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ABSTRACT 

 
In this paper, a simple algorithm applied to 

elastic solid problems based on the Smoothed Particle 
Hydrodynamics (SPH) method is discussed. The 
solid is considered to be not flowable, and therefore 
particle approximation is only performed on the 
initial undeformed solid domain using a typical 
Lagrange interpretation. Under such consideration, 
the algorithm shows palpable reduction in 
computational consumption, and suffers less from 
tension instability which happens in most traditional 
SPH methods for solids. The proposed algorithm is 
validated against theoretical solutions, and is tested in 
solving a contact and collision problem. A von 
Neumann stability analysis is performed and a 
sufficient condition of stability is given, showing that 
the tension instability issue can be avoided under 
certain circumstances. 
 

INTRODUCTION 
 

Grid or mesh based numerical methods such as 
the finite difference method (FDM) and the finite 
element method (FEM) play a crucial role in 
computational solid mechanics. One notable feature 
of grid based models is the division of a continuum 
domain into discrete small subdomains, which can be 
termed as discretization or meshing. Despite the great 
success in dealing with common structure problems, 

 
 
 
 
 
 
 
 
 

 the mesh based methods meet challenge from 
aspects such as large deformation and crack evolution 
which may lead to grid distortion and solution failure. 
Over the past years, meshfree methods have raised 
wide attention and made great progress in both 
computational solid and fluid mechanics. 
  Being a meshfree method, smoothed particle 
hydrodynamics (SPH) was first intended to solve 
astrophysical problems in three-dimensional open 
space. Later it was extended to computational fluid 
mechanics, and then computational solid mechanics. 
In computational fluid mechanics, SPH was used to 
solve problems, such as compressible and 
incompressible flows (Monaghan, 1994; Zhang et al., 
2017), viscous flows (Bouscasse et al., 2017; Xu and 
Deng, 2016), viscous flows with turbulence models 
(Hu and Adams, 2015; Ren et al., 2016) and free 
surface flows (Sarfaraz and Pak, 2017; Peng et al., 
2017). In computational solid mechanics, SPH shows 
capacity of solving problems involving thin and thick 
shell structures (Lin et al., 2014), elastic solids 
(Sugiura and Inutsuka, 2017), and visco-plastic 
structures (Chikazawa et al., 2001). Since SPH was 
applicable to both solid and fluid issues, it was also 
used to solve fluid-structure interaction (FSI) 
problems (Antoci et al., 2007; Chikazawa et al., 
2001). With the rapid development of CPU and GPU 
acceleration techniques, SPH has found its place in 
industrial usage and some open-source and 
commercial SPH solvers have been developed 
(Gómez-Gesteira et al., 2012). Maybe SPH will soon 
become a mature numerical technique just like finite 
volume method (FVM) and FEM.  

However, when applied to solid dynamics, one 
problem known as tension instability arises. A 
common manifestation of tension instability is that 
the solution becomes unstable when part of the solid 
bears tensile stress. Usually special treatment should 
be carried out to overcome the tension instability 
problem. For instance, Dyka and Ingel (1995) 
proposed an approach to avoid tensile instability, in 
which stress was evaluated at points away from the 
SPH particles. With specially selected SPH equations 
for the calculation of strain and momentum, the 
tension instability was removed. Chen et al. (1999) 
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proposed a corrective Smoothed-Particle Method 
(CSPM) to address the tensile instability problem, in 
which a group of simultaneous particle equations was 
derived through Taylor series expansion. Yet 
additional computational efforts are required to solve 
these equations explicitly or numerically. Monaghan 
(2000) showed that tensile instability can be removed 
by using an artificial stress or an artificial pressure in 
case of fluids. Using this method, whether or not the 
material is in tension or compression should be better 
predetermined (Gray et al., 2001). Gray et al. (2001) 
improved Monaghan’s method by basing the artificial 
stress on the sign of the principal stress. Sigalotti and 
Lopez (2008) proposed an adaptive density kernel 
estimation (ADKE) algorithm to remove tensile 
instability, in which the width of the kernel 
interpolant is allowed to vary locally in such a way 

that only the minimum necessary smoothing is 
applied to the data. 

