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ABSTRACT

This study employs the finite element method
to analyze the dynamic behavior of a helical geared
rotor system with oil-film bearing. The system
comprises the rotating shaft, helical gear pair, and
oil-film bearing. The Timoshenko beam model is
used to simulate the rotating shaft, and the rotating
shaft’s rotational inertia and shear strain effect are
considered. In consideration of the gyroscopic effect,
the helical gear pair is assumed to be two rigid disks,
and a linear spring and damper are connected along
the pressure line of the disks for simulation. This
study investigates the effects of bearing lubricant
viscosity, bearing radial clearance, bearing diameter,
bearing length, bearing length-to-diameter ratio, helix
angle, and an inner diameter of the rotating shaft on
the systems’ axial and lateral dynamic response for
determining the system’s dynamic properties. The
simulation results serve as a reference for academic
researchers and industrial practitioners wishing to
further investigate helical gear rotor systems with
oil-film bearings.

INTRODUCTION

Rotary dynamics play critical roles in various
engineering fields. Rotating machines are commonly
used in both large and small industrial equipment
including aero engines, steam turbines, wind power
generators, internal combustion engines,
reciprocating compressors, and centrifugal
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compressors, all of which involve rotating shaft
mechanisms. Therefore, discussion and research on
rotating machines are crucial.
Gears are the primary power transfer component in
rotating machines. Unsuitable gear selection or
inadequate gear design may result in noise and
vibration during gear meshing, thereby causing
energy loss and damage to components. Spur gears
are the most commonly employed type of gear in
rotating systems. Although they are easy to
manufacture and have low production costs, spur
gears have a low gear occlusion rate during gear
meshing and thus generate considerable vibration and
noise. However, gears that vibrate excessively during
gear meshing often sustain damage. To solve these
problems in the operation of spur gear rotor-bearing
systems, this study proposes the replacement of spur
gears with helical gears. Helical gears have
advantages in power transfer applications, including
stable power transfer and high-speed operation.
Therefore, using helical gears in rotating gear fields
can effectively reduce the amount of vibration and
noise that are generated. Furthermore, helical gears
are viable for use in systems operating at high speed.
Bearings are the main component supporting rotors in
rotating machines. Because of their simple structure,
high load capacity, adequate stability, and long
working life, oil-film bearings are commonly
employed in rotating machines. Studies on rotor
system bearings have generally employed linear
bearings. However, the increased complexity of the
current rotor-bearing systems has raised issues in
rotating machine design, including how the problems
with nonlinear systems can be simulated and analyzed
using linear methods, how resonance can be
prevented in rotor systems, and how system stability
can be increased.
Ruhl and Booker (1972) used the finite element
model to analyze a rotor-bearing system, in which the
Euler-Bernoulli beam theory was used in the shaft
model that took into account the bending moment and
translational inertia of the shaft. Their numerical
results showed that this method could be used to
precisely analyze a rotor-bearing system. Nelson and
McVaugh (1976) subsequently adopted the Rayleigh
beam theory to simulate a rotating shaft, considering
the rotatory inertia of the disk, the axial force, and the
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gyroscopic effect to obtain the system’s equation of
motion. They also derived the dynamic response and
critical rotational speed of the rotor-bearing system.
Nelson (1980) used the Timoshenko beam theory and
the finite element model to calculate the effect of
shear deformation and rotatory inertia and compared
the values obtained with those using Euler beam
(1973), and Rayleigh beam (1969). The results
indicated that the Timoshenko beam was affected by
shear deformation and rotatory inertia, and thus had a
lower natural frequency than the Euler—Bernoulli, and
Rayleigh beams.

To analyze the dynamic behavior of oil-film bearings,
scholars have conducted experimental research to
determine the effects of radial clearance, oil-film
viscosity, and the rotation speed of the rotation shaft
on the oil-film force or magnitude of vibration. Lund
and Saibel (1967) expanded the two stiffness
coefficients and two damping coefficients of the
oil-film bearing into four stiffness coefficients and
four damping coefficients, making the oil-film system
model more accurate. Vance and Kirton (1975)
explored that the dynamic pressure oil-film force
which is from the incompressible lubricating fluid
between the squeezed oil-film bearings, and the value
is similar to the theoretical value derived from the
Reynolds equation. Thomsen and Andersen (1974)
studied the effect of oil-film viscosity and pointed out
that for small amplitudes, the damping coefficient and
the rotating speed of the shaft are independent of the
vibration. Lin and Lin (2001) analyzed the stability of
the rotor system with oil-film bearing and changed
the size of the shaft to optimize the weight of the
system.

