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ABSTRACT 
 
Trochoid cam gear (TCG) is a novel precision 

rack and gear transmission with high performance, 
such as non-backlash, high precision, low noise, etc. 
However, the nonlinear dynamics, especially the 
impact characteristics is not investigated. In the 
present, the amplitude-frequency characteristic 
equation of the TCG is constructed. Firstly, the 
trochoid equation and the tooth profile equation are 
deduced. Secondly, the damping, meshing state and 
external excitation are considered to build up a pure 
torsional nonlinear dynamic model. Thirdly, under 
the condition that the meshing state of the meshing 
pair is represented by polynomial function, the 
amplitude-frequency characteristic equation of the 
system in different meshing states is construction by 
Lindstedt-Poincaré (L-P) method. Finally, the 
amplitude-frequency characteristics of the TCG with 
three parameters (the number of rollers, the rotary 
inertia of gear, and the radius of rolling circle) are 
investigated. The results show that the number of 
rollers is significant to the amplitude-frequency 
characteristic, whereas the other two parameters are 
not sensitive. 

 
 

INTRODUCTION 
 

Involute    gear    transmission    is    one   of   the 

 

 

 

 

 

important transmission in mechanical transmissions, 
the  transmission  mechanism  has  the   advantages   of 
compact structure, reliable operation and stable 
transmission ratio. However, the involute gear rack 
drive has the defects of high manufacturing and 
installation precision, easy wear (Zhang et al., 2017), 
exist tooth-side clearance (Chen et al., 2014), low 
positioning accuracy and sliding of the tooth surface 
(Jiang et al., 2016). In addition, when the gears are 
meshing, the relative sliding speed at different meshing 
lines will lead to the rolling plastic deformation 
occurred on the involute gear. However with the 
development of industry, modern machinery and 
equipment are more and more precise (Lu et al., 2019). 
In order to solve the above contradictions, trochoid 
cam gear is investigated in this paper. 

Trochoid cam gear has a gear and a rack, and 
the gear includes a gear body and rollers, when it 
works, the rollers will mesh with the rack. Meshing 
pair can achieve pure rolling contact. The tooth 
profile is the isometric offset line of the trochoid, the 
offset distance is the radius of the rollers on the gear 
so that the rack teeth can be accurately machined by 
milling cutters with radius less than the roller radius. 
TCG can achieve no tooth-side clearance, high-
precision, low noise, long distance and high-speed 
transmission so that it can replace linear transmission 
mechanism such as involute gear rack drive, ball 
screw, etc. 

Transmission mechanisms using the trochoid as 
the tooth profile can obtain excellent transmission 
performance so that a variety of transmission 
mechanisms are studied (Honda et al., 1994; Terada 
et al., 1999; Li et al., 2014; Terada et al., 1988). In 
order to obtain higher strength, Nagamura (Nagamura 
et al., 2008) adopted a trochoid tooth profile to the 
pin-rack gear mechanism, and calculated the tooth 
root stress of sprocket pinion, and the power loss. In 
order to predict the fatigue limit of gear surface, Kim 
(Kim et al., 2012) studied the load stress factor of the 
roller rack pinion system. In order to meet needs of 
the high precision, long range and heavy load, Han 
(Han et al., 2013) used Trochoid Cam Gear as the 
main transmission mechanism to implement high 
precision and long range motion of the secondary 
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girder of a Cartesian Coordinate Robot. Kumar 
(Kumar et al., 2016) presented a novel method 
comprising both analytical and numerical techniques 
for the effective determination of the elastic torsional 
compliance of single-stage cycloidal drives based on 
static experimental results conducted. Hwang and 
Hsieh (Hwang et al., 2007) built the mathematical 
model of the internal cycloidal gear with tooth 
difference by the theory of gearing and simulated 
rotor pump and cycloidal speed reducer by this model. 
In order to present the strength analysis of a POM 
gear system and determine the design rules in terms 
of strength, Stryczek (Stryczek et al., 2014) 
developed a computational model of the gear system 
in the rotor pump, and subjected to the FEM strength 
analysis carried out. Figliolini (Figliolini et al., 2013) 
rendered the tooth profiles of cycloidal gears with 
skew axes by means of the dualization of the 
geometric relations proposed by Disteli for bevel 
gears with cycloidal teeth, which led to ruled surfaces 
as conjugate tooth flanks.  