In this paper, a simple SPH approach solving 
elastic solid problems is adopted. In comparison 
against above-mentioned techniques of tension 
instability removal, this method is simple and 
requires no additional computational cost. The 
approach solves fundamental governing equations of 
elastic mechanics. Particle approximation is 
performed according to the initial state of the solid. 
The resulted approach reduces the number of partial 
derivative equations (PDEs) to be solved and shows 
good tolerance against tension instability. By 
conducting a 2-D von Neumann stability analysis, it 
is shown that tension instability is completely 
removed under certain condition. Validation is 
conducted by comparing the proposed approach 
against theoretical results. Finally, the approach is 
tested with a solid dynamic issue involving contact 
and collision events. 

 
GOVERNING EQUATIONS 

 
The mass conservation equation of continuum is  

0
d

dt

β
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ρ
ρ
∂

+ =
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where ρ  is density, v  is velocity vector. We adopt 
summation convention for repeated indices of Greek 
letters. The α -th momentum equation of continuum 
is 
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where σ  is stress tensor and f  is body force 
vector. The constitutive equation of isotropic elastic 
solid is written as follows 

p Gαβ αβ αβ= +σ δ ε ,         (3) 
where αβδ  is the Kronecker delta, αβε  is strain 
tensor, αβσ  is stress tensor. Shear modulus G  

equals 
1

E
µ+

, where E  is Young’s modulus and 

µ  is Poisson ratio. Pressure p  equals 
1 2

G ααµ
µ−
ε . 

The geometry equations are 
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where s  is displacement vector. By substituting Eq. 
(4)-(5) into Eq. (1) and assuming no residual stress 
exists at the initial moment, we have 

 0
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,         (6) 

where 0ρ  is density at initial moment. Eq. (6) gives 
the relationship between pressure and density, and 
therefore can be treated as some kind of state 
equation. 
 
LAGRANGIAN SPH FORMULATION 

FOR SOLIDS 
 
Basic SPH Equations The particle-approximated momentum equation 
and constitutive equation are written as 
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where subscripts i and j represent the i-th and j-th 
particles, W is the kernel function and 

( )ij i jW W α α= −x x . The particle-approximated 

geometry equation is  

1 1
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where ji j i
α α α= −s s s .  

A leap-frog algorithm is utilized for time 
discretization. Assuming Eq. (7)-(9) are carried out at 
time step n, the time advancing scheme is 

 ( ) ( ) ( )1/2 1/2
/

n n n

i i id dt tα α α+ −
= + ∆v v v ,   (10) 

 ( ) ( ) ( )1 1/2n n n

i i i tα α α+ +
= + ∆s s v ,      (11) 

where superscript n denotes function at the n-th time 
step, and t∆  is the time difference between two 
adjacent time steps. At domain boundaries, Eq. (7) 
and Eq. (9) will lose precision due to the fact that 
only part of the integral region can be account for. To 
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decline the boundary accuracy loss, the integral is 

normalized with a factor 
1

N
j

ij
j j

m
W

ρ=
∑ . Later in section 

5, we give comparison on results obtained with and 
without normalization. It is noted that the algorithm 
of this paper should be limited to small-deformation 
issues with little rigid-body rotations. 
 
Loads and Boundary Conditions We apply constraints directly upon boundary 
particles. In dealing with contact and collision 
problems, a repulsive force is introduced to prevent 
different elastic solids (or rigid bodies) from 
penetrating into each other. The Lennard-Jones 
penalty force (Liu and Liu, 2010) is applied 
pairwisely on the two approaching particles along 
their centerline.  
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where ijr  is the distance between particle i and j, 

ikh  is the non-zero “diameter” (or smoothing length) 
of the kernel function with respect to particle i, 

ij i j= −x x x . 1n  and 2n  are taken as 6 and 4, 
respectively. p  should be adjusted to suit the need 
of various problems.  

