique frequency characteristics can be extracted from 
the signal to understand the motor condition during the 
operation. Fast Fourier transform (FFT) converts the 
motor current time-domain waveform into current 
frequency-domain spectrum with different frequency 
components. These components consist of harmonics 
and peaks that present in the motor signal during 
operation. These harmonics and peaks appeared in the 
current spectrum may due to the motor inverter 
frequency and its harmonics, or generated by different 
electrical and mechanical faults (Yang et al., 2016). 

FFT algorithm is used to compute this following 
Discrete Fourier Transform (DFT) presented in Eq. (7) 
as follows (Mitra and Kuo, 2006)(Hsu et al., 2019), 

𝑋𝑋[𝑘𝑘] = ∑ 𝑥𝑥[𝑛𝑛]𝑁𝑁−1
𝑏𝑏=0 𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑏𝑏 (7) 

𝑋𝑋[𝑘𝑘] = ∑ 𝑥𝑥[𝑛𝑛]𝑁𝑁−1
𝑏𝑏=0 [cos �2𝜋𝜋

𝑁𝑁
𝑘𝑘𝑛𝑛� − 𝑗𝑗 sin �2𝜋𝜋

𝑁𝑁
𝑘𝑘𝑛𝑛�] (8) 

where 𝑘𝑘 = 0,1,2,3, … ,𝑁𝑁 − 1, and 𝑁𝑁 is length of data. 
 
Motor Current Signature Analysis 

By using Eq. (7) a time-domain current waveform 
is converted into a frequency-domain spectrum. This 
frequency-domain spectrum provides us information 
regarding to the presence of multiple frequency peaks in 
the current waveform, which are related to the motor 
condition. MCSA requires prior knowledge related to 
the motor operation condition such as operation 
frequency and motor rated RPM. In order to identify the 
fault frequencies, a knowledge regarding to some parts 
specification is also essential such as bearing geometry. 
The MCSA flowchart diagram is shown in Fig 2.. 
 

Pump
Induction 

Motor

Flexible 
Coupling

AC

Current 
Sensor

Voltage 
Sensor

Data Acquisition System

 
Fig. 1. 3-phase current and voltage data collection setup 
 
Motor Current per Voltage Bode Diagram Analysis 

In this study, the proposed current per voltage bode 
diagram analysis works by considering all the important 
frequencies magnitude and phase of the system in 
current per voltage frequency spectrum. These important 
frequencies consist of motor harmonics which is 
considered up to 13th harmonics, fault frequencies that 
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may appear based on the Eq. (1) to (6), and any 
significant peak on the frequency-domain spectrum. The 
frequency band is limited up to 13th harmonics for the 
analysis due to the fault frequencies considered.  

 

START

Select the motor Current 
Data

Calculate the fault 
frequencies

Apply FFT to the selected 
Current Data

Is the fault 
frequency peaks 

detected?

Identify the motor faults Motor is healthy

FINISH

YES

NO

Motor operation condition, 
frequency, and rated RPM

 
Fig. 2. Motor current signature analysis flowchart 
diagram 

 
 Fig. 3 shows the flowchart of current per voltage 

bode diagram analysis. Similar to MCSA, a prior 
information regarding to the motor operation condition, 
frequency, and rated RPM is needed. Motor operation 
frequency is needed to calculate the system harmonics, 
while operation condition, and rated RPM can be used to 
calculate the considered fault frequencies using Eq. (1) 
to (6) for misalignment/unbalance and bearing faults. 
Significant peak will not be calculated but its indexes 
will be identified together with harmonics and fault 
frequencies indexes during the windowing process for 
finding the indexes. The significant peaks are defined 
based on its magnitudes that higher than noise 
magnitudes. 

Both current and voltage will be converted from 
time-domain waveform into frequency-domain 
spectrum by using Eq. (7). Then the moving average of 
the current and voltage FFT spectrum is calculated. This 
moving average calculation is done by using Eq. (9) as 
follows, 

𝑀𝑀𝑀𝑀����� = 1
𝑏𝑏
∑ 𝐷𝐷𝑏𝑏𝑏𝑏
𝑏𝑏=1  (9) 

where 𝑀𝑀𝑀𝑀����� is the moving average of data 𝐷𝐷 every 𝑛𝑛-data 
points movement, 𝐷𝐷 is the data which in this study is the 
current and voltage FFT data, and 𝑛𝑛 is the length of the 
moving data that will be used for averaging. In this study, 
the current and voltage FFT moving average is 
calculated with 10 moving data points. This current and 
voltage FFT moving average will be used to subtract the 
current and voltage FFT data to obtain the zero mean 
average data. The zero mean average data helps to 
identify the presence of harmonics, fault, and significant 
peaks easier. By categorizing the peak as the outlier of 
these zero mean average data. The results of this 
identification process is the index locations of the peaks.  