The above literatures study the statics of the 
transmission mechanism using the trochoid as the 
tooth profile, pointing out that the above mechanism 
can realize the precision transmission. However, 
nonlinear dynamic characteristics are important 
factors affecting the performance of the transmission 
mechanism, which is an important research content. 
Nonlinear dynamic analysis methods include 
Lindstedt-Poincaré method, multi-scale method 
(Arvin et al., 2016; Kanda et al., 2017), averaging 
method (Bakirov et al., 2014) and KBM (Cai et al., 
2004). Chen (Chen et al., 2007) used the 
multidimensional Lindstedt-Poincaré method to 
analyze the nonlinear vibration of axially moving 
systems, and studied the forced response of an axially 
moving beam with internal resonance between the 
first two transverse modes and the fundamental 
harmonic resonance. Based on the core of the 
algebraic system, Navarro (Navarro et al., 2008) used 
the Lindstedt-Poincaré method and found the periodic 
solutions in slightly perturbed systems. Considering 
the nonlinear coupling factors such as time-varying 
mesh stiffness, transmission error and gear backlash, 
Sun (Sun et al., 2016) established the dynamic 
equation of the planetary gear transmission 
mechanism, and investigated the effects of coupling 
parameters on the natural frequency of driving system. 
Considering time varying stiffness, backlash, time 
varying arm of meshing force and supporting 
stiffness, Chen (Chen et al., 2014) studied examines 
the complex, nonlinear dynamic behavior of 6 
degrees of freedom (DOF) face gear drive systems, 
and observed rich nonlinear phenomena. Nonlinear 
jumps, chaotic motions, period doubling bifurcation 
and multiple coexisting stable solutions.  

In this paper, the structure and transmission 
principle of a precision rack and gear transmission 

mechanism, i.e., TCG, are described, and the tooth 
profile equation is further deduced. The pure torsional 
nonlinear dynamic model is established, the meshing 
states are respectively expressed by the piecewise 
function and polynomial function, and the time domain 
response curves of the transmission system are solved 
respectively. The amplitude-frequency characteristic 
equation of system is derived by the L-P method, and 
the amplitude-frequency characteristics of the 
transmission system are analyzed. 
 
 

TRANSMISSION PRINCIPLE 
 

The teeth profile schematic and structure 
diagram are shown in Fig.1. As shown in the Fig.1 (a), 
there are n points evenly distributed on a circle. 
Assuming the rolling circle rolls along a straight line, 
then each point on the circle will has a trajectory 
curve, which is trochoid. Taking a part of the trochoid 
as the theoretical profile of the rack, the tooth profile 
is an isometric offset line of the theoretical profile, 
and the offset distance is the radius of the roller on 
the gear. 

As shown in Fig.1 (b), the gear consists of a 
gear body and rollers. The gear body and rollers are 
connected by bearings, and the rollers meshing with 
the rack. When it is in working condition, the rollers 
of the gear mesh with tooth profile of the rack, and 
they are purely rolled along the rack teeth surfaces 
under the action of static friction.  
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Fig. 1.  The TCG: (a) Principle of tooth profile 
generation, (b) Structures. 
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Fig.2 shows the transmission principle of the 
TCG. Fig.2 (a) shows the initial meshing state, the 
rotation direction of the gear is clockwise, and the 3rd 
roller rolls downward along the tooth profile on the 
right side of the 2nd rack tooth. The load is beard by 
the meshing line, which is called force transmission 
line. The 1st and 2nd rollers roll upward along the 
tooth profiles on the left side of the 1st and 2nd rack 
teeth, respectively. The meshing line does not bear 
the load, which is called non-force transmission line. 
The transmission system at this time is called single-
tooth transmission with three-tooth meshing system. 
As shown in Fig.2 (b), the 4th roller meshes with the 
3rd rack tooth, and rolls downward along the tooth 
profile. The meshing line bears the load, and there are 
two force transmission lines and two non-force 
transmission lines. The transmission system at this 
time is called four-tooth meshing system. In Fig.2 (c), 
we can see that the 1st roller and the 1st rack tooth are 
separated, and there are two force transmission lines 
and one non-force transmission line. The 
transmission system at this time is called double-
tooth transmission with three-tooth meshing system. 
The meshing state in Fig.2 (d) is the same as the 
meshing state in Fig.2 (a), and from the Fig.2 (a) to 
Fig.2 (d), the precision rack and gear transmission 
mechanism has ran a cycle. 
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Fig. 2.  Transmission principle. 
 

