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Abstract

The analytic static deflection solutions of
beams resting on nonlinear elastic foundations are
developed by the modified Adomian method. If the
applied force function is an analytic function, then
the deflection function can be derived and expressed
in Maclaurin series. A recurrence relation for the
coefficients of the Maclaurin series is derived. It is
shown that the proposed solution method is accurate
and efficient. The solution method can be
successfully applied to the problem with strong
nonlinearity. The results are also compared with those
obtained by the perturbation method. It is found that
the error of the perturbation solution will increase not
only when the nonlinear parameter is increased but
also when the applied load is increased.

Introduction

Beams are basic structures and widely used in
engineering application. The problem of beams on
linear elastic foundation has been studied by many
investigators (Hetenyi, 1946; Lee et al 1991, 1992).
When the deformation of beams is large, the
nonlinear analysis turns to be important.

In addition to material and geometric
nonlinearities, the nonlinear elastic foundation is also
a source of nonlinearities coming into play in
structural mechanics. The static deflection of a
uniform beam resting on a nonlinear elastic
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foundation has been studied by many investigators.
Distefano and Todeschini (1975) studied the
solution of a beam on nonlinear elastic foundation by
applying the quasi-linearization approach. Sharma
and DasGupta (1975) investigated the bending
deflection of axially constrained beams on nonlinear
Winkler elastic foundation by an iteration method
using Green’s functions. Beaufait and Hoadley (1980)
used a bi-linear curve to approximate the
load-deflection relationship of a nonlinear foundation.
Yankelevsky et al. (1989) used an iterative procedure
based on the exact stiffness matrix for beam on
Winkler foundations. Sayegh and Tso (1992)
developed a numerically integrated finite element to
solve the bending deflection of a curved elastic beam
supported by a nonlinear foundation. Using the
method of perturbation, the static deflection of
non-uniform beams resting on nonlinear elastic
foundation was investigated by Kuo and Lee (1994).
Tsiatas (2010) presented a boundary integral equation
solution to the non-linear deflection of beams resting
on a nonlinear tri-parametric elastic foundation. The
interval of the beam was divided into N equal
sub-elements.
From the existing literatures, it can be found that
many of the solution methods will accumulate error
(Distefano and Todeschini, 1975; Sharma and
DasGupta, 1975; Beaufait and Hoadley, 1980;
Yankelevsky et al. 1989; Tsiatas, 2010 ) or be valid
only for the problem with small nonlinearity (Kuo
and Lee, 1994) or require tedious
calculation(Yankelevsky et al. 1989, Sayegh and Tso
1992; Tsiatas ,2010). A simple and straight closed
form series solution for the analytic static deflection
of a beam resting on a nonlinear elastic foundation is
not available. In this paper, the modified Adomian
method (Adomian, 1994) is applied to develop the
closed form solution for the static deflection of beams
resting on nonlinear elastic foundations. The applied
force function is assumed to be an analytic function.
The non-dimensional length of the beam is set to be
one such that the convergence of non-dimensional
deflection function, expressed in a Maclaurin series,
will be ensured. The proposed solution method is
shown to be simple, efficient and can be successfully
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applied to the problem with strong nonlinearity. The o N
results are also compared with those obtained by the V(¥ = Zoamx ’ ™)
perturbation method. "
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Fig. 1. Geometry and coordinate system of a AN m
cantilever beam resting on nonlinear elastic mZ:OAn(aO,...,am)x ’
foundation subjected to distributed load. where the coefficients of Adomian polynomials
— . )
« :>|(_' V(x) :V(|X)’ P(x) = Ep(g))(l)(lo), (Adomian, 1994)martve
A (@,-a,)=2 > 2,83, (14)
_ K1|3 k _ K2|3 1 v=0 u=0
YTEOI0) P EQIQ)’ (1) For convenience, some coefficients of Adomian
. . . . . polynomials for the nonlinearity are listed
the governing differential equation of the system is A =a (15)
d*V (x -
xE ) +kV (x) +k,V(x) =P(x), xe(0,2), 2 A =3ala, (16)
and the associated boundary conditions are A =3ala, +3a’ 17)
¥ o * @ | Botisaieaas, (18)
" (0)_ ' A, =3a’a, +3a’a, +3a’a, +6a,a,a, (19)
o - 0, (4) A =3a’a +3a’a, +3ala +6a,aa, 20)
atx =1 +6a,a,a,
dv() _ 0 ) A =a’ +3aja, +3a’a, +3aja, +6a,a,a 1)
dx* ' +62,3,3, +6a,3,3,
d3\/§1) _o, (6) A =3a’a, +3a’a, +3a’a, +3a’a, +6a,a,a, 22)
dx +6a,a,a, +6a,a,a, +6a,a,a,

