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Abstract 

 
The analytic static deflection solutions of 

beams resting on nonlinear elastic foundations are 
developed by the modified Adomian method. If the 
applied force function is an analytic function, then 
the deflection function can be derived and expressed 
in Maclaurin series. A recurrence relation for the 
coefficients of the Maclaurin series is derived. It is 
shown that the proposed solution method is accurate 
and efficient. The solution method can be 
successfully applied to the problem with strong 
nonlinearity. The results are also compared with those 
obtained by the perturbation method. It is found that 
the error of the perturbation solution will increase not 
only when the nonlinear parameter is increased but 
also when the applied load is increased. 
 

Introduction 
 

Beams are basic structures and widely used in 
engineering application. The problem of beams on 
linear elastic foundation has been studied by many 
investigators (Hetenyi, 1946; Lee et al 1991, 1992). 
When the deformation of beams is large, the 
nonlinear analysis turns to be important. 

In addition to material and geometric 
nonlinearities, the nonlinear elastic foundation is also 
a source of nonlinearities coming into play in 
structural mechanics. The static deflection of a 
uniform beam resting on a nonlinear elastic  
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foundation has been studied by many investigators. 
Distefano and Todeschini (1975) studied the 

solution of a beam on nonlinear elastic foundation by 
applying the quasi-linearization approach. Sharma 
and DasGupta (1975) investigated the bending 
deflection of axially constrained beams on nonlinear 
Winkler elastic foundation by an iteration method 
using Green’s functions. Beaufait and Hoadley (1980) 
used a bi-linear curve to approximate the 
load-deflection relationship of a nonlinear foundation. 
Yankelevsky et al. (1989) used an iterative procedure 
based on the exact stiffness matrix for beam on 
Winkler foundations. Sayegh and Tso (1992) 
developed a numerically integrated finite element to 
solve the bending deflection of a curved elastic beam 
supported by a nonlinear foundation. Using the 
method of perturbation, the static deflection of 
non-uniform beams resting on nonlinear elastic 
foundation was investigated by Kuo and Lee (1994). 
Tsiatas (2010) presented a boundary integral equation 
solution to the non-linear deflection of beams resting 
on a nonlinear tri-parametric elastic foundation. The 
interval of the beam was divided into N equal 
sub-elements. 
From the existing literatures, it can be found that 
many of the solution methods will accumulate error 
(Distefano and Todeschini, 1975; Sharma and 
DasGupta, 1975; Beaufait and Hoadley, 1980; 
Yankelevsky et al. 1989; Tsiatas, 2010 ) or be valid 
only for the problem with small nonlinearity (Kuo 
and Lee, 1994) or require tedious 
calculation(Yankelevsky et al. 1989, Sayegh and Tso 
1992; Tsiatas ,2010). A simple and straight closed 
form series solution for the analytic static deflection 
of a beam resting on a nonlinear elastic foundation is 
not available. In this paper, the modified Adomian 
method (Adomian, 1994) is applied to develop the 
closed form solution for the static deflection of beams 
resting on nonlinear elastic foundations. The applied 
force function is assumed to be an analytic function. 
The non-dimensional length of the beam is set to be 
one such that the convergence of non-dimensional 
deflection function, expressed in a Maclaurin series, 
will be ensured. The proposed solution method is 
shown to be simple, efficient and can be successfully 
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applied to the problem with strong nonlinearity. The 
results are also compared with those obtained by the 
perturbation method. 
 
Governing Equation and Boundary 
Conditions 
 

Consider the static deflection of a cantilever 
Bernoulli-Euler beam resting on non-linear elastic 
foundation, as shown in Figure 1. Based on the 
Bernoulli-Euler beam theory, in terms of the 
following non-dimensional quantities, 

x

0 1

k1x+k2x3

P (x)

Fig. 1: Geometry and coordinate system of a 
cantilever beam resting on nonlinear elastic 
foundation subjected to distributed load. 
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the governing differential equation of the system is 
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and the associated boundary conditions are 
at x = 0: 
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at x = 1: 
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where ( )V X  is the flexural displacement, X is the 
coordinate along the beam, and l is the beam length. 
E, I, K1, K2 and p(x) denote the Young’s modulus, the 
area moment of inertia, the linear and the nonlinear 
elastic foundation modulus and the applied transverse 
forces per unit length, respectively. 
 
