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ABSTRACT 
 

A new analytical formulation was developed to 
investigate the dynamic behavior of a cracked-shaft 
subjected to a torsional loading. To validate the 
effectiveness of the analytical approach a three – 
dimensional model was designed by the ABAQUS 
software based on the finite elements method and on 
the contour integral technique (CIT). A refined mesh 
was applied in the crack region to better simulate the 
stress concentration. The variation of the stress 
intensity factor (SIF) KIII, associated with the opening 
crack mode III, and the stress field in the vicinity of 
the crack were studied taking into account the effect of 
both the crack size and the external load. The results 
show that the values of SIFs KIII become more 
pronounced when the dimensionless ratio μ exceeds 
0.6. The magnitude of SIFs KIII is enhanced from 
66.34 MPa.m1/2to 110.8 MPa.m1/2when the load 
magnitude is increased from 60N.m to 100N.m. The 
results of the stress field reveal a good agreement 
between the analytical results and the FEM findings 
with an acceptable error that does not exceed 5%. 
 

INTRODUCTION 
 

Shafts are among the most important mechani-
cal components and are widely used in the rotating 
machines such as turbines, rotors, and compressors. 
They often work in severe conditions and are therefore 
 
 
 
 
 
 
 
 

subjected to progressive deterioration such as crack, 
wear, etc. These defects limit the safety of shafts and 
produce economic problems since they affect the reli-
ability of the mechanical system. Furthermore, the 
presence of the crack might have destructive effects on 
the rotor system if it is not detected in time. Thus, a 
timely detection of a shaft crack would potentially 
avoid severe damages and expensive repairs as well as 
assuring the safety of the staff. Consequently, the 
study of the dynamic behavior of a rotating shaft con-
taining a transverse crack has been the subject of large 
investigations, in the last four decades, owing to its 
significant role in fault detection analysis. 
Dimarogonas (1983, 1996) investigated the effect of 
the crack on the dynamic response of a cracked rotat-
ing shaft taken into consideration the local flexibility 
of the cracked section. Papadopoulos and 
Dimarogonas (1987, 1992) have extensively reported 
the issue of vibrations due to crack. They proposed the 
presence of either of longitudinal, bending or torsional 
vibrations in the cracked shaft. Moreover, important 
efforts have been made to produce relevant numerical, 
analytical and experimental results. Rubio et al. (2015) 
developed a numerical model using the finite element 
method (FEM) to calculate the stress intensity factors 
(SIFs) along the crack front of a rotating cracked shaft. 
A new analytical model is developed in another work 
of Rubio et al. (2019) to obtain the stress intensity 
factors at any position of the front of a crack contained 
in a rotating shaft as a function of the position on the 
front, the rotation angle and the crack geometric pa-
rameters (shape and depth). Two nodded Timoshenko 
beam elements with four degrees of freedom (DOFs) 
per node are used by Gayen et al. (2017) to model a 
functionally graded (FG) shaft having multiple cracks. 
The translational and rotary inertia, transverse shear 
deformations and gyroscopic moments are considered 
in finite elements (FE) formulation to study the effects 
of location, orientation and size of cracks on the 
dynamic response of such shafts. Li et al. (1989) pre-
sented a new concept results from an analytic-
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experimental approach to evaluate the local stiffness 
reduction of the cracked shaft. A finite elements anal-
ysis is carried out by Sekhar and Prabhu (1994) in 
order to investigate the vibration characteristics of a 
simply supported shaft with a transverse crack and to 
study the bending stress fluctuations. In the same 
context Chatterton et al. (2019) considered an appro-
priate tridimensional FE model to estimate the stresses 
distribution in the cracked section of a shaft of a real 
steam turbine. Bachschmid et al. (2008) created a 
simplified model in order to simulate the dynamic 
behavior of a rotating cracked shaft. This approxi-
mated model has been used to calculate the stiffness 
variations of the cracked shaft as well as the additional 
vibrations due to the crack. Based on an energy 
analysis, Gómez et al. (2016) presented an analytical 
model to detect the crack in a rotating shaft. Thereafter, 
experimental measurements were performed for a rig 
comprising a cracked shaft under a range of fault 
conditions and at different rotational speeds. Kumar et 
al. (2015) considered a steel shaft supported on two 
bearings at both ends in order to experimentally 
examine the vibration characteristics of a cracked shaft. 
Furthermore, a simplified model was designed using 
ANSYS software and the harmonic analysis was 
performed for various combinations of crack depths 
and crack locations. An analytical solution based on 
the variational formulation and a numerical finite 
elements model were reported by Chondros and 
Labeas (2007) to analyze the torsional vibration and 
crack identification for a cracked cylindrical shaft. 
Recently, in a new study, El Arem (2021) explored the 
vibrational behavior of rotating shaft containing a 
cracked transverse section at mid − span by consider-
ing a three dimensional structure under applied forces. 
Hosseini et al. (2005) presented a numerical technique 
for the calculation of stress intensity factors as a func-
tion of time for coupled thermo-elastic problem. 
Theocaris et al. (1980) used path-independent inte-
grals around crack tips to estimate stress intensity 
factors at crack tips in plane elasticity static problems. 
Miyazaki (1991) proposed a method based on a line-
spring model to calculate the dynamic stress intensity 
factor of a pre-cracked three-point bending specimen 
and a pre-cracked four-point bending specimen. Chen 
(1975) used the time-dependent Lagrangian finite-
difference code (HEMP) to compute the stress 
intensity factor for a centrally cracked rectangular bar. 
In light of the review above, the dynamic SIF and the 
stress field in the vicinity of the crack were not 
extensively studied when a shaft crack appeared and 
the stress concentration was observed. This needs to 
be deeply studied. To this end, the main objective of 
this paper was to investigate the effects of the external 
load and the crack depth on the variation of the SIFs 
KIII associated with the mode III and on the stress field 
around the crack. Accordingly, an analytical formula-
tion solved by the Newmark iterative schema and a 
numerical simulation based in the ABAQUS software 