Figure 1 is a flow chart of the approach. The 
solution begins with the import of geometry 
information. With geometry parameters, particles are 
generated, including the decision of particle initial 
positions, densities, strains and stresses. Once 
particles are generated, kernel functions and their 
derivatives can be determined. After all preparation 
work is done, the time advancement cycle begins by 
imposing loads and boundary constraints upon 
specific particles. Then, forces between different 
particles are computed using Eq. (7) – Eq. (9). 
Meanwhile, the anti-penetration force at the contact 
particles is also determined using Eq. (12). With all 
external and internal forces, velocities and 
displacements of the next time step are obtained 
using Eq. (10) and Eq. (11). The time advancement 
cycle repeats until the desired step number is reached.  

 
Fig. 1. Solution flow chart 
 

STABILITY ANALYSIS SKETCH 
 
One issue when applying SPH to solid 

problems is that instability occurs if part of the solid 
bears tensile stress, i.e., the so-called tension 
instability. Swegle et al. (1995) studied the stability 
of 1-dimension solid problem, and revealed that a 

sufficient condition for instability was 
2

2

d 0
d

xxW
x

σ⋅ > . 
Stability analysis shows that neither artificial 
viscosity nor time integration scheme is the main 
reason for tension instability. It is closely related to 
the smoothing kernel function.  

Belytschko et al. (2000) found that using 
Lagrangian kernel based on the reference 
configuration can avoid tensile instability. Following 
this idea, the kernel function and its gradient in our 
approach are computed on the undeformed structure 
before time advancement. Once the kernel function 
and its gradient are predetermined, they keep 
unchanged during the entire simulation process. 
Using a typical Lagrange interpretation, this manner 
resembles the practice of FEM and FDM in preparing 
mesh only once before simulation. This practice not 
only improves the tolerance against tension instability, 
but also remarkably reduces computation cost. But it 
should be mentioned that small deformation is 
required in this treatment.  

To investigate the stability behavior of the 
approach, we consider a simple rectangular 
computational domain, which is evenly divided into 
an a×b particle matrix as is illustrated in Fig.2. The x- 
and y-interval between two adjacent particles are 
identical, i.e., x y∆ = ∆ = ∆ . We assume the smooth 
length of the kernel function is a small constant scalar 
(temporal and spatial independent) which makes one 
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particle be influenced by only its four neighboring 
particles. Even though several assumptions are made 
to simplify the problem, the entire process of stability 
analysis is still lengthy. Hence, this section only gives 
a sketch of the analysis and detailed derivations are 
listed in Appendix A. 

 
Fig. 2. Description of the planner problem to be used 

for stability analysis 
 
Perturbation Propagation 

Let the perturbations upon velocity and 
displacement have the form as , , ,

n n n
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, , ,
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, , ,
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and 1/2 1/2 1/2
, , ,

n n n
I J I J I Jv v vδ− − −→ + , where subscripts 

I and J denotes the particle located at the I-th column 
and J-th row of the particle matrix in Fig. 2, which is 
also referred to as Particle (I, J) hereinafter. Here we 
use uppercase letters I, J to represent particle 
coordinates. By contrast lowercase letters i, j are 
employed to denote particle indexs. R and S are x- 
and y-component of displacement, u and v are x- and 
y-component of velocity. By adopting the basic 
formulas of SPH approach, one can write 1

,
n
I JRδ + , 

1
,

n
I JSδ + , 1/2

,
n

I Juδ +  and 1/2
,

n
I Jvδ +  in the expressions 

of ,
n
I JRδ , ,

n
I JSδ , 1/2

,
n

I Juδ −  and 1/2
,

n
I Jvδ − . It should 

be mentioned that only linear terms are kept since 
nonlinearity leads to higher-order small quantity. 

 
Fourier Expansion 

Using Fourier expansion, the spatial 
distribution of the perturbation can be treated as the 
summation of components of various frequencies as 
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where 

m
x

mK
L
π

=
, m=1, 2, 3, …, M, /xM L x= ∆ , 

xL  is the x-directional extension of the 
computational domain, 

l
y

lQ
L
π

=
, l=1, 2, 3, …, L, 

/yL L y= ∆ , yL  is the y-directional extension of the 
computational domain. Using Eq. (13), the 
perturbation propagation equations can be 
reorganized as a series of sub-equations of various 
frequencies. The (m,l)-th sub-equation can be written 
as 

 
1

. , .
n n

m l m l m l
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where 1/2 1/2
. . . . ., , ,

Tn n n n n
m l m l m l m l m lu v R S− − =  e . Eq. (14) 

only contains 4 unknowns and therefore is much 
simpler to solve. 
 
