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ABSTRACT 
 

This study employs the finite element method 
to analyze the dynamic behavior of a helical geared 
rotor system with oil-film bearing. The system 
comprises the rotating shaft, helical gear pair, and 
oil-film bearing. The Timoshenko beam model is 
used to simulate the rotating shaft, and the rotating 
shaft’s rotational inertia and shear strain effect are 
considered. In consideration of the gyroscopic effect, 
the helical gear pair is assumed to be two rigid disks, 
and a linear spring and damper are connected along 
the pressure line of the disks for simulation. This 
study investigates the effects of bearing lubricant 
viscosity, bearing radial clearance, bearing diameter, 
bearing length, bearing length-to-diameter ratio, helix 
angle, and an inner diameter of the rotating shaft on 
the systems’ axial and lateral dynamic response for 
determining the system’s dynamic properties. The 
simulation results serve as a reference for academic 
researchers and industrial practitioners wishing to 
further investigate helical gear rotor systems with 
oil-film bearings. 
 

INTRODUCTION 
 

Rotary dynamics play critical roles in various 
engineering fields. Rotating machines are commonly 
used in both large and small industrial equipment 
including aero engines, steam turbines, wind power 
generators, internal combustion engines, 
reciprocating compressors, and centrifugal  

 
 
 
 
 
 
 
 
 
  
 
 

compressors, all of which involve rotating shaft 
mechanisms. Therefore, discussion and research on 
rotating machines are crucial.   
Gears are the primary power transfer component in 
rotating machines. Unsuitable gear selection or 
inadequate gear design may result in noise and 
vibration during gear meshing, thereby causing 
energy loss and damage to components. Spur gears 
are the most commonly employed type of gear in 
rotating systems. Although they are easy to 
manufacture and have low production costs, spur 
gears have a low gear occlusion rate during gear 
meshing and thus generate considerable vibration and 
noise. However, gears that vibrate excessively during 
gear meshing often sustain damage. To solve these 
problems in the operation of spur gear rotor-bearing 
systems, this study proposes the replacement of spur 
gears with helical gears. Helical gears have 
advantages in power transfer applications, including 
stable power transfer and high-speed operation. 
Therefore, using helical gears in rotating gear fields 
can effectively reduce the amount of vibration and 
noise that are generated. Furthermore, helical gears 
are viable for use in systems operating at high speed. 
Bearings are the main component supporting rotors in 
rotating machines. Because of their simple structure, 
high load capacity, adequate stability, and long 
working life, oil-film bearings are commonly 
employed in rotating machines. Studies on rotor 
system bearings have generally employed linear 
bearings. However, the increased complexity of the 
current rotor-bearing systems has raised issues in 
rotating machine design, including how the problems 
with nonlinear systems can be simulated and analyzed 
using linear methods, how resonance can be 
prevented in rotor systems, and how system stability 
can be increased. 
Ruhl and Booker (1972) used the finite element 
model to analyze a rotor-bearing system, in which the 
Euler–Bernoulli beam theory was used in the shaft 
model that took into account the bending moment and 
translational inertia of the shaft. Their numerical 
results showed that this method could be used to 
precisely analyze a rotor-bearing system. Nelson and 
McVaugh (1976) subsequently adopted the Rayleigh 
beam theory to simulate a rotating shaft, considering 
the rotatory inertia of the disk, the axial force, and the 
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gyroscopic effect to obtain the system’s equation of 
motion. They also derived the dynamic response and 
critical rotational speed of the rotor-bearing system. 
Nelson (1980) used the Timoshenko beam theory and 
the finite element model to calculate the effect of 
shear deformation and rotatory inertia and compared 
the values obtained with those using Euler beam 
(1973), and Rayleigh beam (1969). The results 
indicated that the Timoshenko beam was affected by 
shear deformation and rotatory inertia, and thus had a 
lower natural frequency than the Euler–Bernoulli, and 
Rayleigh beams. 
To analyze the dynamic behavior of oil-film bearings, 
scholars have conducted experimental research to 
determine the effects of radial clearance, oil-film 
viscosity, and the rotation speed of the rotation shaft 
on the oil-film force or magnitude of vibration. Lund 
and Saibel (1967) expanded the two stiffness 
coefficients and two damping coefficients of the 
oil-film bearing into four stiffness coefficients and 
four damping coefficients, making the oil-film system 
model more accurate. Vance and Kirton (1975) 
explored that the dynamic pressure oil-film force 
which is from the incompressible lubricating fluid 
between the squeezed oil-film bearings, and the value 
is similar to the theoretical value derived from the 
Reynolds equation. Thomsen and Andersen (1974) 
studied the effect of oil-film viscosity and pointed out 
that for small amplitudes, the damping coefficient and 
the rotating speed of the shaft are independent of the 
vibration. Lin and Lin (2001) analyzed the stability of 
the rotor system with oil-film bearing and changed 
the size of the shaft to optimize the weight of the 
system. 
About the study of helical geared rotor-bearing 
systems, Lund (1978) analyzed the dynamic response 
and critical speed of the system by considering the 
influence of gear eccentricity and transmission error. 
The results indicate that the influence of 
high-frequency system transmission error is 
negligible. Kahraman (1993) developed a helical 
geared rotor-bearing system for simulation and 
explored the dynamic effect of the helical angle, with 
results indicating that the natural frequency was not 
considerably affected by this angle. Kahraman (1994) 
also explored the effect of a helical geared 
rotor-bearing system’s natural frequency and mode 
by changing the helical angle. Results show that gear 
meshing affected lateral, axial, and torsional mode 
coupling. Kubur (2004) extended the model into a 
three-axis two-pair geared-rotor system model. Draca 
(2006) discussed the natural frequency and response 
of the helical geared rotor-bearing system with the 
different positions of the disk and the length of the 
shaft. Feng et al. (2011) analyzed the influence of 
bearing stiffness coefficient on the dynamic response 
of the helical geared rotor-bearing system. Yang et al. 
(2012) developed a double-helical geared 
rotor-bearing system whose gear stiffness changed 

