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ABSTRACT 
 

This study proposes an improved compliance 
model for the mesh stiffness of a spur gear pair with 
the various gear parameters. The first step of the pro-
posed model is to use the generating method of rack 
cutter to obtain an involute tooth profile. The second 
step is to calculate the mesh stiffness of a gear pair, 
using gear body deflection of involute tooth with the 
effects of circular elastic rings under dedendum circle 
and non-constant Hertzian contact theory. Numerical 
results show that the magnitude of gear mesh stiffness 
for the proposed model is of about 20% differences 
compared to Weber’s model and Sianaot’s model. It 
implies that the proposed model can avoid the overes-
timate problem of gear mesh stiffness. Furthermore, the 
variations of gear mesh stiffness for the various gear 
tooth types will affect the system more than the various 
pressure angles under the non-constant Hertzian 
contact effect. 
 

1. INTRODUCTION 
 

In power transmission the driving gear is always 
equipped with motor which transmits required torque 
to the driven gear. Generally speaking, the engaged  
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procedure of the driving gear and the driven gear can 
divide into a single-tooth or the multi-teeth engagement. 
The involute tooth profile was mostly established from 
the computer-aided design software in the published 
references. However, there are obstacles and lack of 
efficiency in order to obtain the involute tooth profile 
of spur gear by user's specification. 

Many researchers have developed analytical 
methods to study the gear mesh stiffness of a gear pair 
under the sinusoidal function or Fourier series expan-
sion. The fluctuation of gear mesh stiffness regarded as 
a periodic excitation was early used by Harris (1958). 
Kahraman et al. (1996) investigated analytically steady 
state forced response of a gear system by using the 
periodic gear mesh stiffness. The influence of involute 
contact ratio (ICR) with the torsional vibration behav-
ior of a spur gear pair based on the measuring experi-
ment of the dynamic transmission error, and periodic 
rectangular wave function was studied by Kahraman 
and Blankeship (1999). They explained the relationship 
between ICR and gear mesh stiffness. Parker et al. 
(2000) employed the finite element and contact 
mechanical model with sinusoidal series of gear mesh 
stiffness, and investigated the dynamic response of a 
gear pair with backlash. Theodossiades and Natisavas 
(2001) illustrated the dynamic response of a gear pair 
with the periodic gear mesh stiffness to discuss the 
specific parameters under the quasi-periodic motion 
and chaotic motion. Later, Shen et. al. (2006) used 
IHBM to analyze the nonlinear dynamics of a spur gear 
pair including a backlash, type of multi-term Fourier 
series for gear mesh stiffness and static transmission 
error. Fourier series formulation of the gear mesh stiff-
ness of gear train with the dynamic backlash was still 
employed by Chen et al. (2011). The chaotic region of 
gear train were appeared early due to the dynamic 
backlash, friction, and meshing stiffness. Similarly, 
Al-shyyab and Kahraman (2005) employed a 
multi-term Fourier series to simulate the gear mesh 
stiffness, and investigated analytically the steady state 
forced response of a multi-mesh geared system. 

The developed model of the compliance model 
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and Hertzian contact for involute gear tooth was firstly 
followed to Weber (1949), who regarded the compli-
ance of gear tooth as the assembly of basic deflection 
of the tooth as a beam, the fillet and foundation flexi-
bility, and the local deflection caused by Hertzian 
contact. Muskhelishvili (1975) presented a general 
bidimensional solution for circular rings based on a 
complex power series representation. Then, Cornell 
(1981) proposed the compliance method from Weber's 
model to calculate the deflection of involute gear tooth. 
The theory of parallel connection and curve fitting 
were further employed to simulate the meshing stiff-
ness of a multi-teeth gear pair. Yang (1985) employed 
the material compliance and energy dissipation to 
obtain the gear body deflection. P. Sainaot et al. (2004) 
proposed an improved model based on the theory of 
scholar Muskhelishvili. The proposed model was in 
agreement with FEM model and the formulation was 
more accurate than that of Weber's model. Kuang et al. 
(1992,2001) used the quadratic plane-strain element 
with finite element method to disperse the continuous 
gear body, and substituted for the deflection results of 
gear to obtain the meshing stiffness by curve fitting. 
Chaari et al. (2008) considered the effect of spalling or 
tooth breakage on the procedure of gear mesh stiffness 
for a one-stage spur gear transmission. The width of 
breakage affected obviously in decreasing the gear 
mesh stiffness. Next year, Chaari et al. (2009) illus-
trated the crack effect on the gear mesh stiffness of a 
gear pair. The gear mesh stiffness reduction was 
accentuated by large crack inclination angle as depth of 
crack increased. 