Stability Analysis 

If the approach is stable, i.e., the perturbation is 
not enlarged after a number of steps, it is required 

that the eigenvalues of ,m lE  should not be larger 
than 1. Therefore, for each m and l, one stability 
requirement can be given. The final stability 
condition is obtained by combining all the M×L 
stability requirements. Under the assumption of Fig. 
2, a sufficient condition for stability, after lengthy 
derivation, is written as 

( )
( )
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′ −  for plane stress problem, 

(15a) 
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where m is the particle mass, ( )d

d r
W W r

r =∆
′ =

. 

The plane stress problem means 0zz yz xzσ σ σ= = = , 
and plane strain problem 0zz yz xzε ε ε= = = . Eq. (15) 
reveals that the approach is conditionally stable. 
 

VALIDATION AND APPLICATION 
 
Here we verify the approach with two plane 

issues. The approach is then tested with a contact and 
collision problem. 

 
Validation Case 1 

In this case, one l×h rectangular plate is subject 
to triangular loads x kyσ =  at its two opposite 
boundaries, as is shown in Fig. 3. The loads on the 
left and right boundary share the same magnitude but 
with opposite directions. In this case, we have 
l=h=5e-4m, k=50Pa/m, G=0.3Pa, E=0.39Pa and 
ρ=1000kg/m3. The plate is replaced with a 20×20 
even-distributed particle matrix. Each particle 
represents a 2.5e-5m×2.5e-5m solid square, and the 
particle center coincides with the center of the solid 
square. Since a Gauss-type kernel function is used 
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(i.e., ( ) ( )2/
2

1, R HW R H e
Hπ

−= ), the stability 

condition requires 0.0018t∆ ≤ s, and therefore we 
take 0.0005t∆ = s during simulation. One principle 
during the decision of particle distribution is that the 
adjacent particle distance is preferred to be identical 
in both directions if possible. Or at least the 
difference between adjacent particle distance in two 
directions should be not too big. The total particle 
amount should be enough to get the required 
precision, but needs not to be too large as 
computational cost may be improved greatly.  

Fig. 4 depicts particle distribution of the 
deformed plate predicted by the SPH approach, with 
and without conducting the kernel function 
normalization. In the left subplot (no normalization), 
one can observe an evident distinction between the 
SPH and theoretical results at the two bottom corners, 
since the SPH integral losses 3/4 of its integral region 
at corners. Yet the two results seem to show well 
agreement at the rest part of the plate. However, by 
normalization, the error induced by integral region 
truncation is effectively eliminated in the right 

subplot. Fig. 5 displays strain tensor components xε  

and yε  in a vector form [ xε , yε ], and indicates 
that SPH gives good approximation on strains. Fig. 6 
compares the logarithm of vonMises stress predicted 
by various methods. Fig. 7 shows the distribution of 
vonMises stress along the left edge of the plate, 
which points out that normalization of the SPH kernel 
function is essential to obtain reliable results.  

 
Fig. 3. Problem description of validation case 1 
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Fig. 4. Particle positions of theoretical results (dark 

unfilled circle) and SPH results (red filled 
circle), with (a) and without (b) kernel 
function normalization 
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Fig. 5. Strain vectors [ xε , yε ] of theoretical results 
(red arrows) and SPH results (blue arrows), 
with (a) and without (b) kernel function 
normalization  
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Fig. 6. Logarithm of particle vonMises stress of half plate, 

with (a) SPH results without normalization, (b) SPH 
results with normalization, and (c) theoretical results 
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Fig. 7. Distribution of vonMises stress along the left edge of 

the plate (x=2.5e-4) 
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Fig. 7 Distribution of vonMises stress 
along the left edge of the plate (x=2.5e-4) 