where V(X) is the flexural displacement, X is the

coordinate along the beam, and | is the beam length.
E, I, K1, Kz and p(x) denote the Young’s modulus, the

A =3ala, +3a’a, +3a’a, +3a’a, +3a’a,
+6a,a,a, +6a,a,a, +6a,a,a, +6a,a,a, (23)

area moment of inertia, the linear and the nonlinear +6a,a,a,

elastic foundation modulus and the applied transverse A =al+3a’a, +3a’a, +3a’a, +3a’a,

forces per unit length, respectively. 1 6a,3,3, +68,2,a, + 63,23, (24)
Modified ~ Adomian  Decomposition +6a,3,3; +62,3,3, +63,3,3; +63,3,3,,
Method A, = 38.5810 +3a12as +3a22a6 +3a'§a4

+3a’a, +3a’a, +6a,a,a, +6a,a,a,
If the applied distributed load function is an ‘e ’ 0 (25)
analytic function, one can assume the deflection
function V(x) and the force function P(x) to be in the +6a,a,a, +6a,a,a; +6a,a;3;,

following Maclaurin series forms

+6a,a,a, +6a,a,a, +6a,a,a,

-100-



C.K. Chen et al.: Deflection Solutions of Beams Resting on Strong Nonlinear Elastic Foundations.

Substituting equations (7-13) back to equation (2),
one has

Z(m +D(Mm+2)(m+3)(m+4)a,

m+4

(26)
+k12amxm + kzzp\“(am“_,am)xm _ ZPme

After collecting coefficients of like power, the
following recurrence relation can be obtained

klam - kZAn
I(m+D)(Mm+2)(m+3)(m+4)

From this recurrence relation and equation (14),
one observes that all the coefficients an can be
expressed in terms of four coefficients, (ao a1, a2, as).
These four coefficients will be determined from the
specified four boundary conditions, equations (3-6).
Consequently, all the coefficients an of the Maclaurin
series for the deflection function V(x) is determined.

In numerical analysis, only finite terms in

(27)

polynomial are employed to approximate the solution.

When n+l1 terms are used, the approximated

deflection function is

Vo=Yax, (28)

and the ?:;)efficients of Adomian polynomials are

A (8. a,) = ZOZ;anvav_M (29)
v=0 u

For the problem studied, the four boundary
conditions, equations (3-6), are reduced to

V(0)=a,=0 (30)
dv(0)

I ——=a,=0 (31)
d ZV (1) Z(m +)(m+2a,,, = (32)
d 2:(3(1) Z (m+)(m+2)(m+3)a,,, = (33)

The coefficients as ~ a, can be simplified and
expressed in terms of a, and as,

a, =P /24 (34)
a, =P, /120 (35)
a, = P, —k.a, /360 (36)
a, =P, —ka, /840 37)
a, = P, —k,a, /1680 (38)
a, = P, —ka, /3024 = P, —k,P, /(3024 x120) (39)
a, =P —ka, - k2a§ /5040 (40)

=P, —k (P, —k,a,/360) —k,a /5040

an

These two coefficients, a, and as, will be determined
from equations (32-33).