were used and some conclusions were drawn in the 
conclusive section. 
 

ANALYTICAL APPROACH 
 

Cracked -Shaft Modeling 
A steel elastic shaft of length (L) and radius (R) 

was modeled by a variable section  𝑆𝑆(𝑥𝑥). The shaft 
containing a transverse crack of depth (a). The crack is 
located at a distance (xc) from the left end and is lying 
on a plane normal to the shaft axis and having a 
straight front. The cracked shaft is subjected to a dy-
namic torsional moment 𝑀𝑀0(𝑡𝑡) = 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔 𝑡𝑡applied in 
the right end. A schematic representation, showed the 
boundary conditions and the periodic moment acting 
on the cracked shaft, is presented in Figure 1. 

(b)            (a) 
Fig. 1. (a). Cracked- shaft with the boundary 
conditions; (b).Elemental disc of the shaft. 

 
Consider an elemental disc of the shaft with 

length (dx) (Fig. 1.b) subjected to an external moment 
per unit length𝑚𝑚(𝑥𝑥, 𝑡𝑡). M and M +dM are respectively 
the torsional moments at the left and right section of 
the element. 
The dynamic equilibrium of this element gives: 

𝑑𝑑𝑀𝑀 + 𝑚𝑚(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥 = 𝜃𝜃(𝑥𝑥)𝑑𝑑𝑥𝑥 𝜕𝜕2𝜑𝜑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

,                       (1) 

Where 𝜃𝜃(𝑥𝑥) is the moment of inertia per unit length of 
the shaft and 𝜑𝜑(𝑥𝑥, 𝑡𝑡)is the torsional angle according to 
the abscise x and time t. The relationship between 
torsional angle, the torsional moment and the material 
properties is, 
𝜕𝜕𝜑𝜑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

= 𝑀𝑀
𝐺𝐺𝐼𝐼𝑃𝑃(𝑥𝑥)

                                                                (2) 

G is the shear modulus, 𝐼𝐼𝑝𝑝(𝑥𝑥) is the quadratic polar 
moment; we can write:

 𝜕𝜕𝑀𝑀
𝜕𝜕𝑥𝑥

= 𝐺𝐺 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐼𝐼𝑝𝑝(𝑥𝑥) 𝜕𝜕𝜑𝜑(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑥𝑥
�                                               (3) 

The dynamic motion equation of the uncracked shaft 
can be written as, 

𝐺𝐺 𝜕𝜕
𝜕𝜕𝑥𝑥
�(𝐼𝐼𝑃𝑃(𝑥𝑥) 𝜕𝜕𝜑𝜑(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑥𝑥
� + 𝑚𝑚(𝑥𝑥, 𝑡𝑡) = 𝜃𝜃(𝑥𝑥) 𝜕𝜕

2𝜑𝜑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

            (4) 

The quadratic polar moment, for the cracked-shaft, 
will be reduced by 𝛥𝛥𝐼𝐼𝑃𝑃using these functions: 

𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑐𝑐) = �1𝑥𝑥 = 𝑥𝑥𝑐𝑐
0𝑥𝑥 ≠ 𝑥𝑥𝑐𝑐
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𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑚𝑚) = �1𝑥𝑥 = 𝑥𝑥𝑚𝑚
0𝑥𝑥 ≠ 𝑥𝑥𝑚𝑚

                                               (5) 

The dynamic equation of the cracked shaft is: 
𝜕𝜕
𝜕𝜕𝑥𝑥
�𝐺𝐺(𝐼𝐼𝑃𝑃(𝑥𝑥) − 𝛥𝛥𝐼𝐼𝑃𝑃𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑐𝑐)) 𝜕𝜕𝜑𝜑(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑥𝑥
� + 𝑚𝑚(𝑥𝑥, 𝑡𝑡)𝛿𝛿(𝑥𝑥 −

𝑥𝑥𝑚𝑚) = 𝜃𝜃(𝑥𝑥) 𝜕𝜕
2𝜑𝜑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

                                                  (6) 

The kinetic energy T and potential strain energy U can 
be written respectively as,  

𝑇𝑇 = 1
2 ∫ 𝜃𝜃(𝑥𝑥)𝑙𝑙

0 �𝜕𝜕𝜑𝜑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

�
2
𝑑𝑑𝑥𝑥                                       (7) 

𝑈𝑈 = 1
2 ∫ 𝐺𝐺�𝐼𝐼𝑃𝑃(𝑥𝑥) − 𝛥𝛥𝐼𝐼𝑃𝑃𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑐𝑐)�𝑙𝑙

0 �𝜕𝜕𝜑𝜑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

�
2
𝑑𝑑𝑥𝑥    (8) 

The work achieved by the moment M(t) is:

 𝑊𝑊 = � 𝑚𝑚(𝑥𝑥, 𝑡𝑡)𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑚𝑚)
𝑙𝑙

0
𝜑𝜑(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥 

     = 𝑀𝑀0(𝑡𝑡)𝜑𝜑(𝑥𝑥𝑚𝑚 , 𝑡𝑡)                                                 (9) 

The solution of the dynamic equation (6) can be 
expressed in the following form: 

𝜑𝜑(𝑥𝑥, 𝑡𝑡) = ∑ 𝜙𝜙𝑖𝑖∞
𝑖𝑖=1 (𝑥𝑥)𝑞𝑞𝑖𝑖(𝑡𝑡))                                  (10) 

where, 𝜙𝜙𝑖𝑖(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑥𝑥
2𝑙𝑙

is a function which satisfy the 
boundary conditions of the beam such as: 

( , ) =0 t 0ϕ                                                               (11) 

Then, we get: 

𝑇𝑇 =
1
2
� 𝜃𝜃(𝑥𝑥) ��𝜙𝜙𝑖𝑖(𝑥𝑥)�̇�𝑞𝑖𝑖(𝑡𝑡)�𝜙𝜙𝑗𝑗(𝑥𝑥)�̇�𝑞𝑗𝑗(𝑡𝑡)