About the study of helical geared rotor-bearing
systems, Lund (1978) analyzed the dynamic response
and critical speed of the system by considering the
influence of gear eccentricity and transmission error.
The results indicate that the influence of
high-frequency  system  transmission error is
negligible. Kahraman (1993) developed a helical
geared rotor-bearing system for simulation and
explored the dynamic effect of the helical angle, with
results indicating that the natural frequency was not
considerably affected by this angle. Kahraman (1994)
also explored the effect of a helical geared
rotor-bearing system’s natural frequency and mode
by changing the helical angle. Results show that gear
meshing affected lateral, axial, and torsional mode
coupling. Kubur (2004) extended the model into a
three-axis two-pair geared-rotor system model. Draca
(2006) discussed the natural frequency and response
of the helical geared rotor-bearing system with the
different positions of the disk and the length of the
shaft. Feng et al. (2011) analyzed the influence of
bearing stiffness coefficient on the dynamic response
of the helical geared rotor-bearing system. Yang et al.
(2012)  developed a double-helical  geared
rotor-bearing system whose gear stiffness changed
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over time, with results indicating that the system
produced higher dynamic responses in particular
positions at several natural frequencies. Zhang et al.
(2013) developed a general three-dimensional
dynamic model of helical gear pairs with geometric
eccentricity. The gear mesh and bearing flexibility is
included in the model as well. Wang et al. (2018)
developed an improved time-varying mesh stiffness
(TVMS) model of a helical gear pair, in which the
total mesh stiffness contains the axial tooth bending
stiffness, axial tooth torsional stiffness, and axial gear
foundation stiffness. Ali et al. (2019) developed six
degrees of freedom dynamic model of a planetary
geared rotor system which includes gyroscopic
effects.

Although some dynamic factors have been
incorporated into the dynamic analysis of the geared
rotor-bearing system, few studies have considered the
oil-film bearing in dynamic modeling. This study
introduces a novel dynamic model for a helical
geared rotor system with oil-film bearing, which
investigates the effects of bearing lubricant viscosity,
bearing radial clearance, bearing diameter, bearing
length, bearing length-to-diameter ratio, helix angle,
and an inner diameter of the rotating shaft on the
systems’ axial and lateral dynamic response for
determining the system’s dynamic properties.

DERIVING THE SYSTEM EQUATION
OF MOTION

Figure 1 displays the helical geared
rotor-bearing system discussed in this study. The
system includes rotating shafts, oil-film bearings, and
a helical gear pair. The rotating shaft is considered to
be a flexible Timoshenko beam with a shear
deformation effect and uses oil-film bearings as the
system bearings. This paper used a fixed coordinate
system ( X, Y, Z) to describe the equation of motion.
Figure 2 shows the typical rotor configuration and
coordinates, U is the axial displacement along the
X-axis, V and W indicate the system’s lateral
displacement along the Y and Z axes. B and
I are rotational displacements along the Y and Z,
respectively, « is the torsional displacement. The
helical gear pair is viewed as two rigid disks. The
helical gear pair is mounted on a rotating shaft and
modeled as a linear spring and damper along its
pressure line. First, the Lagrange equation and finite
element model are used to construct the equations of
motion of the system. Subsequently, the equations are
combined through superposition to obtain the
equation of motion of the complete system. This
equation is analyzed to reveal the system’s dynamic
properties.
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Fig. 1. A model of the helical geared rotor-bearing

system.

Disk and Gear Mesh
Each gear has six degrees of freedom: one
degree of axial displacement U,, two degrees of

lateral displacement V, and W, , and three degrees

of rotational displacement ¢« , B, and I, .