The undercutting analysis for developed mathe-
matical model of elliptical model based on the theory 
of gearing and the geometry of the straight-sided rack 
cutter are illustrated with Chang et al. (1994). This 
model was included the fillets, working regions, top 
land and backlash. Litvin (2004) later explained the 
mathematical model of planer, helical elliptical, 
involute gear, and introduced the theory of the equation 
of meshing for generating method of various gear. 
Litvin et al. (2007) proposed the generation of planner 
and helical elliptical gears to be employed in applica-
tion of rack-cutter, hob, and shaper. Chen et al. (2011) 
used the energy storage theory of bending, shear and 
axial compression to simulate the deflection of a spur 
gear as a non-uniform cantilever beam. In last three 
years, the gear mesh stiffness subjected to the influence 
of crack is certain to carry weight. Ma and Chen (2012) 
used the 3D FE model to obtain the gear mesh stiffness 
and load sharing ratio. On the basis of Ref. 
(2004,2008,2009), Mohammed et al. (2013), Wan et al. 
(2014), Ma et al. (2014) used the compliance algorithm 
and energy method to obtain the gear mesh stiffness 
with the crack effect. 

The multi-term Fourier series expansion or the 
rectangular wave function was conveniently assigned 
to approximate the gear mesh stiffness, but above 
simulation model could not exhibited the realistic 
engaged procedure. Focusing on these problems, the 

proposed model of this paper adopts the generating 
method of rack cutter to create the involute gear tooth 
profile. Further, the circular elastic rings under deden-
dum circle and non-constant Hertzian contact theory is 
considered at the improved compliance model to 
calculate the gear body deflection. 

 
2. Generation of Rack Cutter and Gear 

mesh Stiffness 
 

The rectangular wave function or Fourier series 
expansion were used to approximate the gear mesh 
stiffness of a gear pair at mostly previous paper. A few 
papers (1949, 1981, 2008, 2009) was used the compli-
ance methodology to calculate the gear mesh stiffness 
of a single gear pair. This paper summarizes the ad-
vantages of published papers to propose the improved 
mathematical model of compliance methodology. The 
proposed methodology can be applied to obtain rapidly 
the involute tooth of spur gear due to the generating 
method of rack cutter. 
 
2.1 Mathematical model of rack cutter 

The mathematic model of rack cutter consists of 
straight line and arc as shown in Fig.1 (a). The 
mathematic model of rack cutter can be expressed as 
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Where, superscript (1) and (2) are the straight line and 
arc, respectively. Subscript indicates the vector of rack 
cutter in the coordinate of S1. The "+" and "-" denote 
the right and left hand side of a rack cutter model, 
respectively. 
    Coordinate system of S1 and S2 are rigidly 
connected to a gear pair, and are performed the 
translational and rotational motions with respect to the 
fixed coordinate system. In other words, the trajectory 
of rack cutter must be described the motion of rack 
cutter at rotational coordinate. As show in Fig.1 (b), Sf , 
S1, S2 denote the fixed coordinate, the horizontal 
moving coordinate of rack cutter, and the rotational 
coordinate of gear. The vector r2 of rack cutter at 
rotational coordinate S2 can be given by 

[ ] [ ](1) (1) (2) (2)
 2 21 1 2 21 1,  M M= =r r r r            (2) 

Transformation coordinate from S1 to S2 is illus-
trated with the Eqns. (3) and (4). The transformation 
matrix of M21 means that the translational coordinate of 
S1 transfers to the rotational coordinate of S2. The 
transformation matrix are expressed as 

21 2 1[ ] [ ][ ]f fM M M=              ( 3 ) 
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Where 0r  is radius of base circle and φ  is rotational 
angle. According to the Eqns. (2), (3), and (4), the 
vector of rack cutter at the rotational coordinate of 2S  
is given by  