 

ESTABLISHMENT OF NONLINEAR 
DYNAMIC MODEL 

 
 Tooth profile analysis 

According to generative principle of trochoid, 
the parametric equation of trochoid can be established 
as 

0 0

0 0
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x r Kr
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 
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                                                  (1) 

where r0 is the radius of rolling circle, K is the short 
amplitude coefficient, K= r1/r0,   is the angle at 

which the gear rotates, r1 is the radius of the roller 
distribution circle. 

The tooth profile of the rack is the offset line of 
trochoid. When the offset distance is rq, the tooth 
profile equation of the rack can be represented by 

0 0
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where 
sin

( ) arctan
1 cos

K

K

 





, and 2  is the angle 

corresponding to the tooth profile, which can be 
obtained by  

3 2 2
0

π
sin sinqr

r n
                                             (3) 

where rq is radius of the roller, n is the number of the 
rollers, 3 2 2= arctan[ sin / (1 cos )]K K   . 

The curvature radius of the tooth profile is 

2 3/2
0

2

(1 2 cos )

cosc q
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r

K K





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                          (4) 

When the rack and gear are meshing, the 
relationship of the angles is shown in Fig.3. 
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Fig. 3.  The angles relationship. 

 
The cycle of motion is α, α = 2π/n. According 

to Fig.3, the angle expressions respectively 
corresponding to the first, second, third and fourth 
meshing line are expressed by 

(a) (b) 

(c) (d) 
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                                                                                  (5) 

The number of rollers involved in meshing is 
shown in Fig.4. At the beginning of the cycle, there 
are three rollers involved in meshing, and there is one 
force transmission engagement line. At the end of the 
cycle, there are three rollers involved in meshing and 
the number of the force transmission line is two. In 
the rest of the period, four rollers involved in meshing 
and there are two force transmission lines. 

 
Static analysis 

Assuming that the gear is subjected to 
clockwise torque M0, the gear will rotate through a 
certain angle, which is called static elastic angle and 
represented by γ. According to the deformation 
coordination equation of the meshing pair, and the 
gear torque balance, γ can be expressed by 

2 2 2
0 3 4 4 0( ) [(cos ) (cos ) ]k r K F M                      (6) 

where k is meshing stiffness (Xu et al., 2016; Leblanc 

et al., 2009), F4 is 4 2
4
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Fig. 4.  Number of rollers involved in meshing. 

 
Setting the parameters that M0 = 50Nꞏm, K = 

0.9, r0 = 40mm, rq = 4mm, and n=10, γ variation rule 
can be obtained, as shown in Fig.5. 

 

 
 

Fig. 5.  The elastic angle. 

 
As shown in Fig.5, at the beginning of the cycle, 

the meshing state of the system is single tooth (force 
transmission tooth) meshing, and the force arm in the 
contact area is the shortest, so that γ reaches the 
maximum value. The force arm increases first and 
then decreases, so γ decreases first and then increases. 
When φ = 2α-φ1, the second tooth enters the meshing 
state. The system changes from one force 
transmission line to two force transmission lines, then 
γ decreases rapidly. With φ increases, the force arm 
of the first tooth decreases, and γ increases gradually. 
When φ = α, the mechanism ends one cycle and 
enters the next cycle. From the above analysis, γ is 
very small. TCG has high transmission accuracy. 

 
Nonlinear dynamic model 

Simplify the system as a centralized parameter 
model, the meshing pairs are simplified to massless 
wire springs and the other components are simplified 
to rigid bodies. Considering the degree of freedom of 
gear rotation, a pure torsional nonlinear dynamic 
model of GTC can be established, as shown in Fig.6. 

The pure torsional nonlinear dynamic 
differential equation of GTC is 

2 2 2 2
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where J is the rotary inertia of gear, c is rotation 
damping coefficient, ω is the frequency of the 
excitation force, k is stiffness coefficient, 2
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0e r K , cos( )z mT T T t  , piecewise function 

1

0 0
( )

0

u
f u

u u


  

, piecewise function 

2

0
( )

0 0

u u
f u

u


  

, 1 2
1

2 1

1

0 2

Φ
F

Φ

 
 

 
   

. 