over time, with results indicating that the system 
produced higher dynamic responses in particular 
positions at several natural frequencies. Zhang et al. 
(2013) developed a general three-dimensional 
dynamic model of helical gear pairs with geometric 
eccentricity. The gear mesh and bearing flexibility is 
included in the model as well. Wang et al. (2018) 
developed an improved time-varying mesh stiffness 
(TVMS) model of a helical gear pair, in which the 
total mesh stiffness contains the axial tooth bending 
stiffness, axial tooth torsional stiffness, and axial gear 
foundation stiffness. Ali et al. (2019) developed six 
degrees of freedom dynamic model of a planetary 
geared rotor system which includes gyroscopic 
effects. 
Although some dynamic factors have been 
incorporated into the dynamic analysis of the geared 
rotor-bearing system, few studies have considered the 
oil-film bearing in dynamic modeling. This study 
introduces a novel dynamic model for a helical 
geared rotor system with oil-film bearing, which 
investigates the effects of bearing lubricant viscosity, 
bearing radial clearance, bearing diameter, bearing 
length, bearing length-to-diameter ratio, helix angle, 
and an inner diameter of the rotating shaft on the 
systems’ axial and lateral dynamic response for 
determining the system’s dynamic properties. 
 
 
DERIVING THE SYSTEM EQUATION 

OF MOTION 
 

Figure 1 displays the helical geared 
rotor-bearing system discussed in this study. The 
system includes rotating shafts, oil-film bearings, and 
a helical gear pair. The rotating shaft is considered to 
be a flexible Timoshenko beam with a shear 
deformation effect and uses oil-film bearings as the 
system bearings. This paper used a fixed coordinate 
system ( ,  ,  ZX Y ) to describe the equation of motion. 
Figure 2 shows the typical rotor configuration and 
coordinates, U  is the axial displacement along the 
X-axis, V  and W  indicate the system’s lateral 
displacement along the Y  and Z  axes. Β  and 
Γ are rotational displacements along the Y  and Z , 
respectively, α  is the torsional displacement. The 
helical gear pair is viewed as two rigid disks. The 
helical gear pair is mounted on a rotating shaft and 
modeled as a linear spring and damper along its 
pressure line. First, the Lagrange equation and finite 
element model are used to construct the equations of 
motion of the system. Subsequently, the equations are 
combined through superposition to obtain the 
equation of motion of the complete system. This 
equation is analyzed to reveal the system’s dynamic 
properties.  
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Fig. 1.  A model of the helical geared rotor-bearing 

system. 
 