1

0
1

(1)
2 1

0
1

sin ( cos ) (sin cos )

(cos ( sin tan ))
2

cos ( cos ) (cos sin )

( sin ( sin tan ))
2

1

f o

f

f o

f

t u r
t

u t

t u r
t

u t

φ α φ φ φ

φ α α

φ α φ φ φ

φ α α

− + + − ± 
 
 + − 
 = − + + + ± 
 

− + − 
 
  

r  

1

0
1

(2)
2 1

0
1

sin ( sin sin ) (sin cos )

(cos ( cos cos tan ))
2

cos ( sin sin ) (cos sin )

( sin ( cos cos tan ))
2

1

f o

f

f o

f

t r
t t

t r
t t

φ ρ α ρ θ φ φ φ

φ ρ α ρ θ α

φ ρ α ρ θ φ φ φ

φ ρ α ρ θ α

+ − + − ± 
 
 − − + −
 
 = + − + + ± 
 

− − − + − 
 
  

r  

(5) 
Where fh  is adendum, ft  is dedendum, 1u  

is the line section of rack cutter, 0t  is standard pitch, 
ρ  is radius of fillet, 1θ  is angle of arc section of rack 
cutter, α  is pressure angle. The vector of rack cutter 
is function of 1, ,u θ  and φ , respectively, as shown in 
Eqs. (5). The trajectory of rack cutter can be drew tooth 
profile with the envelope of generating method when 
rotational angle of φ  increase gradually. The every 
point on the envelope of rack cutter is solved by 
equation of meshing. Consequently, the involute tooth 
profile of spur gear can be constituted by the 
summation of those points. 
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Fig. 1. The mathematic model of rack cutter and 

coordinate of FS , 1S , 2S  
 

According to the principle of equation of 
meshing, the tangent vector ( )12V  and normal vector 
N  are orthogonal to each other on the tooth surface. 
The formulation can be expressed as 

(12) 0⋅ =N V                             (6) 

According to the Eqn. (6), the necessary condition of 
envelope are given by  
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  (7) 
And the normal vector of the tooth surface of spur gear 
are defined as  
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                   ( 8 ) 

The vector of tooth profile of r and dimensionless 
normal vector of n at the rotating coordinate of 2S  are 
respectively given by the Eqns.(2), (5) and (7). 
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The vector of tooth profile of 2gr  and 2 pr  are 
calculated by Eqn. (9). Consequently, the 
transformation matrix and unit normal vector for vector 
of tooth profile must be transformed from rotational 
coordinate S2 to fixed coordinate SF. Those matrices are 
expressed as 
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                        (16) 
Where pφ  and gφ  are rotational angle of 

pinion and gear. pc  and gc  are offset distance of 
pinion and gear. opr  and ogr  are radii of pitch circles 
for pinion and gear, respectively. The tooth vectors of 
gear and pinion and unit normal vector are given by 
Eqns. (17), (18) and (19). 

1 1 1
(1)

1 1 1

( sin( ) cos( ))
cos( ) cos( )

1

p p p

Fp p p p p

r a b a
r r a b a c

φ α φ
φ α φ

± − ± + − ± 
 = ± + − ± −
  

 

                                     (17) 
1 1 1

1(1) 2
1 1

( sin( ) cos( ( )))
( )

2 cos( ) sin( ( ))
2

1

g g g

g
Fg g g p g

r a b a
a

r r b a r c

φ α φ
φ

α φ

± − ± + − ± − 
 ± − = + − ± − + +
 
 
 

                                         (18) 
1 1(1) (1)

1 1

cos( ) cos( )
,  

sin( ) sin( )
p g

Fp fg
p g

a a
n n

a a
α φ α φ
α φ α φ

− ± − ±   
= =   ± − ± ± − ±   

 

                                         (19) 
 

Similarly, the position of meshing point on the 
pitch circle is obtained by employing the equation of 
meshing. There are three equations and four unknown 
quantities in Eqn. (20) and Eqn. (21), respectively. 

Consequently, the position of any points along the line 
of action can be obtained if rotational angle of pinion is 
given. 