The polynomial function replaces the piecewise 
function, which is expressed by 

5
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i

i
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5
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2 1( ) ( )f u f u   , 2
0zk kr . 

Both the piecewise and polynomial functions 
are called meshing state functions. In order to solve 
the analytic solution of the steady state, the meshing 
state in Eq.(7) is divided into single-tooth 
transmission with three-tooth meshing state, four-
tooth meshing state and double-tooth transmission 
with three-tooth meshing state. The nonlinear 
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dynamic differential equation of the four-tooth 
meshing state is 

1 / 2=t t c zJu cu k u k F T                                           (9) 

where 
12 1 2cos 2 cos 2C Φ Φ  , 

34 3 4cos 2 cos 2C Φ Φ  , 
1 1 12 1 34( ) ( )cF f u C f u C   . 

 

ω
Tz

c
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Fig. 6.  Dynamic model 
 
The nonlinear dynamic differential equation of 

the single-tooth transmission with three-tooth 
meshing state is 

3( ) / 2t t c zJu cu k C u F T                                     (10) 

where 111tC c  , 

3 1 1 12 1 3= ( ) ( ) ( ) cos 2c cF f u f u C f u Φ   . 

The nonlinear dynamic differential equation of 
the double-tooth transmission with three-tooth 
meshing state is 

2( ) / 2t t c zJu cu k C u F T                                     (11) 

where 2 1 1 34 1 2( ) ( ) ( ) cos 2c cF f u f u C f u Φ     . 

The L-P method is used to solve the amplitude-
frequency characteristic curve equations of the 
nonlinear dynamic differential equations in the three 
meshing states. 
(1) Resonance analysis of the state of four-tooth 
meshing 

Institute 2 2
10 0( ) /k r K J   and t  into 

Eq.(9), the differential equation 
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According to weak nonlinear dynamics solving 
method, add a parameter ε into the Eq.(12), and it can 
be represented by 
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Making ω and u be expressed as follows 
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By substituting Eq.(14) into Eq.(13) and 
comparing the coefficients of the same power of ε in 
the two sides of the equation, differential equations 
are 

0 0 0u u                                                                (15) 
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The solution of Eq.(19) is 
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According to the condition that the coefficient 
of the number of powers of ε in the equation is zero, 
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where 2sin( ) sin(2 )s    , =1 cos(2 )c  , 
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Eq.(18) is the amplitude-frequency response 
equation. 
(2) Resonance analysis of the state of single-tooth 
transmission with three-tooth meshing 

Institute 2
20 11(1 ) / (2 )tk c J    and t  into 

Eq.(10), the differential equation is 
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According to weak nonlinear dynamics solving 
method, add a parameter ε into the Eq.(19), and it can 
be represented by 
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Substituting Eq.(21) into Eq.(20) and 
comparing the coefficients of the same power of ε in 
the two sides of the equation, the differential 
equations are 
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The solution of Eq.(22) is 
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According to the condition that the coefficient 
of the number of powers of ε in the equation is zero, 
the equations are 
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where 24 10 10 12 14 11( / 2 )F A B c c F  . 

Eq.(25) is the amplitude-frequency response 
equation. 
(3) Resonance analysis of the state of double-tooth 
transmission with three-tooth meshing  

Institute 2
20 11(1 ) / (2 )tk c J    and t  into 

Eq.(11), the differential equation is 
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According to weak nonlinear dynamics solving 
method, add a parameter ε into the Eq.(26), and it is 

2 2 2
20 10 2/ / 2 /c zu cu J u F T J                    (27) 

Making ω and u expressed as follows 
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By substituting Eq.(28) into Eq.(27) and 
comparing the coefficients of the same power of ε in 
the two sides of the equation, differential equations 
are 

0 0 0u u                                                               (29) 

2 2
20 1 20 31 0 20 0 10 34 11 0

2

2 / (

cos2 ) / 2 /

h h

z z

u u cu J C U c u U

ΦU T J

          

 
   

(30) 

The solution of Eq.(29) is 

0 30 30cos( ) sin( )u A B                                        (31) 

According to the condition that the coefficient 
of the number of powers of ε in the equation is zero, 
the differential equations are 

2
10

20 31 30 20 30 30 53 2 24 2

2
10

20 31 30 20 30 30 53 2 24 2

2 ( )
2

2 ( ) 0
2

m
A c s

B s c

c T
A B A E G G

J J

c
B A B E G G

J

    

    


     

     

(32) 

where 24 30 30 12 14 11( ) / 2G A B c c F  , 2 sin sin 2s    , 

2 = cos cos 2c   , 2
53 15 11 13 115 / 8 3 / 4E c F c F  . 