Verification and Examples

To verify the previous analysis, two examples are
illustrated.

Example 1: Consider the problem with the same
non-dimensional governing equation and the
associated boundary conditions as given in equations
(2-6). Two non-dimensional spring constants are k; =
ko = 1. The non-dimensional applied load is given in
the following polynomial form

P(x) = x* —12x™ + 66x" — 208x° + 396x°

—432x7 +216X° + x* —4x® +6x* + 24.
When 16 terms are used to approximate the deflection
function, N = 15 in equation (28). Following the
solution method as revealed, the 16 coefficients, ag ~
ais, satisfy the following algebra equations:

(41)

a,=V(0)=0 (42)
a, =V®(0)=0 (43)
Z(m +1)(m+2)a,,, =V?(1)=0 (44)
m=0

i(m +1)(m+2)(m+3)a,,, =V (1)=0 (45)
m=0

a, =1 (46)
a; =0 (47)
a, =6-a,/360 (48)
a, =-4-a, /840 (49)
a; =1-a, /1680 (50)
a, =-a, /3024 (51)
a, =216-a, —a; /5040 (52)
a, =432—a —3a’a /7920 (53)
a, =396-a, —(3a’a, +3a’a,) /11880 (54)
a, =-208-a, —(al +3a’a, +6a,a,a,) (55)

/17160
a, =66-a,—(3a’a, +3a’a, +3a’a, (56)
+6a,a,a;)/ 24024
a, =-12-a, —(3a,a’ +3a’a, +3a’a, (57)

+6a,a,a; +6a,a,a,)/32760
As a result, these coefficients can be determined as
a,=6,a=-4a,=1 and

8= ==8;=0 (58)
After substituting these obtained coefficients back
into Equation (7), the exact solution of the system is
obtained.

V(x) = x° —4x* +6x°. (59)
Example 2: To illustrate the convergence of proposed
method and compare the solutions with those
obtained by the perturbation method, one consider the
deflection of a cantilevered uniform steel beam with
square cross section, resting on a non-linear elastic
foundation subjected to uniform distributed force.
The material, the geometric properties and the applied
force are given as:

E =2 108 KN/m?,
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I =250 - 108 m* (width = height = 7.4 cm),

K1 =500 KN/m, (60)
p = 500P KN/m

I=1m.

The non-dimensional governing differential equation
of the system is

it

d ;/SX) V() +eVi(X) =P, xe(0,1), (61)
X

Where edenotes the ratio between two

non-dimensional spring constants, ka/k.

Figures 2(a) and 2(b) show the convergence of
the solutions with different & and applied load P,
evaluated by the proposed solution method. It can be
found that even the nonlinear parameter and the
applied loads are large; the solutions converge fast
and converge to steady values when the number of
term employed is less than 20. It also shows that the
proposed solution method is efficient and can be
successfully applied to the problem with strong
nonlinearity. In the following numerical analysis, 25
terms are used. The convergence of the solution is
ensured.
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Fig. 2: Convergence of the solutions with
different ¢ and applied load P, evaluated by the
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proposed solution method

To compare the deflections of the beams, with
different nonlinear parameter ¢ and applied load P,
evaluated by the proposed solution method with those
obtained by the perturbation method, figures 3-6 and
one table are present.
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Fig. 3: Deflection of the beam evaluated by the
proposed method and the perturbation method with P
= 5 and various nonlinear parameter &.
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Fig. 4: Deflection of the beam evaluated by the
proposed method and the perturbation method with P
=10 and various nonlinear parameter &.
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proposed method and the perturbation method with P
= 15 and various nonlinear parameter &.
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Fig. 6: Deflection of the beam evaluated by the
proposed method and the perturbation method with P
=20 and various nonlinear parameter &.