(1) (1) (1) (1)0,  0Fp Fg Fp Fgr r n n− = − =               (20) 
(1) (1) 1Fp Fgn n= =                         (21) 

 
2.2 Compliance methodology 
    The concept of gear tooth compliance is cited 
from Weber (1949) which is introduced to make up 
three subsections. They are the basic tooth as a 
cantilever beam, fillet-foundation deflection and 
Hertzian contact, respectively. The compliance of 
involute tooth subjected to the normal force due to the 
applied force can be given as follow. 

T LC y F=                           (22) 

( ) ( )T Bp Fp Bg Fg Ly y y y y y= + + + +          (23) 

Where Ty  is total deflection, LF  is applied force. 

Bpy  and Bgy  are regarded tooth deflections of the 
pinion and gear as a cantilever beam due to bending 
moment, respectively. 
 
2.2.1 Gear tooth deflection 

The tooth deflection of pinion and gear are 
regarded as cantilever beam by Weber (1949) as shown 
in Fig. (2a). The formulation of deflection for plane 
stress and plane strain are given by 
For plane stress, 
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For plane strain, 
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    (25) 
Where k is number of element, E is Young's modulus, 
and µ  is Poisson’s ratio. Fh  is length of tooth base 
which is defined as (1)

12F pxh r= . The distance of 

applied load from base is (1) (2)
1F pLy pyl r r= − . The moment 

of mass inertia for each element iI  is 3(2 ) /12pxiW r⋅ . 
W and pxir  are width of gear and x coordinate of i-th 
element, respectively. The cross-section area is 

(2 )i pxiA W r= ⋅ . The moment of inertia of area and the 
cross-section area are expressed as 

11 (1 1 ) / 2i i iI I I += +  and 1 iA =  1(1 1 ) / 2i iA A ++ , 
respectively. The magnitude of element of load ( )il , 
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width of element ( )iδ  and angle of applied load ( )bpα′  
in Eqn. (24) and Eqn. (25) are expressed as 

,i pLy pyil r r= − 1 ,  i pyi pyir rδ += −  bp b Lpα α α′ = − , 
respectively. 
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Fig. 2. (a) Beam, fillet and foundation compliance of a 

gear tooth (b) Hertz contact of a gear tooth. 
 
2.2.2 Fillet-foundation deflection 

The models of Cornell and Sainaot are similar 
and they consider the deflection of fillet-foundation. 
However, the assumption of circular elastic rings under 
the dedendum circle by Sainaot is different from 
fillet-foundation by Cornell. Cornell regarded the fillet 
as flexible material to create the additional deflection 
with load. The deflection direction of tooth with load is 
based on the foundation effect of fpy  as shown in Fig. 
(3a). 
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For plane strain, 
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(26-2) 
Further, the theory of Muskhelishvili and Sainsot 

for fillet-foundation deflection is applied with the 
circular elastic rings to assume the constant contact 
stress as shown in Fig. (3b). The analytical expression 
reflects the gear body-induced tooth deflection by 
assuming the constant contact stress at the dedendum 
circle, which is given by 
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L*(hfi,θf), L*(hfi,θf), L*(hfi,θf) and L*(hfi,θf) are limited in 
ranges of variation (h between 1.4 and 7, θf  between 
0.01 and 0.12) for plane strain. The coefficient L*, M*, 
P*, Q* can be approached by the polynomial function. 
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Where, W is tooth width, E is Young's modulus, F is 
applied load, int, , /f f fi fu S h r r=  andθf  are defined 
in Fig. (3b). Those values of Ai, Bi, Ci, Di, Ei and Fi are 
given in Table 1. 
 