Validation Case 2 
This example studies the deformation of an 

annulus plate under shear stress. As is shown in Fig. 
8, the inner and outer radiuses of the annulus are a 
and b, respectively. The shear stresses upon inner and 

outer boundary are 
2

1 /q aτ = −  and 
2

2 /q bτ = , 
respectively. In this case, we have a=2.5e-4m, 
b=5e-4m, q=1.7227e-9N, G=0.3Pa, E=0.39Pa and 
ρ=1000kg/m3. The annulus plate is uniformly 
divided into 36 particles along the circumferential 
direction, and 10 particles along the radial direction. 
This case also adopts Gauss-type kernel function and 
requires a stability condition of 0.0018t∆ ≤ s. 
During simulation t∆  is taken as 0.0005s.  

Fig. 9 compares SPH and theoretical results in 
particle displacement. Since no corner exists in this 
problem, the solver gives acceptable results even 
though no normalization is used. With a well-selected 
smoothing length, the precision reduction on domain 
boundary may be caused by the loss of only one 
particle. The vonMises stresses computed with 
various methods are shown in Fig. 10. In Fig. 10, 
subplot (b) (SPH results with normalization) shows 
better approximation of the theoretical results. Fig. 11 
displays the distribution of vonMises stress along the 
radial direction of the ring plate. As can be seen in 

Fig. 11, by performing kernel function normalization, 
the stress disagreement against theoretical results can 
be reduced.  

 
Fig. 8. Problem description of validation case 2 

0 0.5 1
x 10-3

0

0.2

0.4

0.6

0.8

1
x 10-3 particle position comparison

non-norm SPH vs. Theory

 

0 0.5 1
x 10-3

0

0.2

0.4

0.6

0.8

1
x 10-3 particle position comparison
normalization SPH vs. Theory

 

 
 

Fig. 9. Particle positions of theoretical results (dark 
unfilled circle) and SPH results (red filled 
circle), with (a) and without (b) kernel 
function normalization 
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normalization, (b) SPH results with 
normalization, and (c) theoretical results 
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Fig. 11. Radial distribution of vonMises stress within the 

ring plate 
 

Stability tests 
In this subsection, the square plate of validation 

case 1 is adopted, but with a series of triangle stresses. 
Let the triangle stress of validation case 1 be denoted 
as T. The loads of various tests, which are numbered 
from (a) to (g), are listed in Table 1. Since stability 
condition requires 0.0018t∆ ≤ s, we take 

0.0005t∆ = s for all the cases. 
Fig. 12 and Fig. 13 depict SPH particle 

locations and vonMises stress distributions (color 
map) when stable statuses are reached, calculated 
without and with kernel function normalization, 
respectively. The degree of particle dispersion 
increases noticeably with the growth of the tensile 
force. In subplot (g), huge particle separation can be 
observed in the vicinity of the plate corner. 
Nevertheless, the approach can give stable solutions 
even at large deformation (namely at large tensile 
force). Besides, kernel function normalization does 
not affect the approach’s tolerance against tension 
instability. Once the time step is small enough, the 
instability phenomenon will not happen with or 
without kernel function normalization. However, the 
kernel function normalization affects the solution 
precision which is the main reason for the difference 
between Fig. 11 and Fig. 12. 

Fig. 14 shows maximum displacement and 
stress of each load case and a strict linear regularity 
can be concluded. Noticing that the PDEs to be 
solved are linear, the approach successfully preserves 
the property of the governing PDEs. In methods such 
as FEM and FDM, the linearity can also be preserved 
due to the resulted linear matrix system. However, 
linearity can be wrecked in a traditional SPH method.  

 
Table 1 Loads of various tests 

Case Load Case  Load Case  Load Case  Load 
(a) T (b) 2T (c) 4T (d) 8T 
(e) 16T (f) 32T (g) 64T   

 
Fig. 12. SPH Particle distributions (without 

normalization) of the square plate subject 
to various load cases 

 
Fig. 13. SPH Particle distributions (with 

normalization) of the square plate subject 
to various load cases 
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Fig. 14. Maximum displacements (a) and vonMises 

stresses (b) of the square plate under 
various loads Fs, where Fa denotes the 
load of case (a) 