The identification of harmonics, fault, and 
significant peak indexes is done by using a moving 
windows. The moving windows size is half of the main 
frequency band. For example, with 60 Hz main 
frequency the moving windows size is 30 Hz band. So 
the peak identification is done in every 30 Hz from 0 Hz 
up to 13th harmonics which in this case is 780 Hz. After 
each searching on current and voltage frequency 
spectrum, the list of indexes found in both current and 
voltage spectrums will be combine by using union 
combination. These indexes will be used to find the 
magnitude and phase on the frequency spectrum of 
current per voltage data. 

A bode plot of magnitude and phase will be 
generated through the identified frequencies in rad/s, 
magnitude in dB scale, and phase angle in degree. The 
bode plot is generated by frequency versus magnitude 
and by frequency versus phase angle. Generally, there 
will be two plots in bode diagram frequency versus 
magnitude plot and frequency versus phase angle. The 
bode diagram is plotted by using logarithmic scale for 
the frequency axis. A bode diagram represents a model 
of input-output relationship of a system. In our case, this 
bode diagram represents the relationship between input 
voltage and output current of the motor. So the pattern 
of the bode plot will define the complexity of the motor 
model. It is expected that this complexity of the motor 
model can be used to define the condition of the motor, 
either healthy or faulty. This method is essentially 
considered as the model-based fault diagnosis method as 
it considers the input and output relationship of the 
system. 
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Calculate the motor 
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frequencies
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Ratio of Current FFT and 
Voltage FFT indexing 
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phase of harmonics, fault, 
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frequency, and rated RPM

List of motor harmonics 
and fault frequencies

List of harmonics, fault, 
and significant peak 

indexes

YES

NO

 
Fig. 3. Motor current per voltage bode diagram analysis 
 

EXPERIMENTAL RESULTS AND 
DISCUSSIONS 

 
In this study, by using real induction motor 

parameter provided in (Duan and Živanović, 2014), the 
transfer function derivation of 3-phase induction motor 
model in ABC frame is done. It is found that for each 
phase output current there are three transfer function 

contribution from the input voltage. An input voltage is 
given more weight on the contribution to the 
corresponding output current of the same phase 
compared to the other two-phase. For example, the input 
voltage phase-A is given more contribution for output 
current phase-A compared to the contribution for output 
current phase-B and phase-C. Therefore, the current per 
voltage analysis are focused on the same phase pair. Five 
operated induction motors are chosen as the examples. 
Three induction motors are operated under fault 
conditions, while the other two are operated under 
healthy conditions as shown in Table 1.  

Motor 1 and 2 are operated at 60 Hz frequency at 
3560 rated RPM and 1780 RPM. The results of MCSA 
of both motors can be seen in Fig. 4. Based on its current 
spectrum there is no fault frequency found. The Fig. 5 
shows the bode diagram of current per voltage of both 
induction motor. Both motor use the pair of phase-A 
current and voltage for bode diagram analysis. This bode 
diagram will be our base comparison with the other 
motors with fault condition.  

Two induction motors are operated under 
misalignment/unbalance fault conditions. Motor 3 is 
operated at 45.8 Hz frequency with 1750 rated RPM, 
while motor 4 is operated at 40 Hz frequency with 1750 
rated RPM. Motor 3 uses the pair of phase-C current and 
voltage, while motor 4 uses the pair of phase-B current 
and voltage. Based on the Fig. 6, the current spectrum of 
both motor current signature shows two symmetrical 
side band peaks around the main frequency. By using Eq. 
(5) and (6) and the operating frequency, it can be 
calculated that the side band frequency of 
misalignment/unbalance fault is at 23.2 Hz and 68.6 Hz 
for motor 3 and is at 20.2 Hz and 59.8 Hz for motor 4 as 
shown in Fig. 6 and clearly observed.  While from Fig. 
7., the pattern of misalignment/unbalance fault can be 
seen from the current per voltage bode and phase 
diagram.  Comparing to motor 1 and 2 shown in Fig. 5, 
a pattern can be found both in gain plot and phase plot 
and can be seen clearly in phase plot starting at 𝜔𝜔 =
140 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and along both motor operating frequency to 
high order frequency. This frequency band is the 
location where normally misalignment frequencies are 
found. Therefore, the bode diagram at Fig. 7 shows that 
the misalignment motor models will have more zeros 
and poles on its transfer function compared to the bode 
diagram at Fig. 5. 