Table 1. Values of the coefficient of Eq. (27-2) 
 Ai Bi Ci Di Ei Fi 
L*(hfi,θf) -5.574e-5 -1.9986e-3 -2.3015e-4 4.77021e-3 0.0271 6.8045 
M*(hfi,θf) 60.111e-5 28.100e-3 -83.431e-4 -9.9256e-3 0.1624 0.9086 
P*(hfi,θf) -50.952e-5 185.50e-3 0.0538e-4 53.300e-3 0.2895 0.9236 
Q*(hfi,θf) -6.2042e-5 9.0889e-3 -4.0964e-4 7 .8297e-3 -0.1472 0.6904 

 
2.2.3 Hertzian contact 

Hertzian contact theory is comprehensively 
applied for the contact behavior of both elastic bodies. 
Here two types of Hertzian theory are introduced to 
distinguish the differences between Weber's model and 
Sainaot's model. First, Yang (1985) used the constant 
Hertzian contact at meshing condition along the line of 
action. The local compression Ly  is given by 

24(1 )
L Ly F

WE
µ

π
 −

=  
 

                (28) 

Hertzian contact is non-constant along the line of 
action in the physical phenomenon of meshing situa-
tion. Consequently, this study refers that the Weber's 
model can improve the theory of Yang's model. As 
shown in Fig. (2b), the local compression of each tooth 
between the contact point and tooth centerline is ap-
proximated by assuming the load spread at a various 

 (a) 

(b) 
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meshing pressure angle. The local compliance of Ly′  
is assumed to increase linearly with /L W . The 
expression of compliance from Muskhelishvili (1975) 

without the contact width effect is given by 
24 (1 )

3.57 L
L

Fy
WE

µ
π

 −′ ≈  
 

               (29-1) 

Similarly, the compliance with the effect of contact 
width is considered as 
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tan ,  tanhp bp b hg bg br r r rα α= =             (31) 

(1) (1)/ cos ,  / cosp ptx bp g gtx bgh r h rα α′ ′= =         (32) 

The bpr  and bgr  are radii of base circles for 
pinion and gear, respectively. hb  is half width of 
Hertzian contact. (1)

ptxir  and (1)
gtxir  are elements of 

pinion and gear of involute tooth at x coordinate. bpα′  
and bgα′  are meshing pressure angle with mesh point 
between pinion and gear. Furthermore, Hertzian 
contact of compliance methodology in this paper is 
adopted by Eqn. (29-2) to simulate the non-constant 
Hertzian contact of the engagement. 

 
 

 
Fig. 3. The geometric of the fillet-foundation deflection 
comparison of (a) Cornell's model and (b) Sainaot's 
model 

 
2.2.4 Meshing stiffness 

According to the Eqns. (24), (25), (26)/(27) and 
(28)/(29), the gear mesh stiffness is computed by 
summation of deflections for a single gear tooth along 
point by point. The realistic phenomenon of a meshing 
condition is either single-tooth engagement or 
multi-teeth engagement. Consequently, Fig. (4b) show 
the stiffness of multi-teeth engagement is employed 
from the parallel connection theory of springs to 
simulate the gear mesh stiffness. The formulation of 
gear mesh stiffness of multi-teeth engagement versus 
the contact ratio are defined as 

( ) (1 ) 0
( ) ( ) , ( )

( ) ( 1) ( )

m a m a a

m m a a a

m a m a a a o

K K n
K t K n n

K K n

ε ε ε
ε ε ε

ε ε ε ε ε

 + + ≤ ≤
= < < −
 + − − ≤ ≤

 

                      (33) 
Where, ( )a tε  is the indiscriminate contact ratio that 
is represented as ( ) ( ) /a a et s t tε = , et  is base pitch, 
the indiscriminate length on contact length are defined 
as 

( ) pa o
a

pe ps
s t

φ ε
φ φ

=
−

                     (34) 

Here, oε  is contact length at line of action. psφ and 

peφ  are starting contact angle and separable angle of 

pinion. paφ  represents the angle of relative meshing 

position by subtracting separable angle peφ . The 

relationship of
 paφ  with time can be presented as 

0mod(( ) /( ))pa p p pe psφ φ ω φ φ= + −        (35) 
The symbol mod represents remainder the of 

0( ) /( )p p pe psφ ω φ φ+ − . 0pφ  is initial mesh angle of 

pinion, and pω  is angular velocity of pinion. 
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Fig. 4. (a) The corresponding coordinate between the 
gear and pinion. (b) Parallel model of Multi-tooth mesh 
stiffness. 
 