 
Fig. 15. displays the critical time steps of 

various test cases. A critical time step, denoted as 
ct∆ , is defined such that the solution is stable for 

ct t∆ ≤ ∆  and unstable for ct t∆ > ∆ . The critical 

(b) 

(a) 
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time steps are determined by solving the problem 
repeatedly with various time steps and finding the 
time step when the solution turns right from unstable 
to stable. It can be seen that ct∆  is not affected by 
external tension loads, indicating that no tension 
instability happens. Yet kernel function normalization 
does affect stability behavior. Fig. 16 shows critical 
time steps under various smoothing lengths of the 
kernel function. In Fig. 16, a minimum critical time 
step exists both with and without kernel function 
normalization. The kernel function normalization 
activity improves stability when the smoothing length 
is small, yet harms stability when the smoothing 
length becomes large. Fig. 17 shows that the critical 
time step increases with the growth of density, or 
with the reduction of shear modulus. Moreover, it 
demonstrates that Eq. (15) is sufficient to ensure the 
stability of solution. 

Fig. 18 gives a typical exhibition on how 
particles move when the simulation time step exceeds 

ct∆ . It can be observed that the instability starts from 
the bottom corners where the maximum force is 
imposed. Soon the inner particles are influenced and 
begin to escape from their original locations. The 
unstable motion of one particle can extend to its 
neighboring particles, making instability grow 
exponentially. Finally, when all particles become 
unstable, an ‘explosion’ is induced and the solution 
fails, which is a typical CFL instability phenomenon.  
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Fig. 15. Critical time steps under various loads, 

where Fa denotes the load of case (a)  
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Fig. 16. Critical time steps changing with various 
smoothing lengths of the kernel function 
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Fig. 17. Critical time steps changing with various 

densities (a) and shear modulus (b) 
 

 

 
Fig. 18. Typical evolution of particle distribution 

when instability occurs ( 0.004t∆ = s) 
 
Application 

This subsection tests the proposed approach 
with a contact and collision issue. As is shown in Fig. 

(15) 

t=0.04s t=0.06s 

t=0.08s t=0.10 

(b) 

(a) 
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19, an annulus plate, a rectangular plate and a 
horizontal rigid solid wall are sited at different 
heights. When simulation begins, the annulus and 
rectangular plate start to drop down under gravity. 
Once the rectangular plate meets the solid wall, it 
gets rebounded and collides with the annulus plate. In 
this instance, the inner and outer radius of the annulus 
are a=2.5e-4m and b=5e-4m, respectively. The width 
and height of the rectangle are l=5e-4m and 
h=2.5e-4m. The initial positions are z1=-1e-4m, 
z2=1.35e-4m and z3=1.26e-3m. Gravitational 
acceleration is g=-9.8m/s2, Young’s modulus is 
E=650Pa, and the density of the annulus and 
rectangle are ρ=1000kg/m3. Two particles, which are 
numbered as 14 and 183 and will be studied later, are 
shown in Fig. 19. The annulus and rectangle are 
discretized with 36×5 (circumferential×radial) and 20
× 10 (horizontal × vertical) particles, respectively. 
Kernel function normalization is conducted. The 
stability condition requires that 0.0001t∆ ≤ s and we 
therefore take 0.00002t∆ = s. 

 
Fig. 19. Description of the contact and collision 

problem 
time = 0.000020
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Fig. 20. Snapshots of the collision of an annulus and 

a rectangular object (vonMises stresses in 
colored maps) 

 
Fig. 20 gives snapshots of various moments, 

with particles filled with different colors according to 
the local vonMises stress. During collision, the 
annulus experiences large deformation and vibration 
together with translational rigid-body movement. On 
the contrary, the deformation and vibration of the 
rectangle are inconspicuous. The maximum vonMises 
stress occurs when the annulus meets the rectangle 
for the first time. Fig. 21 analyzes the displacement 
histories of particle 14 and 183. In y-directional 
displacement, evident regular reciprocation which 
represents rigid-body movement can be observed. 
The localized vibration can be clearly revealed in the 
x-directional plot.  