Eq.(32) is the amplitude-frequency response 
equation. 

 
 

AMPLITUDE-FREQUENCY 
CHARACTERISTICS ANALYSIS AND 

DISCUSSION 
 
Comparative analysis of the results 

The value of the parameters are set as follows: 
Tm=0.05Nꞏm, T=50Nꞏm, K=1, r0=40mm, dr=8mm, 
lc=10mm, n=10, ω=30rad/s, c=10Nꞏmꞏs/rad, 
J=0.1kgꞏm2. 

The response curves when the meshing 
functions are respectively expressed by piecewise 
functions and polynomial functions are shown in 
Fig.7. When the meshing function is expressed by 
piecewise function, the response is the real value. 
When the meshing function is expressed by 
polynomial function, the response is the approximate 
value. From the Fig.7, the difference between the 
approximate value and the real value is small. 
Therefore, the piecewise function can be replaced by 
the polynomial function in the analysis of the 
amplitude-frequency characteristics of Eq.(9). γ 
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variation rule(Fig.5) is the similar as the response 
change law, which indicates that the established 
dynamic model is correct. 

 
Comparative analysis of the results 
(1) Four-tooth meshing system 
The amplitude A10 and B10 in the four-tooth meshing 
system are shown in Fig.8. In interval [0, 1.5782], 
with the increase of ω, A10 gradually decreases, and 
the degree of nonlinearity of the curve gradually 
increases. When ω/ω10 is 1.5782, the curvature of the 
curve changes greatly. In interval [1.6123, 1.659], the 
nonlinear features of shock and amplitude jump 
appears. When the frequency ratio is greater than 
1.659, the degree of nonlinearity of the curve 
gradually decreases, and the amplitude decreases 
gradually. In interval [0, 1.5165], with the increase of 
ω, B10 gradually increases, and the degree of 
nonlinearity of the curve gradually increases. When 
the frequency ratio is 1.5165, B10 reaches the 
maximum value. In interval (1.5165, 1.5782], B10 

gradually decreases with ω increases, and the degree 
of nonlinearity of the curve gradually increases. 
When the frequency ratio is 1.5782, the curvature of 
the curve is changes greatly. In interval [1.6123, 
1.6313], the system has nonlinear characteristics of 
shock and amplitude jump. When the frequency ratio 
is greater than 1.6313, the degree of nonlinearity of 
the curve gradually weakened. Within the entire 
interval, B10 is much smaller than A10. 
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Fig. 7. Response curves. a) When a piecewise 

function is included in the vibration 
equation Piecewise function, b) when a 
polynomial function is included in the 
vibration equation. 

 
(2) Single-tooth transmission with three-tooth 
meshing system 

The amplitude A20 and B20 in the single-tooth 
transmission with three-tooth meshing system are 
shown in Fig.9. In interval [0, 0.5522], with the 
increase of ω, A20 gradually increases at first, then 
decreases, and the maximal value appears at 0.524. In 
interval (0.5522, 1.4543], with the increase of ω, A20 
gradually increases at first, then decreases, and the 
maximal value appears at 1.2926. When the 
frequency ratio is greater than 1.4543, A20 gradually 
increases. The minimal values appear at 0.5522 and 
1.4543. In interval [0, 0.6628], as the increase of ω, 
B20 gradually decreases at first, then increases, and 
the minimal value appears at 0.5522. In interval 
(0.6628, 1.4779], with the increase of ω, B20 
gradually decreases at first, then increases, and the 
minimal value appears at 1.4543. When the frequency 
ratio is greater than 1.4779, B20 gradually decreases. 
The maximum appears at 0.6628. 

From Fig.9, the degree of nonlinearity of the 
amplitude frequency characteristic curve of the 
single-tooth transmission with three-tooth meshing 
system is weaker than that of the four-tooth meshing 
system. 