3. Results and discussion 

The circular elastic rings under dedendum circle 
and non-constant Hertzian contact are considered to 
simulate the gear mesh stiffness of a spur gear pair in 
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this paper. To validate the program reliability, the 
deflections of the spur gear by ANSYS© Workbench 
14.0 are compared with those of MATLAB© R2010a. 
The analytical results are in agreement with Weber’s 
results (1949) as shown in Fig. (5a) and Fig. (5b). 
Figure (5a) is the solid body of involute spur gear tooth, 
and Fig (5b) is the comparison of both results of 
ANSYS© and MATLAB©. The relative error of each 
other is smaller than 0.5%. Similarly, figure 6 is the 
comparison of gear mesh stiffness for a spur gear pair 
between the proposed model and Chaari's model (2001). 
The numerical results of the proposed model are also in 
agreement with Chaari's results to validate the accuracy 
of program. 

 
 

 
 
    

 
Fig. 5. The (a) tooth profile and (b) deflection results of 
involute spur gear are simulated by MATLAB© R2010a 
and ANSYS© Workbench 14.0. 
 

 
Fig. 6. The gear mesh stiffness of a spur gear pair 
compared with Chaari's model (2001) and proposed 
model. 
Figure (7a) describes a trajectory of the generation of 

rack cutter. The envelope of the trajectory can be 
observed the prototype of the involute tooth profile of 
the spur gear. Subsequently, the various types of 
involute gear tooth, which include stub-tooth, full-tooth 
and long-tooth, can be created by the generating 
method of rack cutter, respectively, as shown in Fig. 
(7b). The time consumptions for the generating method 
and simulation for the various involute tooth profiles 
are listed in table 2. 
 

 
 

   
 

Fig.7. (a) The trajectory of the generating method of 
rack cutter (b) Tooth types are created by the 
generating method of rack cutter with various gear 
parameters. 

The circular elastic rings under dedendum circle 
and defined a back ratio of the circular elastic ring are 
considered in Sainaot's model. Consequently, the 
description of the gear tooth deflection is better than 
the fillet-foundation effect of Weber's model. However, 
Sainaot's model regarded Hertzian contact as constant 
in the engaged procedure. According to the above 
crucial points, Hertzian contact must include the effect 
of contact width and load position from Weber's model 
and the foundation deflection of tooth must consider 
the circular elastic rings under dedendum circle from 
Sainaot's model. The both advantages are adopted in 
the proposed model. Consequently, the proposed model 

 

--- : Analytical model of Chaari (21) 
-.- : FEM of Chaari (21) 

-o- : Analytical model of present 

(a) 

(b) 

(a) 

(b) 
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consists of Eqn. (24), (25), (27-1), (27-2) and (29-2), 
respectively. Furthermore, the specific parameters of 
the involute spur gear tooth and the contact ratios of 
various gear tooth types are listed in table 3. The back 
ratio coefficient of the radii of circular elastic rings for 
gear and pinion are adopted as 4 and 3.3, respectively. 
 
Table 2. The comparison of time consumption is for the 
generating method and commercial software. 

 Generating 
method Measurement Software 

Time 
consumption 30 sec >> 1 min >> 1 min 

 
Table 3. The geometry parameters and contact ratio of 
the various involute spur gear tooth. 

 Stub-tooth 
gear 

Full-tooth 
gear 

Long-tooth 
gear 

Pressure angle(α) 200       Num. of teeth(z) 34,35      
Backlash(Cn) 0 μm        Width of tooth(W) 23   

Elastic modulus(E) 2.0e5 N/mm2  Poisson's ratio(ν) 0.3 
Torque(T) 28.13 N-m           Modulus(m) 2 

Addendum(ha) 0.8m 1.0m 1.1m 
Dedendum(hf) 1.0m 1.25m 1.35m 
Clearance(ck) 0.2m 0.25m 0.25m 
Whole depth(h) 1.8m 2.25m 2.45m 
Contact ratio(ε0) 1.3823 1.6836 1.8296 

    