∞

𝑗𝑗=1

∞

𝑖𝑖=1

�
𝑙𝑙

0
𝑑𝑑𝑥𝑥 

= 1
2
∑ ∑ �̇�𝑞𝑖𝑖(𝑡𝑡)𝑚𝑚𝑖𝑖𝑗𝑗�̇�𝑞𝑗𝑗(𝑡𝑡)∞

𝑗𝑗=1
∞
𝑖𝑖=1                                  (12) 

𝑈𝑈 = 1
2 ∫ 𝐺𝐺 �𝐼𝐼𝑝𝑝(𝑥𝑥) − 𝛥𝛥𝐼𝐼𝑝𝑝𝛿𝛿(𝑥𝑥 −𝑙𝑙

0

𝑥𝑥𝑐𝑐)� �∑ 𝜕𝜕𝜙𝜙𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝑞𝑞𝑖𝑖(𝑡𝑡)∞
𝑖𝑖=1 ∑ 𝜕𝜕𝜙𝜙𝑗𝑗(𝑥𝑥)

𝜕𝜕𝑥𝑥
𝑞𝑞𝑗𝑗(𝑡𝑡)∞

𝑗𝑗=1 � 𝑑𝑑𝑥𝑥 =
1
2
∑ ∑ 𝑞𝑞𝑖𝑖(𝑡𝑡)∞

𝑗𝑗=1 𝑘𝑘𝑖𝑖𝑗𝑗𝑞𝑞𝑗𝑗(𝑡𝑡)∞
𝑖𝑖=1 −

1
2
∑ ∑ 𝑞𝑞𝑖𝑖(𝑡𝑡)∞

𝑗𝑗=1 𝑘𝑘∗𝑖𝑖𝑗𝑗𝑞𝑞𝑗𝑗(𝑡𝑡)∞
𝑖𝑖=1                                     (13) 

𝑊𝑊 = �𝑀𝑀0(𝑡𝑡)𝜙𝜙𝑖𝑖(𝑥𝑥𝑚𝑚)
∞

𝑖𝑖=1

𝑞𝑞𝑖𝑖(𝑡𝑡) 

= ∑ 𝑓𝑓𝑖𝑖(𝑡𝑡)∞
𝑖𝑖=1 𝑞𝑞𝑖𝑖(𝑡𝑡)                                                  (14) 

with, 

𝑚𝑚𝑖𝑖𝑗𝑗 = ∫ 𝜃𝜃(𝑥𝑥)𝜙𝜙𝑖𝑖(𝑥𝑥)𝜙𝜙𝑗𝑗(𝑥𝑥)𝑑𝑑𝑥𝑥𝑙𝑙
0                                 (15) 

𝑘𝑘𝑖𝑖𝑗𝑗 = ∫ 𝐺𝐺𝐼𝐼𝑝𝑝(𝑥𝑥) 𝜕𝜕𝜙𝜙𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝑙𝑙
0

𝜕𝜕𝜙𝜙𝑗𝑗(𝑥𝑥)

𝜕𝜕𝑥𝑥
𝑑𝑑𝑥𝑥                             (16) 

𝑘𝑘∗𝑖𝑖𝑗𝑗 = � 𝐺𝐺𝛥𝛥𝐼𝐼𝑝𝑝𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑐𝑐)
𝜕𝜕𝜙𝜙𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝑙𝑙

0

𝜕𝜕𝜙𝜙𝑗𝑗(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥 

= 𝐺𝐺𝛥𝛥𝐼𝐼𝑝𝑝
𝜕𝜕𝜙𝜙𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝜕𝜕𝜙𝜙𝑗𝑗(𝑥𝑥)

𝜕𝜕𝑥𝑥
�
𝑥𝑥=𝑥𝑥𝑐𝑐

                                             (17) 

𝑓𝑓𝑖𝑖(𝑡𝑡) = 𝑀𝑀0(𝑡𝑡)𝜙𝜙𝑖𝑖(𝑥𝑥𝑚𝑚)                                            (18) 
Using Lagrange’s equation: 
𝑑𝑑
𝑑𝑑𝑡𝑡
�𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝑞𝑖𝑖
� − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑞𝑞𝑖𝑖
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑞𝑞𝑖𝑖
= 𝜕𝜕𝜕𝜕