Table: Static deflection of cantilevered beams resting
nonlinear elastic foundation subjected to distribution
load [A: Adomian method, B: Perturbation method]

A B A B A B A B

0.205 0.205 0.410 0.410 0.616 0.616 0.821 0.861
0.204 0.204 0.400 0.400 0.586 0.585 0.750 0.762
0.202 0.203 0.391 0.392 0.557 0.569 0.703 0.769
0.200 0.200 0.375 0.381 0.520 0.586 0.639 0.982

o

0.578 0.578 1.155 1.155 1733 1733 2.310 2.310
0.573 0.573 1123 1123 1.632 1.638 2.094 2131
0.569 0.569 1.094 1.094 1.632 1.632 1.949 2.152
0.561 0.562 1.047 1.065 1434 1642 1752 2.802

o

NP oOolvk oo

In the analysis by the perturbation method
(Nayfeh, 1993), via straight forward expression, the
solution is in the form of
V(X) = U, + U, (X) +&7U, (X) + -+ (62)

Substituting this solution into equation (61) and
collecting coefficients of like power of ¢, one has the
following linear differential equations  with
homogenous boundary conditions:
coefficient of £

d*u, (x

d)(:f ) +U,(x) = P(x) (63)
coefficient of !

4
d :;fx) U (X) + U =0 (64)
coefficient of &2;
d*u, (x

d>2<‘$ ) +U,(x)+3uu, =0 (65)
N
The associated boundary conditions for u;, i =0, 1, 2
are
atx=0:
u,(0) =0, (66)

du, 0) _
dx
atx=1:
dzui(l) _
2

0, (67)

e =0 (68)

d’u, (@)
dx®

0, (69)

After having these three solutions u;, i =0, 1, 2,
(Hetenyi, 1946; Lee et al 1991, 1992), the solution is
obtained by restoring them back to equation (62).

Figures 3-6 and a table illustrate the static
deformation of the beam with various nonlinear
parameters & and applied loads. Solutions evaluated
by the proposed solution method and the perturbation
method are listed and compared. It can found that
when the nonlinear parameter is zero, the static
deflections evaluated by two different methods are
the same. One also has the following observations:

(1) All the nonlinear static deflections (&>0)
evaluated by the proposed method are less than those
obtained by the perturbation method.

(2) All the nonlinear static deflections evaluated by
the proposed method will decrease as the nonlinear
parameter ¢is increased. However, this is not the case
for the perturbation solutions with large nonlinear
parameter ¢ and applied load P.

(3) At the same location, with the same nonlinear
parameter &, the error of the perturbation solution
will increase as the applied load P is increased.

(4) With the same applied load, the error of the
perturbation solution will increase as the nonlinear
parameter ¢ is increased.

(5) The error of the perturbation solution will
increase not only when the nonlinear parameter is
increased but also when the applied load is increased.
(6) When the applied load is small, say P = 5, even
in the case that the nonlinear parameter ¢ is greater
than 1, the difference between the deflections
evaluated by two different method is small.

Conclusions

In this paper, the modified Adomian method is
successfully applied to develop the closed form series
solution for the static deflection of a beam resting on
strong nonlinear elastic foundation. The proposed
solution method is shown to be accurate and efficient
and can be successfully applied to the problem with
strong nonlinearity. The results are also compared
with those obtained by the perturbation method. It is
found that the error of the perturbation solution will
increase not only when the nonlinear parameter is
increased but also when the applied load is increased.
The proposed solution method can also be extended
and applied to the non-uniform beam problems and
the problems with different boundary conditions.
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Nomenclature
X coordinate along the beam
X space variable along the beam
E Young’s modulus

| area moment of inertia

| beam length
K1 linear elastic foundation modulus
K> nonlinear elastic foundation modulus
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V(X) flexural displacement

V(X) deflection function

P(x) force function

p(x) transverse force

ki non-dimensional linear spiral

ko non-dimensional nonlinear spiral

e =ky+ k, the ratio between two non-dimensional

sping constant
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