 
The total deflection of the spur gear and the gear 

mesh stiffness versus contact ratio with three 
compliance model are illustrated in Fig. (8a) and Fig. 
(8b), respectively. The red line, black dotted line and 
blue dot-dashed line of Fig. (8a) denote the deflections 
of compliance model with respect to Weber, Sainaot 
and present, respectively. The line with circle denotes 
that the pinion deflection subjected to meshing force 
from start point to separated point on the tooth surface 
along the line of action. It means that the engaged 
position is from tooth root to tip. The phenomenon of 
the gear deflection is just the opposite to pinion as the 
line with rhombus as described. The line with square 
denotes the deflection of non-constant Hertzian contact. 
The deflection of non-constant Hertzian contact is 
smaller than the tooth deflection because the strain 
mainly occurs on tooth surface. Finally, the solid line 
denotes the total deflection of engagement of a single 
gear pair. Fig (8b) shows the gear mesh stiffness with 
three compliance modals by including the single-tooth 
engagement and the multi-teeth engagement. The 
diagram represents that there is 17.64% of the 
completed gear mesh periodic circle under the 
single-tooth engaged procedure. In other words, there 
is 82.36% of the completed gear mesh periodic circle 
under the multi-teeth engaged procedure. Consequently, 
the upper diagram of Fig. (8b) exhibits the overlap of 
the every single-tooth engagement versus the 
normalized contact position. As shown is Fig. (8b), the 
contact ratio is from 0 to 0.65 represents the multi-teeth 
engaged procedure. Therefore, the contact position of 
single-teeth engaged procedure is form 0.65 to 1.0. In 
other words, the interval of contact ratio is from 0 to 
1.684 includes one single-tooth and two multi-teeth 

engagement which denote the one completed meshing 
procedure at the line of action. 
 
 

 
 

 

Fig. 8. The total deformation and gear mesh with 
full-tooth type of the pressure angle of 200 for Weber's 
model(---),: Sainaot's model(- -), and Present model(-.-). 

Total deflections of the single spur gear pair 
estimated by Weber's model are similar to those of 
Sainaot's model. However, the results of proposed 
model are larger than those of both models. It means 
that the effect of the circular elastic rings under 
dedendum circle and non-constant Hertzian contact 
influence the gear body deflection directly. The total 
deflection of the spur gear can disassemble the 
individual case to deal with their influences. First, the 
deflection of the basic tooth regarded as a cantilever 
beam in Sainat's model is namely similar to that of 
Weber's model. Second, the circular elastic rings under 
dedendum circle and the fillet-foundation effect is of 
about 50% difference as compared with each other as 
shown in fig. (9a). Third, there is large variation 
between constant Hertzian contact and non-constant 
Hertzian contact. There are about three times 
differences between both assumptions of Hertzian 
contact as shown in Fig. (9b). 

Figure 10 presents the relative error of above 
individual deflection cases. The variable deflection of 
non-constant Hertzian contact with the various pressure 
angles and gear tooth types are described in Fig. 11. 
Figure (11a) describes the influence of the gear mesh 
stiffness with respect to the various pressure angles and 

 

(b) 

(a) 
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Fig. (11b) describes the influence of the gear mesh 
stiffness with respect to the various gear tooth types. 
The results show that the influence of the deflection by 
non-constant Hertzian contact obviously depends on 
gear tooth types. The primary reason is that the strong 
stub-tooth provides the more normal contact force on 
the tooth surface. Furthermore, the defections of 
non-constant Hertzian contact with various gear types 
are significantly different to those of the various 
pressure angles. According to above results, the 
previous models may be overestimated the gear mesh 
stiffness of a spur gear pair. In other words, the 
proposed model of this paper can avoid the 
overestimation problem on the gear mesh stiffness of 
realistic phenomenon. 

 
 

  

 
Fig. 9. The comparison of deformation (a) with basic 
tooth, foundation and (b) Hertzian contact between 
Weber’s model and Sainaot’s model 

 

 
Fig. 10. The variation of the relative error is for gear 

tooth, foundation of tooth, and Hertzian contact 
between Weber’s model and Sainaot’s model. 
 

 
 

 
Fig. 11. The comparison of non-constant Hertzian 
contact with (a) full-tooth with various pressure angles 
(b) pressure angle of 20 degree with various gear types. 
 