Because this study considers the gears to be rigid, the
effect of strain energy is ignored. The kinetic energy
equations of the gears are as follows:

To =2, )"+ (Vg + 00,1+ L[, + (7]
b L2 Q)BT — B+ (€2 6 e med @2+,

+me, (2 +a, [V, sin(Qt + o, +¥,)+W, cos(2t +a, +¥,)],

)

where m is the gear mass; I, and 1, are the
mass and polar moment of inertia of the gear,
respectively; 2 is the rotation speed of the rotating
shaft, e, is the eccentric distance of the gear, and
¥, is the phase angle of the gear. By inputting the
kinetic energy equation (1) into the Lagrange

equation, the kinetic energy equation of the gear is
obtained:

[M b3+ 2[G, Hb.} ={F.}, ()

where, [M,], [G,]. {F,}. and {q,} are the mass

matrix, gyroscopic effect matrix, external force term,
and displacement vector of the gear, respectively.

Fig. 2. Typical rotor configuration and coordinates
(2020).
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Figure 3 displays the helical gear pair model.
The helical gear pair is mounted on a rotating shaft
and modeled as a linear spring and damper along its
pressure line. The gearmesh stiffness coefficient, k,,

is assumed to be a constant. The gearmesh damping

coefficient ¢, and transmission error e, are

ignored. The gearmesh force is calculated as follows:

m

F. =k o 3)

m

The relative gear meshing displacement along the
pressure line is determined as follows:

& =[(Vy, —Vy)sing, + Wy, —Wy,) cos @, — (1,0, +1y,04,)1C0S ¢,
+[(Ud2 _Udl) + (rdlel + rdZBdZ)Sin¢p - (rdlrdl + rdzrdz)cos¢p]5in ¢hv

(4)

where subscripts di, d» represent the driving and
driven gears. r,, r,,, 4,, and ¢ are the driving
gear radius, driven gear radius, pressure angle, and
helix angle, respectively. From equations (2) and (3),
the equation of motion of the gear pair is derived as
follows (2013):

|:[M gl] [Ggl] 0

0 [Mgz]}{qghg{

o Eu[ng]]{qgwkm[sh]{qg}—{ﬁ},

®)

where [M ] and [M,] are the mass matrix of the

driving and driven gears, respectively; @ is the
rotating speed of the driving shaft, N, and N,

are the number of teeth on the driving and driven
gears, respectively; [G,] and [G,,] are the

gyroscopic effect matrix of the driving and driven
gears, respectively; [S,] is the gearmesh stiffness

matrix of the helical gear pair; {F,}is the eccentric
force vector of the gear, and {q,} is the
displacement vector of the helical gear pair.

Driven Gear

Driving Gear

VAR

Fig. 3. Amodel of the helical gear pair.



Shaft

This study used the Timoshenko beam theory in
developing the model. The effect of shear
deformation and rotational inertia were considered
and uses the finite element model to derive the
equation of motion of the system. Figure 4 indicates
that each rotating shaft element is composed of two
nodes. Each node has six degrees of freedom, namely
one degree of axial displacement U, , two degrees of

lateral displacement V, and W, and three degrees
of rotational displacement ¢, , B, and I .

Therefore, each rotating shaft element has 12 degrees

of freedom. The kinetic energy of the rotating shaft

element is calculated as

T =1r PALUL) + (V) + (W) + plo[(B,)* +(1,)°] s
’ 2 0 +p|sP(Q+ds)(Bsrs_rsBs)+p|sP(Q+ds)2 7

(6)

where p, A, Iy, and 1y are the density,

cross-sectional area, moment of inertia, and polar
moment of inertia of the shaft, respectively. The
strain energy of the shaft element is calculated as
follows:

_1 ! r\2 1\2 1 ! "2
u, —EJOpElsD[(BS) +(T) ]dS+EJ.0pGlsp(aS) ds

(7
+%jo' KGAL(V, ~T,)? + (W, +B,)*]ds +%j; EAU!)’ds,

where E and G are Young’s modulus and shear
modulus of the shaft, respectively, and x is the
shear factor. By inputting the kinetic energy equation
(6) and strain energy equation (7) into the Lagrange
equation, the equation of motion of the shaft element
is obtained as follows (2013):

[M, K3+ 2[G, {a.}+[K, {a.} = {0}, ®)
where [M.], [G,], and [K,] are the mass,

gyroscopic effect, and stiffness matrixes of the shaft
element, respectively.