 (3) Double-tooth transmission with three-tooth 
meshing system 

The amplitude A30 and B30 in the double-tooth 
transmission with three-tooth meshing system are 
shown in Fig.10. In [0, 0.5816], with the increase of 
ω, A30 gradually decreases at first, and then increases, 
the minimal value appears at 0.4634. When the 
frequency ratio is greater than 0.5816, the system 
appears non-shock, shock and amplitude jump. In [0, 
0.5816], with the increase of ω, B30 gradually 
decreases. When the frequency ratio is greater than 
0.5816, the system appears non-shock, shock and 
amplitude jump. 

The degree of nonlinearity of double-tooth 
transmission with three-tooth meshing system is the 
strongest. 
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Fig. 8.  Amplitude-frequency characteristics. a) A10, 

b) B10. 
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Fig. 9.   Amplitude-frequency characteristics. a) A20, 

b) B20. 
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Fig. 10.  Amplitude-frequency characteristics. a) A30, 

b) B30. 
 
Influence of parameters 
(1) Four-tooth meshing system 

The influences of J, n and r0 on the amplitude 
of the four-tooth meshing system are respectively 
shown in Figs.11, 12 and 13, the following are known. 

(a) When J, r0 take different values, the change 
rules of amplitude-frequency characteristic curves of 
A10-ω and B10-ω are similar. When the abscissa is 
multiplied by 1/ω10 (or 1/ω20), the A10-ω (or B10-ω) 
amplitude frequency characteristic curves are 
coincided. But, when the abscissa is ω/ω10 (ω/ω20), 
the coordinate values of the different curves appear 
different in impact characteristics. Because J and r0 
affect the natural frequency of the system, the 
amplitude-frequency characteristic curves under 
different parameters are almost identical after 
coordinate transformation. 

(b) When ω = 1959 rad/s, the values of A10 and 
B10 are independent with n. When ω<1959 rad/s, with 
the increases of n, A10 decreases and B10 increases. 
When ω > 1959 rad/s, with the increases of n, A10 and 
B10. 

(c) With the change of J, n and r0, the 
amplitude of the system changes, while the nonlinear 
characteristics of shock and amplitude jump of the 
system still exist. 
(2) Single-tooth transmission with three-tooth 
meshing system 

The influences of J, n and r0 on the amplitude 
of the three teeth meshing and single tooth 
transmission system are respectively shown in 
Figs.14, 15 and 16, the following are known. 

(a) When J, r0 take different values, the change 
rules of amplitude frequency characteristic curves of 
A20-ω and B20-ω are similar. When the abscissa is 
multiplied by 1/ω10 (or 1/ω20), A20-ω (or B20-ω) 
amplitude frequency characteristic curves are 
coincided. But, when the abscissa is ω/ω10 (ω/ω20), 
the coordinate values of the different curves appear 
different in impact characteristics. 

(b) When ω < 2197 rad/s, with n increases, the 
A20 decreases, the minimal value of B20 decreases, and 
the ω which is corresponding to the minimal value 
increases. When ω > 2197 rad/s, with the increase of 

(b) 

(a) 

(b) 

(a) 

(b) 
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n, the minimal value of A20 and B20 increases, and the 
ω in associate with the minimal value decreases. 
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Fig. 11.  The influence of J. a) A10, b) B10, c) 

Frequency conversion. 
 

(c) With the change of J, n and r0, the 
amplitude of the system changes, while the nonlinear 
characteristics of shock and amplitude jump of the 
system still exist. 
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Fig. 12.  The influence of n. a) A10, b) B10. 

 

0 1000 2000 3000 4000 5000
0

0.5

1
x 10

-3

ω/rad/s
A

10
/r

ad

30

40

50

 
 

0 1000 2000 3000 4000
-3

-2

-1

0

1
x 10

-6

ω/rad/s

B
10

/r
ad

30

40
50

 
 

0 1 2 3
-3

-2

-1

0

1
x 10

-6

ω/ω
20

B
10

/r
ad

 
Fig. 13.  The influence of r0. a) A10, b) B10, c) 

Frequency conversion. 
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Fig. 14.  The influence of J. a) A20, b) B20, c) 
Frequency conversion. 
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Fig. 15.  The influence of n. a) A20, b) B20. 
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Fig. 16.  The influence of r0. a) A20, b) B20, c) 

Frequency conversion. 
 