𝜕𝜕𝑞𝑞𝑖𝑖
                                              (19) 

We obtain the following system of equations: 

∑ 𝑚𝑚𝑖𝑖𝑗𝑗
∞
𝑗𝑗=1 �̈�𝑞𝑗𝑗(𝑡𝑡) + ∑ �𝑘𝑘𝑖𝑖𝑗𝑗 − 𝑘𝑘∗�𝑞𝑞𝑗𝑗(𝑡𝑡)∞

𝑗𝑗=1 = 𝑓𝑓𝑖𝑖(𝑡𝑡)       (20) 

What we can write in matrix form: 

[𝑀𝑀]�̈�𝑞(𝑡𝑡) + ([𝐾𝐾] − [𝐾𝐾∗])𝑞𝑞(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)                            (21)
 

for ni ,....,1= and nj ,...,1= , we get: 

[𝑀𝑀] = �𝑚𝑚𝑖𝑖𝑗𝑗�, [𝐾𝐾] = �𝑘𝑘𝑖𝑖𝑗𝑗�, [𝐾𝐾∗] = �𝑘𝑘∗𝑖𝑖𝑗𝑗�                  (22) 

𝑞𝑞(𝑡𝑡) = {𝑞𝑞1(𝑡𝑡), . . . , 𝑞𝑞𝑛𝑛(𝑡𝑡)}𝑡𝑡 , (𝑡𝑡) = {𝑓𝑓1(𝑡𝑡), . . . , 𝑓𝑓𝑛𝑛(𝑡𝑡)}𝑡𝑡 

(23) 

Using Newmark's Method of Direct Integration and 
we adopt the notation: 𝑞𝑞(𝑡𝑡) = 𝑞𝑞𝑡𝑡, we get: 

�
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + 𝛥𝛥𝑡𝑡�̇�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + 𝛥𝛥𝑡𝑡2

2
�̈�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + 𝛽𝛽𝛥𝛥𝑡𝑡3 𝑞𝑞𝑡𝑡−𝛥𝛥𝑡𝑡

�̇�𝑞𝑡𝑡 = �̇�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + 𝛥𝛥𝑡𝑡�̈�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + 𝛾𝛾𝛥𝛥𝑡𝑡2 𝑞𝑞𝑡𝑡−𝛥𝛥𝑡𝑡
 (24) 

The implicit method, for 𝛽𝛽 = 1
4

and 𝛾𝛾 = 1
2

, is 
unconditionally stable and has proved to be one of the 
most popular methods in structural dynamics.

 
Using the approximation 𝑞𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 =

�̈�𝑞𝑡𝑡−�̈�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡
𝛥𝛥𝑡𝑡

 we can 
write: 

�
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + 𝛥𝛥𝑡𝑡�̇�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + (

1
2
− 𝛽𝛽)𝛥𝛥𝑡𝑡2�̈�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + 𝛽𝛽𝛥𝛥𝑡𝑡2�̈�𝑞𝑡𝑡

�̇�𝑞𝑡𝑡 = �̇�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + (1 − 𝛾𝛾)𝛥𝛥𝑡𝑡�̈�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + 𝛾𝛾𝛥𝛥𝑡𝑡�̈�𝑞𝑡𝑡
 

(25) 
or as the following form: 

�
�̈�𝑞𝑡𝑡 = 𝑏𝑏1(𝑞𝑞𝑡𝑡 − 𝑞𝑞𝑡𝑡−𝛥𝛥𝑡𝑡) + 𝑏𝑏2�̇�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + 𝑏𝑏3�̈�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡
�̇�𝑞𝑡𝑡 = 𝑏𝑏4(𝑞𝑞𝑡𝑡 − 𝑞𝑞𝑡𝑡−𝛥𝛥𝑡𝑡) + 𝑏𝑏5�̇�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 + 𝑏𝑏6�̈�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡

               (26) 