Fig. 4. Shaft element and the node degrees of
freedom (2020).
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Bearing

This study uses an oil-film bearing, which has
low friction and heat generation. The motion
conditions of the oil-film bearing are displayed in
figure 5, with C, e, and W representing the radial
clearance, eccentric distance, and radial load,
respectively.

11
Fig. 5. A dynamic model of the oil-film bearing
(2020).

This research hypothesizes that once the
rotating shaft has achieved stable motion within the
bearing, the stiffness and damping coefficients of
the bearing are displayed as follows (2001):

k - 1

Y C(1-¢*)

) AW {7° +(32+7°)&” +2(16-7°)2*}Q(¢)
" Ce(1-¢° ,
) ::—MN{EZ—Zﬂﬂf—{lﬁ—ﬂzyf}Q(sx

kzz = J
C
©)]

27W {72'2 + 2(24—7[2)82 +7Z'2£4}Q(6)
C, = )
Y QCe (1—52)
Cyz =Czy =8\/\/{7T2+2(ﬂ2_8)82}Q(8), (10)

QC

27W (1—£2>{7r2 +2<7r2 —8>€Z}Q(€)
Cu = QCs ’
Q(e)=[7*(1-62)+1662] 7, (11)
gzg, (12)
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where ¢ is the eccentricity ratio of the bearing,
which is computed using the bearing characteristic
coefficient s as follows:

e (13)

oW |C D_7Z'€\/7Z'2(1-82)+1682’

where L, is the bearing length, u is the bearing

lubricant viscosity, @ is the rotating speed of the
shaft, R is the radius of the bearing, and D is the
diameter of the bearing. Because this study employs a
cylindrical bearing, D = 2R. The equation of motion
of the bearing is as follows:

[C, K3+ [K, a3 =10}, (14)

where, [C,], [K,], and {g,} are the damping

matrix, stiffness, and displacement vector of the
bearing, respectively.

System Equation of Motion

The equations of motion of the system disk,
gear meshing, shaft, and bearing unit were introduced
in the above. The equations for each unit can be
combined to produce the equation of motion of the
entire helical geared rotor-bearing system, as follows:

[MNG}+ (2 [C]+[CI{d}+[KHa}={F} (15)

where [M], [G], [C], [K], {F}, and {q}

represent the system mass matrix, gyroscopic effect
matrix, damping matrix, stiffness matrix, force vector,
and displacement vector, respectively.

RESULTS AND DISCUSSION

To verify the accuracy of the proposed model,
we chose Kahraman'’s helical gear pair system (1993).
In the helix gear pair system shown in figure 6, the
gear ratio is 1, the face width is 0.03m, and the gear
mesh coefficient is 2x108 N/m. The other material
parameters are shown in table 1. As can be seen from
figure 7, the natural frequencies obtained from the
proposed model are similar to the results of
Kahraman (1993), indicating that the proposed model
has good accuracy.

The following data were used in the calculation
for the helical geared rotor system with oil-film
bearing. The shaft outer diameter is 0.05 m, the
bearing axial stiffness is 1x10° N/m, the gearmesh
stiffness is 1x108 N/m. The other parameter values of
the system are given in Table 2.
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Fig. 6. Dynamic model of a helical gear pair system
(1993).

Table 1. Helical gear pair parameters (1993).

Parameters Pinion Gear
Base circle radius (m) 0.05 0.05
Mass (kg) 2 2
l.
/2 (kg) 0.58 0.58
di
‘]i
r2 (ko) 116 116
di
Ky (N/m) 3.58DlO 35&?10
Ky (N/M) 10108 10108
k _
i/, (N/m) 1.18DlO 1'1§10
f
Pressure angle (degrees) 20
Transmission error (m) 1710
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Fig. 7. Natural frequencies for the (a) proposed and
(b) Kahraman (1993).

Table 2. Parameters of a helical geared rotor system
with oil-film bearing.