Disk and Gear Mesh 

Each gear has six degrees of freedom: one 
degree of axial displacement dU , two degrees of 
lateral displacement dV  and dW , and three degrees 

of rotational displacement dα , dΒ  and dΓ . 
Because this study considers the gears to be rigid, the 
effect of strain energy is ignored. The kinetic energy 
equations of the gears are as follows: 
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D

2 2 2

1 1[( ) ( ) ( ) ] [( ) ( ) ]
2 2

1 1[( + )( )+ ]+
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where m  is the gear mass; dDI  and dPI  are the 
mass and polar moment of inertia of the gear, 
respectively; Ω  is the rotation speed of the rotating 
shaft; de  is the eccentric distance of the gear, and 

dΨ  is the phase angle of the gear. By inputting the 
kinetic energy equation (1) into the Lagrange 
equation, the kinetic energy equation of the gear is 
obtained: 

[ ]{ } [ ]{ } { },d d d d dM q G q F+ = Ω                (2) 

where, [ ]dM , [ ]dG , { }dF , and { }dq  are the mass 
matrix, gyroscopic effect matrix, external force term, 
and displacement vector of the gear, respectively. 
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Fig. 2. Typical rotor configuration and coordinates 

(2020). 

Figure 3 displays the helical gear pair model. 
The helical gear pair is mounted on a rotating shaft 
and modeled as a linear spring and damper along its 
pressure line. The gearmesh stiffness coefficient, mk , 
is assumed to be a constant. The gearmesh damping 
coefficient mc  and transmission error te  are 
ignored. The gearmesh force is calculated as follows: 

.h mF k= δ                                 (3) 

The relative gear meshing displacement along the 
pressure line is determined as follows: 

2 1 2 1 1 1 2 2

2 1 1 1 2 2 1 1 2 2

[( )sin ( ) cos ( )]cos

+[( ) ( )sin ( ) cos ]sin ,
d d p d d p d d d d h
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where subscripts d1, d2 represent the driving and 
driven gears. 1dr , 2dr , pφ , and hφ  are the driving 
gear radius, driven gear radius, pressure angle, and 
helix angle, respectively. From equations (2) and (3), 
the equation of motion of the gear pair is derived as 
follows (2013): 

1
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where 1[ ]gM  and 2[ ]gM  are the mass matrix of the 
driving and driven gears, respectively; Ω  is the 
rotating speed of the driving shaft;  t1N  and t2N  
are the number of teeth on the driving and driven 
gears, respectively; 1[ ]gG  and 2[ ]gG  are the 
gyroscopic effect matrix of the driving and driven 
gears, respectively; [ ]hS  is the gearmesh stiffness 
matrix of the helical gear pair; { }dF is the eccentric 
force vector of the gear, and { }gq  is the 
displacement vector of the helical gear pair. 
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Fig. 3. A model of the helical gear pair. 
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Shaft 
This study used the Timoshenko beam theory in 

developing the model. The effect of shear 
deformation and rotational inertia were considered 
and uses the finite element model to derive the 
equation of motion of the system. Figure 4 indicates 
that each rotating shaft element is composed of two 
nodes. Each node has six degrees of freedom, namely 
one degree of axial displacement sU , two degrees of 
lateral displacement sV  and sW , and three degrees 
of rotational displacement sα , sΒ  and sΓ . 
Therefore, each rotating shaft element has 12 degrees 
of freedom. The kinetic energy of the rotating shaft 
element is calculated as 

2 2 2 2 2

20

[( ) ( ) ( ) )] [( ) ( ) ]1 ,
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l s s s sD s s
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∫
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(6) 

where ρ , A , sDI , and sPI  are the density, 
cross-sectional area, moment of inertia, and polar 
moment of inertia of the shaft, respectively. The 
strain energy of the shaft element is calculated as 
follows: 
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∫ ∫
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  (7) 

where E and G are Young’s modulus and shear 
modulus of the shaft, respectively, and κ  is the 
shear factor. By inputting the kinetic energy equation 
(6) and strain energy equation (7) into the Lagrange 
equation, the equation of motion of the shaft element 
is obtained as follows (2013): 

[ ] [ ] [ ]{ } { } { } {0},s s s s s sM q G q K q+ + = Ω       (8) 

where [ ]sM , [ ]sG , and [ ]sK  are the mass, 
gyroscopic effect, and stiffness matrixes of the shaft 
element, respectively. 
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Fig. 4. Shaft element and the node degrees of 

freedom (2020). 