𝑏𝑏1 = 1
𝛽𝛽𝛥𝛥𝑡𝑡2

,  𝑏𝑏2 = −1
𝛽𝛽𝛥𝛥𝑡𝑡

 ,   𝑏𝑏3 = 1 − 1
2𝛽𝛽

  ,  𝑏𝑏4 = 𝛾𝛾
𝛽𝛽𝛥𝛥𝑡𝑡

 ,  

𝑏𝑏5 = 1 − 𝛾𝛾
𝛽𝛽

  ,  𝑏𝑏6 = (1 − 𝛾𝛾
2𝛽𝛽

)𝛥𝛥𝑡𝑡 

The differential equation (21) becomes: 

[𝑏𝑏1𝑀𝑀 + (𝐾𝐾 − 𝐾𝐾∗)] 𝑞𝑞𝑡𝑡 = 𝑓𝑓(𝑡𝑡) + [𝑀𝑀] �𝑏𝑏1𝑞𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 −

𝑏𝑏2�̇�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 − 𝑏𝑏3�̈�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡�                                                (27) 

It is an equation which its form can be written as: 

[�̄�𝐾]𝑞𝑞𝑡𝑡 = �̄�𝐹𝑡𝑡                                                                   (28) 

Where [�̄�𝐾] = [𝑏𝑏1𝑀𝑀 + (𝐾𝐾 − 𝐾𝐾∗)],is the fictive matrix 
of rigidity 

and 
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�̄�𝐹𝑡𝑡 = 𝑓𝑓(𝑡𝑡) + [𝑀𝑀] �𝑏𝑏1𝑞𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 − 𝑏𝑏2�̇�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡 − 𝑏𝑏3�̈�𝑞𝑡𝑡−𝛥𝛥𝑡𝑡� , is 
a fictive force. 

The initial conditions are: 

𝑞𝑞0 = 0�⃗ , �̇�𝑞0 = 0�⃗ , �̈�𝑞0 = 0�⃗                                                    (29) 

We use the Newmark's iterative schema with 
increments of time ( 𝑡𝑡 = 𝛥𝛥𝑡𝑡 , 2𝛥𝛥𝑡𝑡 , 3𝛥𝛥𝑡𝑡 ,…𝑁𝑁𝛥𝛥𝑡𝑡 )  to 
determine the vector 𝑞𝑞𝑡𝑡 =
(𝑞𝑞1(𝑡𝑡), . . . , 𝑞𝑞𝑖𝑖(𝑡𝑡), . . . , 𝑞𝑞𝑛𝑛(𝑡𝑡)), then we determine the 
function𝜑𝜑(𝑥𝑥, 𝑡𝑡)usingequation (10). 
 
Stress Field and Dynamic Stress Intensity Factor  

𝜎𝜎𝑖𝑖𝑗𝑗(𝑟𝑟,𝜓𝜓, 𝑡𝑡) =
1

√2𝜋𝜋𝑟𝑟
�
𝐾𝐾𝐼𝐼(𝑡𝑡)𝑓𝑓𝑖𝑖𝑗𝑗(𝜓𝜓) + 𝐾𝐾𝐼𝐼𝐼𝐼(𝑡𝑡)𝑔𝑔𝑖𝑖𝑗𝑗(𝜓𝜓) +

𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡)ℎ𝑖𝑖𝑗𝑗(𝜓𝜓) � 

(30) 

𝐾𝐾𝐼𝐼(𝑡𝑡) , 𝐾𝐾𝐼𝐼𝐼𝐼(𝑡𝑡)and 𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡)are the stress intensity factors 
associated respectively with the cracking modes I, II, 
and III.

 The stress intensity factor defines the magnitude of the 
local stresses around the crack tip. It depends on 
loading, crack size, crack shape, and boundary 
conditions of the structures. The dynamic stress 
intensity factor for an isotropic material can be derived 
by calculating the stress field according to the polar 
coordinates (𝑟𝑟,𝜓𝜓)at the crack tip (Figure 2), (Sladek 
et al., 1997; Sony et al., 2006). 