Figure 12 presents the gear mesh stiffness 
without backlash for various gear parameters. The gear 
mesh stiffness of the various pressure angles in 
full-tooth gear type without backlash is illustrated in 
Fig. (12a). The contact ratios are 1.8107, 1.6836 and 
1.5788, which correspond to pressure angles of 17.50, 
200 and 22.50, respectively. Figure (12b) shows that the 
stub-tooth gear pair has the property of higher gear 
mesh stiffness and lower contact ratio. The long-tooth 
gear pair has the property of higher contact ratio and 
lower meshing stiffness. Similarly, the contact ratio of 
stub-tooth, full-tooth, and long-tooth are 1.3823, 
1.6836, and 1.8296, respectively. 
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(b) 

(b) 
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Fig 12. Gear mesh stiffness of proposed model with 
effect of (a) various pressure angles with the full-tooth 
type, and (b) various tooth profiles with the pressure 
angle of 20 degree. 
 
 

4. Conclusion 
An improved model which investigates the ad-

vantages of Weber’s model and Sianaot’s model is 
proposed to predict the gear mesh stiffness. The effect 
of circular elastic rings under dedendum circle and 
non-constant Hertzian contact are employed to calcu-
late the meshing stiffness of a spur gear pair. The 
numerical results are summarized as follow. 
1. The gear mesh stiffness of the proposed model 

with effect of circular elastic rings under 
dedendum circle and non-constant Hertzian 
contact effect is of about 20% difference compared 
to Weber’s model and Sianaot’s model. 

2. The proposed model can avoid the overestimate 
problem of gear mesh stiffness by integrating the 
merits of circular elastic rings under dedendum 
circle from Sainaot’s model and non-constant 
Hertzian contact from Cornell’s model. 

3. The variation of gear mesh stiffness for the various 
gear tooth types under the non-constant Hertzian 
contact effect will affect the system more than the 
various pressure angles. 
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NOMENCLATURE 

iA  : Cross-section of the thi  element 

b  : Hertz-contact half width 

ib   Backlash of the thi  gear pair 

cb  : Characteristic width 

C  : Total compliance 

kc  : Clearance 

pc , gc  : displacements of center distance 

E  : Equivalent elastic modulus 

LF  : Applied force 

fh  : Addendum 

iI  : Polar mass moment of inertia 

 A iI  : Area moment of inertia 

kji


,,  : Unit coordinate vector  

mK  : Average meshing stiffness of gear pair 

FL  : Effective fillet length 

[ ]ijM  : Transformation matrix 

i iN ,n  : Normal vector and unit normal vector 
(1)
pn  : Unit normal vector 

q  : Decimal part of contact ratio 

pr  : Radius of pitch circle 

bir  : Radius of base circle 

or  : Radius of pitch circle 

opr , ogr  : Radii of pitch circle for gear and 
pinion 

(1) (2)
1 1,r r  : Tooth profile vector at fixed 

coordinate 
(1) (2)
2 2,r r  : Tooth profile vector at rotating 

coordinate 
(1)
fpr  : Tooth profile vector of pinion 
(1)
fgr  : Tooth profile vector of gear 

os  : Length of contact 

,a bS S  : Parallel moving coordinates of pinion 
and gear 

, ,p g FS S S  : Rotational coordinate of pinion, gear, 
and fixed coordinate 

et  : Base pitch 

ft  : Dedendum 

ot  : Standard pitch 

1u  : Straight line section parameter of rack 
cutter 

W  : Tooth width 

x  : Modification coefficient 

gp xx ,  : Modification coefficient for pinion 
and gear, respectively 

Ty  : Total deflection of tooth 

iZ  : Number of gear mesh 
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Greek symbols   

α  : Pressure angle 

bα  : Mesh pressure angle 
ρ  : Radius of fillet 

1θ  : Arc section parameter of rack cutter 

Hδ  : Hertz contact deflection 

oε  : Contact length 

( )a tε  : Indiscriminate length on contact 
length 

φ  : Rotational angle 

,p gφ φ  : Rotational angle of pinion and gear 

Subscripts   

F  : Fixed coordinate 
,g p  : Gear and pinion 

Fg  : Rotating coordinate of gear transform 
to fixed coordinate 

Fp  : Rotating coordinate of pinion 
transform to fixed coordinate 
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