Shaft parameters

Shaft length (m) L, =080, L, =080,
L,=0.10, L, =0.70
Density (kg/m?®) 7800
Young’s modulus E (N/m?) 2.07x10%
Poisson’s ratio v 0.3

Gear pair parameters

Gear outer diameter (m) 0.30
Thickness (m) 0.03
Disk eccentricity (m) €y, =€y, = 1x10°
'(I;jr;eg Fergse angle of the gear W, =¥, =0
Pressure angle (degree) $, =20
Helix angle (degree) @, =20

Bearing parameters

Type of lubricant SAE 40
Operating temperature (°C) 75
Radial clearance C (m) 5.00x10
Bearing diameter (m) 0.08
Bearing length (m) 0.08

Effect of Bearing Lubricant Viscosity

This section discusses the influence of lubricant
viscosity on the axial and lateral dynamic response of
the rotor-bearing system. Lubricants with viscosity of
0.005, 0.01, 0.02, 0.05, 0.1, and 0.2 Pa-s are
considered. The waterfall plot in figure 8 shows the
lateral and axial dynamic response of the driving disk
in the rotor-bearing system. Fig.8 reveals that the
lateral and axial responses collectively decrease when
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the lubricant viscosity is increased. This is because,
under the same rotation speed, the bearing viscosity
and damping coefficients are higher when the
lubricant viscosity is higher. Consequently, the lateral
and axial dynamic response of the rotor-bearing
system decrease when the lubricant viscosity is
increased.
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o
=

E
p
g
S 0.005
8
o
g 0
E 0.2
2
0.01 !
. 0.5
0.005 0 Xlo
u (Pass) Spin speed (rpm)
2 2
(a) lateral response («/Vdl +W,. )
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3
s 2
E
3
S 1
o
3
14
8 0
Z 02

0.05

0.02 1

0.01 .
W (Pa-s) 0.005 0 X
Spin speed (rpm)

(b) axial response (U, )

Fig. 8. Dynamic response of the driving disk under
different lubricant viscosity.

Effect of Bearing Radial Clearance

This study hypothesizes that the lubricant flow
is only laminar flow inside the radial clearance rather
than turbulent or vortex flow. Therefore, the
momentum effect within the lubricant flow is not
computed. The following radial clearances (C) are
considered: 2x10¢, 4x10°6, 6x10, 8x106, and 1x10°
m. The waterfall plot presented in figure 9 shows the
influence of radial clearance on the lateral and axial
dynamic response of the driving disk. When the
rotation speed of the rotor-bearing system is
increased, the journal applies the lubricant to the
radial clearance between the journal and the bearing.
According to the incompressibility of liquid and
hydrodynamic theory, the lubricant inside the radial
clearance generates oil-film force. The oil-film has
greater pressure if the radial clearance is small,
thereby exerting a stronger influence on the system's
dynamic response.
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Fig. 9. Dynamic response of the driving disk under
different radial clearance.

Effect of Bearing Diameter and Length

First, rotor-bearing systems with different
bearing diameters (D) are employed to determine the
influence of bearing diameters on the system’s lateral
and axial dynamic response. Rotor-bearing systems
with bearing diameters of 0.06, 0.08, and 0.1 m are
analyzed. Figure 10 displays the lateral and axial
dynamic response of the driving disk in the
rotor-bearing  systems with different bearing
diameters. The bearing diameter has a minimal
influence on the system dynamic response.
Subsequently, rotor-bearing systems with different
bearing lengths (Lg) are used to determine the
influence of the system, with the bearing lengths used
being 0.06, 0.08, and 0.10 m. Figure 11 displays the
lateral and axial dynamic response, and similar to the
conclusion made from fig.10, fig. 11 reveals that
bearing length has a minimal effect on the system’s
lateral and axial dynamic response. Finally, the
influence of the length-to-diameter ratio (L4/D) on the
lateral and axial dynamic response is analyzed.
Length-to-diameter ratios of 0.5, 1.0, 1.5, and 2.0 are
considered. Figure 12 illustrates the lateral and axial
dynamic response of the driving disk and indicates
that when the length-to-diameter ratio is increased,
the system stiffness and damping coefficients
increase, whereas the lateral and axial dynamic
response of the driving disk decreases. Besides, the
system resonant frequency is higher when the

5000

5000

length-to-diameter ratio is higher.

This case reveals that individually, bearing
length and diameter do not notably influence the
system’s lateral and axial dynamic response.
However, the length-to-diameter ratio  does
considerably affect the system’s dynamic response.

Lateral Response (m)

L L L
3000 3500 4000 4500 5000
Spin speed (rpm)

(a) lateral response («/de1 +W.)