Bearing 
This study uses an oil-film bearing, which has 

low friction and heat generation. The motion 
conditions of the oil-film bearing are displayed in 
figure 5, with C, e, and W representing the radial 
clearance, eccentric distance, and radial load, 
respectively. 

 
Fig. 5. A dynamic model of the oil-film bearing 

(2020). 
This research hypothesizes that once the 

rotating shaft has achieved stable motion within the 
bearing, the stiffness  and damping coefficients of 
the bearing are displayed as follows (2001): 
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where ε  is the eccentricity ratio of the bearing, 
which is computed using the bearing characteristic 
coefficient sS  as follows: 

2 3 2 2

2 2 2

(1- ) ,
(1- )+16

d
s

LRS
W C D

 = =  

µΩ ε

πε π ε ε
    (13) 

where dL  is the bearing length, μ is the bearing 
lubricant viscosity, Ω  is the rotating speed of the 
shaft, R is the radius of the bearing, and D is the 
diameter of the bearing. Because this study employs a 
cylindrical bearing, D = 2R. The equation of motion 
of the bearing is as follows: 

[ ] [ ]{ } { } {0},b b b bC q K q+ =                (14) 

where, [ ]bC , [ ]bK , and { }bq  are the damping 
matrix, stiffness, and displacement vector of the 
bearing, respectively. 
 
System Equation of Motion 

The equations of motion of the system disk, 
gear meshing, shaft, and bearing unit were introduced 
in the above. The equations for each unit can be 
combined to produce the equation of motion of the 
entire helical geared rotor-bearing system, as follows: 

[ ]{ } ( [ ] [ ]){ } [ ]{ } { }M q G C q K q F+ + + = Ω    (15) 

where [ ]M , [ ]G , [ ]C , [ ]K , { }F , and { }q  
represent the system mass matrix, gyroscopic effect 
matrix, damping matrix, stiffness matrix, force vector, 
and displacement vector, respectively. 
 
 

RESULTS AND DISCUSSION 
 

To verify the accuracy of the proposed model, 
we chose Kahraman’s helical gear pair system (1993). 
In the helix gear pair system shown in figure 6, the 
gear ratio is 1, the face width is 0.03m, and the gear 
mesh coefficient is 2×108 N/m. The other material 
parameters are shown in table 1. As can be seen from 
figure 7, the natural frequencies obtained from the 
proposed model are similar to the results of 
Kahraman (1993), indicating that the proposed model 
has good accuracy.  
 

The following data were used in the calculation 
for the helical geared rotor system with oil-film 
bearing. The shaft outer diameter is 0.05 m, the 
bearing axial stiffness is 1×109 N/m, the gearmesh 
stiffness is 1×108 N/m. The other parameter values of 
the system are given in Table 2. 
 

 
Fig. 6. Dynamic model of a helical gear pair system 

(1993). 
 

Table 1. Helical gear pair parameters (1993). 

Parameters Pinion Gear 

Base circle radius (m) 0.05 0.05 

Mass (kg) 2 2 

2
i

di

I
r  (kg) 0.58 0.58 

2
i

di

J
r  (kg) 1.16 1.16 

byik  (N/m) 3.5�10
8 

3.5�10
8 

bzik  (N/m) 1�108 1�108 

2
bρyi

i

k
r  (N/m) 1.1�10

8 
1.1�10

8 

Pressure angle (degrees) 20 

Transmission error (m) 1�10-6 

 

 
(a) 
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(b) 

Fig. 7. Natural frequencies for the (a) proposed and 
(b) Kahraman (1993). 

 
Table 2. Parameters of a helical geared rotor system 

with oil-film bearing. 

Shaft parameters 

Shaft length (m) 1 20.80,  0.80,L L= =  

3 40.10,  0.70L L= =  

Density (kg/m3) 7800 

Young’s modulus E (N/m2) 2.07×1011 

Poisson’s ratio v  0.3 

Gear pair parameters 

Gear outer diameter (m) 0.30 

Thickness (m) 0.03 

Disk eccentricity (m) 1 2= =d de e 1×10-6 

The phase angle of the gear 
(degree) 1 2 0= =d dΨ Ψ  

Pressure angle (degree) =pφ 20 

Helix angle (degree) =hφ 20 

Bearing parameters 

Type of lubricant SAE 40 

Operating temperature (°C) 75 

Radial clearance C (m)  5.00×10-6 

Bearing diameter (m) 0.08 

Bearing length (m) 0.08 
 
Effect of Bearing Lubricant Viscosity 

This section discusses the influence of lubricant 
viscosity on the axial and lateral dynamic response of 
the rotor-bearing system. Lubricants with viscosity of 
0.005, 0.01, 0.02, 0.05, 0.1, and 0.2 Pa·s are 
considered. The waterfall plot in figure 8 shows the 
lateral and axial dynamic response of the driving disk 
in the rotor-bearing system. Fig.8 reveals that the 
lateral and axial responses collectively decrease when 