 
Fig. 2.Polar coordinates at a crack tip. 

 
In our case we have the mode III crack opening; it will 
be described with the dynamic stress intensity factor 
KIII(t), we get(Hahn, 1976):  

𝜏𝜏(𝑟𝑟,𝜓𝜓, 𝑡𝑡) = 𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡)
√2𝑖𝑖𝜋𝜋

𝑐𝑐𝑐𝑐𝑠𝑠 𝜓𝜓
2
(31) 

KIII (t) can be expressed by the following relation, 

𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) = 𝜏𝜏(𝑥𝑥𝑐𝑐 , 𝑡𝑡)√𝜋𝜋𝜋𝜋𝑌𝑌(32) 

Y=f(a) is a correction factor, which depends of the 
crack depth and 𝜏𝜏(𝑥𝑥𝑐𝑐 , 𝑡𝑡) is the nominal shear stress 
calculated from the following equation: 

𝜏𝜏(𝑥𝑥, 𝑡𝑡) = 𝐺𝐺 𝜕𝜕𝜑𝜑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

𝑅𝑅𝑐𝑐|𝑥𝑥 = 𝑥𝑥𝑐𝑐(33) 

For ψ= 0 and r =r0, the nearest point of the crack tip, 
we can calculate the approximate value of the 
correction factor by using equations (31) and (33) as 
follow: 

𝑌𝑌 = 𝜏𝜏(𝜋𝜋0,𝑡𝑡)
𝜏𝜏(𝑥𝑥𝑐𝑐,𝑡𝑡)

�2𝜋𝜋0
𝑎𝑎

(34) 

THE FINITE ELEMENTS 
SIMULATION 

 
In order to analyze numerically the dynamic 

behavior of a cracked shaft, a 3D model was built and 
simulated. The transverse crack is assumed to be 
located at the middle of the shaft and it extends along 
the cross section with a uniform depth distribution. 
The boundary conditions of the cracked- shaft can be 
set so that the left end is fixed and the right end is free 
(Figure 3).  
 
 

 
(a) 
 
 

 
 
 
(b) 

Fig.3.3D model of the shaft, (a). The boundary 
condition; (b). Position of imaginary cutting planes 

respect to crack. 
 

The model, which mechanical and geometrical param-
eters are illustrated in Table 1, is selected to check the 
effectiveness and the validity of the analytical results. 
This model can be modified accordingly in order to 
study different crack depths and varying loading 
values. 

Table 1. Cracked shaft parameters. 

Parameter Notation Value 

Young modulus (GPa) E 210 

Shear modulus (GPa) G 80 

Density (kg/m3) ρ 7800 

Poisson’s ratio ν 0.3 

Length of the shaft (mm) l 254 

Diameter of the shaft (mm) d 18.5 
 

The FE model includes 768784 nodes and 
737108 linear hexahedral elements of type C3D8R (8 
nodes linear brick elements). To better produce the 
stress singularity and obtain more accurate results in 
this article, the mesh of this model was refined in the 
area near to the cracked section and the rest was 
designed so as not to be too dense and the elements 
would not be too distorted as shown in Figure 4.  
 

Transverse crack 

Vertical cutting plane 

Horizontal cutting plane 

Clamped end Applied moment 
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Fig. 4.a. Finite elements model of the cracked shaft. 

 

 
Fig. 4.b. Enlarged view of the refined mesh. 

 
RESULTS AND DISCUSSION 

 
Stress Concentration 

To extract the dynamic stress intensity factor 
and the stress field, dynamic simulation was used 
based in The Contour Integral Method. Likewise this 
method was applied in order to clearly show the 
concentration of the stress in the vicinity of the crack 
as shown in Figure 5. 

 
 
 

 
Fig.5. Stress concentration. 

 
Considered 𝜇𝜇 = 𝑎𝑎

𝑅𝑅
 is the dimensionless 

parameter of crack depth, where a defines the crack 
depth and R is the shaft radius. Figure 6 represents the 
cross section of the cracked shaft at the position (Xc = 
127mm), in the cases where (µ= 0.2, 0.4, 0.6, 0.8) and 
the moment (mt= 80N.m). These figures clearly show 
the stress concentration near the crack tip at the two 
ends of the crack front. 
 