- - -D=0.06 m

Axial Response (m)

3000 3500 4000 4500 5000
Spin speed (rpm)

(b) axial response (U,,)
Fig. 10. Dynamic response of the driving disk under
different bearing diameter.
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Axial Response (m)

3000 3500 4000 4500 5000
Spin speed (rpm)
(b) axial response (U,,)
Fig. 11. Dynamic response of the driving disk under
different bearing length.

T T T Ld/D=05
-2 -
0 ! L 10
:" _____ L /D=15
'.' L /D=20
£ '
5 10°
Z
o
o
8
i3
B
-4
2 10
-
3000 3500 4000 4500 5000
Spin speed (rpm)
2 2
(a) lateral response (/Vy; +Wy; )
10
E
@ -5
2 10
o
o
8
i
s
< 107

3000 350IO ADCI)O 45(;0 5000
Spin speed (rpm)
(b) axial response (U,,)
Fig. 12. Dynamic response of the driving disk under
different length-to-diameter ratio.

Effect of Helix Angle

Current industrial applications of helical gears
commonly adopt angles of 15° to 30°. This study
compares the influence of different helix angles,
namely 15°, 20°, and 25°, on the system’s lateral and
axial dynamic responses (figure 13). Greater degrees
of helix angle indicates that more force is exerted in
the axial direction and lesser force is invested into the
lateral direction. When the helix angle was increased,
the lateral and axial dynamic responses of the driving
disk was decreased and increased, respectively.
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Fig. 13. Dynamic response of the driving disk under
different helix angles.

Effect of Shaft Inside Diameter

Figure 14 displays the system’s axial and lateral
dynamic response when the inside diameter of the
rotating shaft is 0.00, 0.02, and 0.04 m. A greater
inside diameter results in a lower system stiffness
coefficient and greater lateral and axial dynamic
response of the driving disk. Similarly, the rotating
shaft mass is lower when the inside diameter is
greater. Although both the rotating shaft stiffness and
mass decrease as the inside diameter is increased,
under the parameters in this study, the rotating shaft
mass significantly affects the system’s natural
frequency. Therefore, the system’s natural frequency
is higher when the inside diameter is greater.

- - - Inner diameter=0.04 m

_____ Inner diameter=0.02 m

Lateral Response (m)

3000 3500 4000 4500 5000 5500
Spin speed (rpm)

(a) lateral response (\V2 +W2 )
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Fig. 14. Dynamic response of the driving disk under
different shaft inside diameter.

CONCLUSIONS

Based on rotor dynamics, this study employs
the finite element model to analyze the dynamic
properties of helical geared rotor systems with
oil-film bearings. To discuss the axial force of the
helical gear, this study states that each node has six
degrees of freedom. The effects of bearing lubricant
viscosity, bearing radial clearance, bearing diameter,
bearing length, bearing length-to-diameter ratio, helix
angle, and inside diameter of the rotating shaft on the
system’s lateral and axial dynamic response are
determined to analyze the system’s dynamic
properties. The numerical simulation results of this
study reveal the following:

(1) The stiffness and damping coefficients of the
bearing are higher when the lubricant viscosity is
greater, resulting in a smaller lateral and axial
dynamic response of the system.

(2) A smaller bearing radial clearance results in a
greater oil-film force, thereby have greater pressure
on the system’s dynamic response.

(3) Individually, bearing length and diameter do
not notably affect the system’s lateral and axial
dynamic response. However, the length-to-diameter
ratio does considerably influence this response. The
bearing stiffness and damping coefficients are higher
when the length-to-diameter radio is higher, causing
the system’s lateral and axial dynamic response to be
smaller. Besides, the system resonant frequency is
higher when the length-to-diameter ratio is higher.

(4) When the helix angle is increased, the system’s
lateral response is decreased but the system’s axial
response is increased.

(5) An increase in the inside diameter of the
rotating shaft causes the rotating shaft’s stiffness and
mass to decrease and causes the system’s lateral and
axial dynamic response to increasing. However,
under the parameters of this study, the rotating shaft
mass considerably influences the system’s natural
frequency. Therefore, the system’s natural frequency

is higher when the inside diameter of the rotating
shaft is greater.
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