the lubricant viscosity is increased. This is because, 
under the same rotation speed, the bearing viscosity 
and damping coefficients are higher when the 
lubricant viscosity is higher. Consequently, the lateral 
and axial dynamic response of the rotor-bearing 
system decrease when the lubricant viscosity is 
increased. 
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   (b) axial response ( 1dU ) 

Fig. 8. Dynamic response of the driving disk under 
different lubricant viscosity. 

 
Effect of Bearing Radial Clearance 

This study hypothesizes that the lubricant flow 
is only laminar flow inside the radial clearance rather 
than turbulent or vortex flow. Therefore, the 
momentum effect within the lubricant flow is not 
computed. The following radial clearances (C) are 
considered: 2×10-6, 4×10-6, 6×10-6, 8×10-6, and 1×10-5 
m. The waterfall plot presented in figure 9 shows the 
influence of radial clearance on the lateral and axial 
dynamic response of the driving disk. When the 
rotation speed of the rotor-bearing system is 
increased, the journal applies the lubricant to the 
radial clearance between the journal and the bearing. 
According to the incompressibility of liquid and 
hydrodynamic theory, the lubricant inside the radial 
clearance generates oil-film force. The oil-film has 
greater pressure if the radial clearance is small, 
thereby exerting a stronger influence on the system's 
dynamic response. 
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   (b) axial response ( 1dU ) 

Fig. 9. Dynamic response of the driving disk under 
different radial clearance. 

 
Effect of Bearing Diameter and Length 

First, rotor-bearing systems with different 
bearing diameters (D) are employed to determine the 
influence of bearing diameters on the system’s lateral 
and axial dynamic response. Rotor-bearing systems 
with bearing diameters of 0.06, 0.08, and 0.1 m are 
analyzed. Figure 10 displays the lateral and axial 
dynamic response of the driving disk in the 
rotor-bearing systems with different bearing 
diameters. The bearing diameter has a minimal 
influence on the system dynamic response. 
Subsequently, rotor-bearing systems with different 
bearing lengths (Ld) are used to determine the 
influence of the system, with the bearing lengths used 
being 0.06, 0.08, and 0.10 m. Figure 11 displays the 
lateral and axial dynamic response, and similar to the 
conclusion made from fig.10, fig. 11 reveals that 
bearing length has a minimal effect on the system’s 
lateral and axial dynamic response. Finally, the 
influence of the length-to-diameter ratio (Ld/D) on the 
lateral and axial dynamic response is analyzed. 
Length-to-diameter ratios of 0.5, 1.0, 1.5, and 2.0 are 
considered. Figure 12 illustrates the lateral and axial 
dynamic response of the driving disk and indicates 
that when the length-to-diameter ratio is increased, 
the system stiffness and damping coefficients 
increase, whereas the lateral and axial dynamic 
response of the driving disk decreases. Besides, the 
system resonant frequency is higher when the 

length-to-diameter ratio is higher. 
This case reveals that individually, bearing 

length and diameter do not notably influence the 
system’s lateral and axial dynamic response. 
However, the length-to-diameter ratio does 
considerably affect the system’s dynamic response. 
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Fig. 10. Dynamic response of the driving disk under 
different bearing diameter. 
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Fig. 11. Dynamic response of the driving disk under 
different bearing length. 

 

3000 3500 4000 4500 5000

Spin speed (rpm)

10 -4

10 -3

10 -2

L
at

er
al

 R
es

po
ns

e 
(m

)

L
d

/D=0.5

L
d

/D=1.0

L
d

/D=1.5

L
d

/D=2.0

 
      (a) lateral response ( 2 2

1 1d dV W+ ) 

3000 3500 4000 4500 5000

Spin speed (rpm)

10 -6

10 -5

10 -4

A
xi

al
 R

es
po

ns
e 

(m
)

L
d

/D=0.5

L
d

/D=1.0

L
d

/D=1.5

L
d

/D=2.0
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Fig. 12. Dynamic response of the driving disk under 
different length-to-diameter ratio. 