To obtain the natural frequencies of the two 
objects, Fig. 22 performs Fourier transformation upon 
x-displacement histories. It is worth noting that time 
histories between t=0.033s and t=0.1s are not 
included in Fourier transformation, for the purpose of 
eliminating the influence of solid-body movement. 
Fig. 22 reveals that a number of modes are stimulated 
during collision, yet only the first 3 frequencies are 
concerned here. Table 2 lists the first 3 natural 
frequencies predicted by both SPH and FEM, which 
show a good agreement with each other. 
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Fig. 21. Displacement histories (in meters) of particle 
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14 and particle 183, with (a) x component 
and (b) y component 
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Fig. 22. Fast Fourier transform on the x-directional 

displacement histories of (a) particle 14 and 
(b) particle 183 

 
Table 2 Natural frequencies of the annulus and 
rectangular plate calculated by SPH and FEM 

Frequency 
No. 

Annulus frequencies Square frequencies 
SPH 
(Hz) 

FEM 
(Hz) error SPH 

(Hz) 
FEM 
(Hz) error 

1 146.5 152.5 4.0% 878.9 874.3 0.5% 
2 366.2 356.0 2.9% 1465 1415 3.5% 
3 468.3 445.3 5.2% 2148 2058 4.4% 

 
CONCLUSIONS 

 
This paper adopts SPH method to solve elastic 

solid problems. Using a Lagrange idea, kernel 
function and its derivative are determined only once 
at the beginning of simulation. By adopting special 
treatment at the contact surface, the approach is 
applicable to dynamic contact issues. The main 
conclusions of the paper are as follows. 

1. The approach gives reasonable and reliable 
solution on dynamic and static elastic solid problems, 
and hence can be an alternative to the traditional 
Finite Element Method.  

2. By predetermining the kernel function and 
its derivative, the approach lowers computation cost 
and exhibits good tolerance against tension instability. 
By performing a von Neumann stability analysis, it is 
proved that tension instability can be completely 
avoided under certain condition. 

3. Being a sufficient condition of stability, Eq. 
(15) can be used to ensure stability.  

4. Kernel function normalization is necessary to 
ensure the accuracy of the approach, especially when 
the solution domain contains sharp corners. 
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APPENDIX 

 
A. Stability analysis 

A.1 Perturbation propagation equations 
The perturbation propagation of velocity is 
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The perturbation propagation of displacement 

is 
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where superscript n denotes values at the n-th 
time step, m is particle mass, G is shear modulus, γ  

is 
1 2

Gµ
µ−

 for plane strain problem and 
1

Gµ
µ−

 

for plane stress problem, µ  is Poisson ratio, and 
( )W W′ ′= ∆ . 

 
A.2 Fourier expansion 

The error evolution matrix of Eq. (14) is 
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where  
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A.3 Stability analysis 

The eigenvalues of ,m lE  are 
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where A, B, C and t are short for ,K QA , .K QB , 

,Q KA , and t∆ , respectively, and 

( )1/22 2 22 4P A AC C B= − + + . Stability condition 

indicates that 
2

1 ( 2,3,4) 1andλ ≤ , thereby requiring 
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where ( )2 3/c mW ρ′= . Eq. (A.9) holds for all 

( )/ 0,mK m Mπ π∆ = ∈  and ( )/ 0,lQ l Lπ π∆ = ∈ , 
namely 
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t
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≤

+ .      (A.10) 
Using the expression of c  and γ , stability 

condition Eq.(15) can be obtained. 
 

B. Analytical solution of validation case 1 
& 2 

 
The analytical solution of validation case 1 is 

given by 
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 (B.1) 
where xs  and ys  are x and y directional 

deformation, xε , yε  and xyγ  are x, y directional 
normal strain and shear strain respectively, xσ , yσ  
and xyτ  are x, y directional normal stress and shear 
stress respectively. E  is Young’s modulus, µ  is 
Poisson ratio, and k is the control parameter of the 
triangle load.  

The analytical solution of validation case 2 is 
given by 
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where rs  and sθ  are radial and 
circumferential deformation, rε , θε  and rθγ  are 
radial, circumferential strain and shear strain 
respectively, rσ , θσ  and rθτ  are radial, 
circumferential stress and shear stress respectively. 
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