Modified Adomian Decomposition 
Method 
 

If the applied distributed load function is an 
analytic function, one can assume the deflection 
function V(x) and the force function P(x) to be in the 
following Maclaurin series forms 
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The nonlinear term V3(x) can be expressed in the 
following form 
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where the coefficients of Adomian polynomials 
(Adomian, 1994) are 

0
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For convenience, some coefficients of Adomian 
polynomials for the nonlinearity are listed 
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Substituting equations (7-13) back to equation (2), 
one has 
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After collecting coefficients of like power, the 
following recurrence relation can be obtained 
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From this recurrence relation and equation (14), 
one observes that all the coefficients am can be 
expressed in terms of four coefficients, (a0, a1, a2, a3). 
These four coefficients will be determined from the 
specified four boundary conditions, equations (3-6). 
Consequently, all the coefficients am of the Maclaurin 
series for the deflection function V(x) is determined. 

In numerical analysis, only finite terms in 
polynomial are employed to approximate the solution. 
When n+1 terms are used, the approximated 
deflection function is 
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For the problem studied, the four boundary 
conditions, equations (3-6), are reduced to 
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The coefficients a4 ~ an can be simplified and 
expressed in terms of a2 and a3, 
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These two coefficients, a2 and a3, will be determined 
from equations (32-33). 
 

Verification and Examples 
 

To verify the previous analysis, two examples are 
illustrated. 
Example 1: Consider the problem with the same 
non-dimensional governing equation and the 
associated boundary conditions as given in equations 
(2-6). Two non-dimensional spring constants are k1 = 
k2 = 1. The non-dimensional applied load is given in 
the following polynomial form 
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When 16 terms are used to approximate the deflection 
function, N = 15 in equation (28). Following the 
solution method as revealed, the 16 coefficients, a0 ~ 
a15, satisfy the following algebra equations: 
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As a result, these coefficients can be determined as 
2 3 46,  4,  1 a a a= = − = and 

0 1 15 0a a a= = = =       (58) 
After substituting these obtained coefficients back 
into Equation (7), the exact solution of the system is 
obtained. 

6 4 2( ) 4 6 .V x x x x= − +       (59) 
Example 2: To illustrate the convergence of proposed 
method and compare the solutions with those 
obtained by the perturbation method, one consider the 
deflection of a cantilevered uniform steel beam with 
square cross section, resting on a non-linear elastic 
foundation subjected to uniform distributed force. 
The material, the geometric properties and the applied 
force are given as: 
E = 2 · 108 KN/m2, 
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I = 250 · 10-8 m4 (width = height = 7.4 cm), 
K1 = 500 KN/m,       (60) 
p = 500P KN/m 
l = 1 m. 
The non-dimensional governing differential equation 
of the system is 

4
3

4

( ) ( ) ( ) ,  (0,1),d V x V x V x P x
dx

ε+ + = ∈    (61) 

Where ε denotes the ratio between two 
non-dimensional spring constants, k2/k1. 

 
Figures 2(a) and 2(b) show the convergence of 

the solutions with different ε and applied load P, 
evaluated by the proposed solution method. It can be 
found that even the nonlinear parameter and the 
applied loads are large; the solutions converge fast 
and converge to steady values when the number of 
term employed is less than 20. It also shows that the 
proposed solution method is efficient and can be 
successfully applied to the problem with strong 
nonlinearity. In the following numerical analysis, 25 
terms are used. The convergence of the solution is 
ensured. 

 
(2a) 

 

 
(2b) 

Fig. 2: Convergence of the solutions with 
different ε and applied load P, evaluated by the 

proposed solution method 
To compare the deflections of the beams, with 

different nonlinear parameter ε and applied load P, 
evaluated by the proposed solution method with those 
obtained by the perturbation method, figures 3-6 and 
one table are present. 

 
Fig. 3: Deflection of the beam evaluated by the 
proposed method and the perturbation method with P 
= 5 and various nonlinear parameter ε. 
 

 
Fig. 4: Deflection of the beam evaluated by the 
proposed method and the perturbation method with P 
= 10 and various nonlinear parameter ε. 
 

 
Fig 5. Deflection of the beam evaluated by the 
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proposed method and the perturbation method with P 
= 15 and various nonlinear parameter ε. 
 

 
Fig. 6: Deflection of the beam evaluated by the 
proposed method and the perturbation method with P 
= 20 and various nonlinear parameter ε. 
 