(3) Double-tooth transmission with three-tooth 
meshing system 

The influences of J, n and r0 on the amplitude 
of the four teeth meshing transmission system are 
respectively shown in Figs.17, 18 and 19. The 
following are known. 

(a) When J, r0 take different values, the change 
rules of A30-ω (or the B30-ω) amplitude frequency 
characteristic curves are similar. With the increase of 
J, the frequencies corresponding to the extreme 
values of A30 and B30 all move to the low frequency 
direction, the minimum frequencies corresponding to 
the shock of the system move to the low frequency 
direction, and the corresponding frequencies interval 
increases when the impact phenomenon occur. With 
the increase of r0, the frequencies corresponding to 
the extremum of A30 and B30 all move to the high 
frequency direction, and the minimum frequencies 
corresponding to the impact of the system move to 
the high frequency direction, and the frequency 
interval corresponding to the shock decreases. 

(b) After the coordinate transformation, the 
amplitude frequency characteristic curves of A30-ω 
(or B30-ω) in Fig.18 c) (or Fig.17 c)) is coincided. 
With J increases, the interval of the frequency ratio 
corresponding to the system shock decreases. With r0 
increases, the interval of the frequency ratio 
corresponding to the system shock increases. 

(c) When n is 8, 10 and 12, the system has the 
nonlinear characteristics of shock and amplitude jump. 
When n is 8 and 10, the frequency interval 
corresponding to the shock is large. When n is 6, the 
system presents linear characteristics, which has 
strong stability. In the interval of low frequency, with 
the increase of n, the A30 increases and the B30 
decreases. 
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Fig. 17.  The influence of J. a) A30, b) B30, c) 

Frequency conversion. 
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Fig. 18.  The influence of r0. a) A30, b) B30, c) 

Frequency conversion. 
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Fig. 19.  The influence of r0. a) A30, b) B30. 

 
 

CONCLUSION 
 

In this paper, the amplitude-frequency 
characteristics of the TCG are investigated by the 
constructed amplitude-frequency characteristic 
equation. The results are shown in the following. 

(1) The number of rollers that meshing 
simultaneously is three or four in one cycle. The 
system has three meshing states, i.e., single-tooth 
transmission with three-tooth meshing, four-tooth 
meshing, double-tooth transmission with three-tooth 
meshing. All of them can achieve non-backlash and 
precision transmission. 

(2) The piecewise function can be replaced by 
the polynomial function in the analysis of the 
amplitude-frequency characteristics. γ variation rule 
is the similar as the response change law, which 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 

(a) 

(b) 
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indicates that the established dynamic model is 
correct. 

(3) The single-tooth transmission with three-
tooth meshing system has the weakest nonlinearity, 
while the double-tooth transmission with three-tooth 
meshing system has the strongest nonlinearity. J, r0, 
and n have varying degrees of influence on the 
dynamic characteristics of the system. n can change 
the shock characteristics of the system. With the 
increase of n, the vibration characteristics of the 
double-tooth transmission with three-tooth meshing 
system transforms from linear vibration to strong 
nonlinear vibration at first, and then shows weaker 
nonlinear vibration. 
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NOMENCLATURE 
 

2  the angle corresponding to the tooth profile 

 
rq radius of the roller 
 
n the number of the rollers 
 
k meshing stiffness 
 
J the rotary inertia of gear 
 
c rotation damping coefficient 
 
ω the frequency of the excitation force 
 
k stiffness coefficient 
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摘  要 

滾輪齒條傳動是一種新型的精密齒輪齒條傳

動，具有無齒隙、高精度、低雜訊等高性能，但

其非線性動力學，尤其是衝擊特性尚未進行研

究。本文建立了滾輪齒條傳動的幅頻特性方程。

首先，推導了擺線方程和齒廓方程。其次，考慮

阻尼、嚙合狀態和外部激勵，建立了純扭轉非線

性動力學模型。再次，在嚙合副的嚙合狀態由多

項式函數表示的條件下，利用Lindstedt-Poincaré
（L-P）方法構造不同嚙合狀態下系統的幅頻特性

方程。最後，研究三個參數（滾柱數、齒輪轉動

慣量和滾動圓半徑）下TCG的幅頻特性。結果表

明，滾柱數量對幅頻特性有顯著影響，而其他兩

個參數對幅頻特徵不敏感。 