 
Effect of Helix Angle 

Current industrial applications of helical gears 
commonly adopt angles of 15° to 30°. This study 
compares the influence of different helix angles, 
namely 15°, 20°, and 25°, on the system’s lateral and 
axial dynamic responses (figure 13). Greater degrees 
of helix angle indicates that more force is exerted in 
the axial direction and lesser force is invested into the 
lateral direction. When the helix angle was increased, 
the lateral and axial dynamic responses of the driving 
disk was decreased and increased, respectively. 
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Fig. 13. Dynamic response of the driving disk under 
different helix angles. 

 
Effect of Shaft Inside Diameter 

Figure 14 displays the system’s axial and lateral 
dynamic response when the inside diameter of the 
rotating shaft is 0.00, 0.02, and 0.04 m. A greater 
inside diameter results in a lower system stiffness 
coefficient and greater lateral and axial dynamic 
response of the driving disk. Similarly, the rotating 
shaft mass is lower when the inside diameter is 
greater. Although both the rotating shaft stiffness and 
mass decrease as the inside diameter is increased, 
under the parameters in this study, the rotating shaft 
mass significantly affects the system’s natural 
frequency. Therefore, the system’s natural frequency 
is higher when the inside diameter is greater. 
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Fig. 14. Dynamic response of the driving disk under 
different shaft inside diameter. 

 
 

CONCLUSIONS 
 

Based on rotor dynamics, this study employs 
the finite element model to analyze the dynamic 
properties of helical geared rotor systems with 
oil-film bearings. To discuss the axial force of the 
helical gear, this study states that each node has six 
degrees of freedom. The effects of bearing lubricant 
viscosity, bearing radial clearance, bearing diameter, 
bearing length, bearing length-to-diameter ratio, helix 
angle, and inside diameter of the rotating shaft on the 
system’s lateral and axial dynamic response are 
determined to analyze the system’s dynamic 
properties. The numerical simulation results of this 
study reveal the following: 

(1) The stiffness and damping coefficients of the 
bearing are higher when the lubricant viscosity is 
greater, resulting in a smaller lateral and axial 
dynamic response of the system. 

(2) A smaller bearing radial clearance results in a 
greater oil-film force, thereby have greater pressure 
on the system’s dynamic response. 

(3) Individually, bearing length and diameter do 
not notably affect the system’s lateral and axial 
dynamic response. However, the length-to-diameter 
ratio does considerably influence this response. The 
bearing stiffness and damping coefficients are higher 
when the length-to-diameter radio is higher, causing 
the system’s lateral and axial dynamic response to be 
smaller. Besides, the system resonant frequency is 
higher when the length-to-diameter ratio is higher. 

(4) When the helix angle is increased, the system’s 
lateral response is decreased but the system’s axial 
response is increased. 

(5) An increase in the inside diameter of the 
rotating shaft causes the rotating shaft’s stiffness and 
mass to decrease and causes the system’s lateral and 
axial dynamic response to increasing. However, 
under the parameters of this study, the rotating shaft 
mass considerably influences the system’s natural 
frequency. Therefore, the system’s natural frequency 

is higher when the inside diameter of the rotating 
shaft is greater. 
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具油膜軸承的斜齒輪轉子

系統動態特性之分析 

陳膺中  
中華民國空軍軍官學校 航空機械工程學系 

呂文正   崔兆棠 

國立成功大學 航空太空工程學系 

摘 要 

本研究採用有限元方法來分析具油膜軸承的

斜齒輪轉子系統的動態特性。該系統包括旋轉軸、

斜齒輪對和油膜軸承。旋轉軸模擬為 Timoshenko
樑，其考慮了旋轉軸的旋轉慣性和剪力效應。斜齒

輪對假設為兩個剛性轉盤，沿著壓力線以線性彈簧

和阻尼來模擬斜齒輪對的接觸。本研究探討了軸承

潤滑粘度、軸承徑向間隙、軸承直徑、軸承長度、

軸承長度與直徑之比、螺旋角以及旋轉軸的內徑對

系統軸向和橫向動態響應的影響。數值結果可作為

提供進一步研究帶有油膜軸承的斜齒輪轉子系統

的學術研究人員和工業從業人員的參考。
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