Another induction motor sample is operated under 
bearing fault condition. The motor is operated at 53.2 Hz 
with 3555 rated RPM. Bearing fault frequencies can be 
calculated by using Eq. (1) to (4) with the bearing 
specification provided by the bearing manufacturer. It is 
then identified that the bearing failures is found. Fig. 8 
(a) shows that there is no peak at bearing outer and ball 
frequencies, but there are peaks at bearing inner  
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Table 1. The observed industrial induction motor samples 

Motor Type Frequency 
(Hz) 

Rated 
Voltage (V) 

Rated 
Current (A) 

Rated 
RPM Condition 

Sample 1 Pump 60 460 214 3560 Healthy 
Sample 2 Pump 60 480 66.3 1780 Healthy 
Sample 3 Pump 45.8 380 55.7 1750 Misalignment/unbalance 
Sample 4 Pump 40 380 55.7 1750 Misalignment/unbalance 
Sample 5 Pump 53.2 480 130.74 3555 Bearing Faults 

 
frequency at 313.36 Hz and bearing outer frequency at 
215 Hz. Fig. 9 shows the drive end bearing inner ring, 
outer ring, and the bearing ball defects. This bearing 
inspection proves that the bearing defect signature 
observed at the current spectrum. The bode diagram 
shows different pattern of bearing fault compare to the 
misalignment/unbalance fault and healthy motor. As 
shown in Fig. 8 (b), motor sample 5 bode diagram with 
bearing fault shows a pattern at 𝜔𝜔 = 15 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 to 𝜔𝜔 =
165 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠. 

Bode diagram pattern represents the input-output 
relationship of the system as it is generated from the 
input and output of the system. As it can be seen from 
Fig. 5, Fig. 7, and Fig 8 (b), different condition of the 
induction motor shows different pattern of bode diagram. 
It reflects that the healthy motor model structure will be 

simpler than the faulty model structure. The bode 
diagram pattern of the faulty motors show more zeros 
and poles in their model structure. The difference in 
complexity of the healthy and faulty motors will 
generate different outputs in which the residual of these 
outputs can be compared to determine the fault type and 
level of the motor condition. In this study 3-phase 
voltage and 3-phase current are employed in order to do 
the current per voltage bode diagram based FDD. There 
are 9 bode diagrams of each motor, but it is chosen only 
1 bode diagram that shows severity in their model 
structure to be presented in this paper. These pattern can 
actually also be seen in the other bode diagrams but in 
different magnification. 

 
 (a) (b) 
Fig. 4. Healthy motor current frequency spectrum plots (a) motor sample 1, (b) motor sample 2 
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 (a) (b)  
Fig. 5. Healthy motor magnitude and phase logarithmic plots (a) motor sample 1, (b) motor sample 2 

 
 (a) (b) 
Fig. 6. Misalignment/unbalance fault motor current frequency spectrum plots (a) motor sample 3, (b) motor sample 4 

 
 (a) (b) 
Fig. 7. Misalignment/unbalance fault motor magnitude and phase logarithmic plots (a) motor sample 3, (b) motor 
sample 4 
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 (a) (b) 
Fig. 8. Bearing fault motor sample 5 (a) current frequency spectrum, (b) magnitude and phase logarithmic plots 

 

 
 (a) (b) 
Fig.  9. Motor sample 5 drive-end bearing defects (a) bearing inner and outer ring, (b) ball bearing 

 
CONCLUSIONS 

 
A novel fault detection and diagnosis method is 

proposed in this study by considering motor harmonics, 
fault, and significant peak frequencies on the current per 
voltage frequency spectrum. The fault detection and 
diagnosis is performed by observing the pattern of the 
current per voltage bode diagram. This method is 
compared with the existing motor current signature 
analysis. The MCSA successfully identify the presence 
of fault frequencies in the current frequency spectrum in 
the example cases, while the current per voltage bode 
diagram observation also detect and distinguish different 
motor conditions. Healthy motor pattern in bode 
diagram is simpler compared to faulty motor. In addition, 
between misalignment/unbalance fault and bearing fault 
condition it shows different bode diagram pattern 
implying that different fault generates different model 
structure.  

This finding is important in preliminary 
understanding of the difference between healthy and 

faulty motor model structures. With different model 
structure, the simulated current output from healthy and 
faulty motors will be different. The pattern and the 
residual between their outputs can be used to detect and 
classify the fault type and define the level of fault 
severity. This comparison between the healthy and faulty 
motor model structure output will be the future work of 
this study. 
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使用電壓電流波德圖之感應

馬達異常診斷的新穎方法 
 

Widagdo Purbowaskito  藍振洋  劉孟昆 
國立台灣科技大學機械工程學系 

 

摘 要 
本研究旨在探討感應馬達之異常偵側與診

斷，相較於傳統的振動頻譜分析方法或電流特徵頻

譜分析方法，文中提出以馬達電壓電流所產生之波

德圖來判斷感應馬達之狀態。將感應馬達轉動設備

視為一個系統，其電壓為系統之輸入，電流為系統

之輸出。藉由產生之感應馬達電壓電流波德圖的樣

式模型，用來判斷馬達之狀態。波德圖主要描述一

系統的輸入輸出之關係。因此本方法也可視為模型

式之異常偵檢方法，期改善電流特徵頻譜分析中電

壓雜訊之干擾。先期應用於五組感應馬達設備，其

中兩組為健康設備，兩組為具有不平衡/不對心之

異常設備，一組為有軸承異常之設備。其結果顯示

不同狀態的馬達顯示出明顯不同之波德圖的樣式模

型。 