Table: Static deflection of cantilevered beams resting 
nonlinear elastic foundation subjected to distribution 
load [A: Adomian method, B: Perturbation method] 
 
  P = 5 P = 10 P = 15 P = 20 

  A B A B A B A B 

x = 0.5 

ε = 0 0.205 0.205 0.410 0.410 0.616 0.616 0.821 0.861 
ε = 0.5 0.204 0.204 0.400 0.400 0.586 0.585 0.750 0.762 
ε = 1 0.202 0.203 0.391 0.392 0.557 0.569 0.703 0.769 
ε = 2 0.200 0.200 0.375 0.381 0.520 0.586 0.639 0.982 

x = 1 

ε = 0 0.578 0.578 1.155 1.155 1.733 1.733 2.310 2.310 
ε = 0.5 0.573 0.573 1.123 1.123 1.632 1.638 2.094 2.131 
ε = 1 0.569 0.569 1.094 1.094 1.632 1.632 1.949 2.152 
ε = 2 0.561 0.562 1.047 1.065 1.434 1.642 1.752 2.802 

 
In the analysis by the perturbation method 

(Nayfeh, 1993), via straight forward expression, the 
solution is in the form of 

2
0 1 2( ) ( ) ( )V x u u x u xε ε= + + +     (62) 

  Substituting this solution into equation (61) and 
collecting coefficients of like power of ε, one has the 
following linear differential equations with 
homogenous boundary conditions: 
coefficient of ε0: 

4
0

04
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d u x
u x P x

dx
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coefficient of ε1: 
4

31
1 04
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+ + =      (64) 

coefficient of ε2: 
4

22
2 0 14

( ) ( ) 3 0d u x u x u u
dx

+ + =      (65) 

M 
The associated boundary conditions for ui, i = 0, 1, 2 
are 
at x = 0: 

(0) 0,iu =         (66) 

(0) 0,idu
dx

=         (67) 

at x = 1: 
2

2

(1)
0,id u

dx
=        (68) 

3

3

(1)
0,id u

dx
=        (69) 

After having these three solutions ui, i = 0, 1, 2, 
(Hetenyi, 1946; Lee et al 1991, 1992), the solution is 
obtained by restoring them back to equation (62). 

Figures 3-6 and a table illustrate the static 
deformation of the beam with various nonlinear 
parameters ε  and applied loads. Solutions evaluated 
by the proposed solution method and the perturbation 
method are listed and compared. It can found that 
when the nonlinear parameter is zero, the static 
deflections evaluated by two different methods are 
the same. One also has the following observations: 
 
(1)  All the nonlinear static deflections (ε >0) 
evaluated by the proposed method are less than those 
obtained by the perturbation method. 
(2)  All the nonlinear static deflections evaluated by 
the proposed method will decrease as the nonlinear 
parameter ε is increased. However, this is not the case 
for the perturbation solutions with large nonlinear 
parameter ε and applied load P. 
(3)  At the same location, with the same nonlinear 
parameter ε , the error of the perturbation solution 
will increase as the applied load P is increased. 
(4)  With the same applied load, the error of the 
perturbation solution will increase as the nonlinear 
parameter ε is increased. 
(5)  The error of the perturbation solution will 
increase not only when the nonlinear parameter is 
increased but also when the applied load is increased. 
(6)  When the applied load is small, say P = 5, even 
in the case that the nonlinear parameter ε  is greater 
than 1, the difference between the deflections 
evaluated by two different method is small. 
 

Conclusions 
 

In this paper, the modified Adomian method is 
successfully applied to develop the closed form series 
solution for the static deflection of a beam resting on 
strong nonlinear elastic foundation. The proposed 
solution method is shown to be accurate and efficient 
and can be successfully applied to the problem with 
strong nonlinearity. The results are also compared 
with those obtained by the perturbation method. It is 
found that the error of the perturbation solution will 
increase not only when the nonlinear parameter is 
increased but also when the applied load is increased. 
The proposed solution method can also be extended 
and applied to the non-uniform beam problems and 
the problems with different boundary conditions. 
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Nomenclature 
 
X  coordinate along the beam 

x  space variable along the beam 

E  Young’s modulus 

I  area moment of inertia 

l  beam length 

K1  linear elastic foundation modulus 

K2  nonlinear elastic foundation modulus 

( )V X  flexural displacement 

V(x)  deflection function 

P(x)  force function 

p(x)  transverse force 

k1  non-dimensional linear spiral 

k2  non-dimensional nonlinear spiral 

ε = k1 + k2 the ratio between two non-dimensional  

sping constant  

 
樑在強非線性彈性基底上時之靜態

撓曲的解析解 
 

陳朝光、周立國、李森墉 
國立成功大學機械工程學系 

 
摘要 

 
    本文利用Adomian方法來求取樑在強非線性

彈性基底上時之靜態撓曲的解析解，如果外力之函

數式可析函數(Analysis function)，則推導所得的樑

之非線性撓曲可以馬克勞林級數表示之，同時亦推

導出此馬克勞林級數之係數間的遞迴關係式。結果

顯示，所提出的方法是精確有效的，有效的成功應

用 於 強 非 線 性 問 題 ， 結 果 獲 得 與 擾 動 法

(Perturbation)做比較。發現擾動法解的誤差將隨之

非線性係數之增加而增加，同時亦將隨著外力的增

加而增加。 
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