    
µ=0.2 µ=0.4 µ=0.6 µ=0.8 

Fig.6. Cross section of the cracked shaft in different 
crack depths. 

 
Figure 7 clearly shows that the stress concentration in 
the vicinity of the crack increases with the enlargement 
of the crack size. Thus, in the case of the largest crack 
depth (µ=1), a very significant stress concentration 
was observed at the crack tip. 

 

 
µ= 0.2            µ= 0.4       µ= 0.6 

 
µ= 0.8                         µ= 1 

 
Fig.7. Effect of crack size on the stress concentration. 

 
Twist Angle 

Based in the Newmark method, the twist angle 
of the shaft is computed using MATLAB software.  
Figures 8 and 9 illustrate, respectively, the evolution 
of the twist angle for various time and position. 

 

 
Fig.8. Variation of the twist angle in different values 
of time (t1= 0.025s, t2= 0.125s,t3= 0.25s, t4= 0.525s, 

t5= 0.625s, t6= 0.75s). 
 

 
Fig.9. Variation of the twist angle with time.  

 
Stress Intensity Factor 

The SIF is a failure criterion that depends on the 
geometry of the shaft, the crack depth as well as the 
applied loading (Boughazala et al., 2019). The 
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dynamic SIF for mode III was investigated relating to 
changes in crack size and applied loading. 
As shown in Figure 10, different mesh sizes have been 
used in order to prove the convergence of the results. 
 

 
 

Fig. 10. Different sizes of a mesh element. 
 

Table 2 illustrated the influence of the mesh size on 
the values of KIII. It can be observed, through this 
table that almost the same results were found for the 
different meshes with a maximum error which does 
not exceed 1. 5%. 
 

Table 2. Effect of the mesh on the KIII (μ=0.6). 

 Size 1 
(5mm) 

Size 2 
(4mm) 

Size 3 
(3mm) 

Size 4 
(2mm) 

Max. 
error 

mt= 
60N.m 67.348 66.781 66.348 66.291 1.5% 

mt= 
70N.m 78.412 77.830 77.406 77.286 1.45% 

mt= 
80N.m 89.544 88.903 88.464 88.311 1.39% 

 
In Figure 11, different crack sizes are selected to study 
the effect of crack depth on the SIF KIII for a constant 
load (mt= 80N.m) with respect to the crack position. 
The Stress intensity factor has been calculated around 
the vicinity of the crack tip (r = 0.25 mm).As well 
shown in this figure the SIF's values were influenced 
by the growth of crack's size. It also showed that this 
effect becomes more pronounced when the dimension-
less crack depth μ exceeds 0.6. 

 
Fig. 11. Evolution of KIII according to the crack 

depth. 

 
Assuming that the dimensionless parameter μ=0.6, the 
other parameters are fixed and only the load magnitude 
is varied from 60N.m to 100N.m with the interval of 
10N.m.The SIFs variation depending on different 
periodic moment values are illustrated in Figure 12.  

 
Fig. 12. Evolution of KIII according to the load. 

 
It can be observed from Figs.11 and 12 that when a 
crack appears, the magnitude of SIFs KIII is enhanced 
with the increasing of the crack depth and the applied 
load. This is because the cracked-shaft loses much 
rigidity and becomes more and more flexible with the 
load and crack depth load increase. 
 
Stress Field 

Figure 13presents, through five cases, the effect 
of crack depth on the stress field in the vicinity of 
crack by analytical and numerical methods. From this 
figure we can observe that the trends of the stress are 
parabolic; this explains that the stress values will 
decrease obviously when we are far from the crack. 
Furthermore, it can be seen that the longer the crack is, 
the more severe the stress concentration becomes. 
Also, it is clear that in case which represents a deep 
crack depth ratio (μ=1), the levels of the stress increase 
significantly compared to that of case which is a 
smaller crack depth ratio (μ=0.2). 

 
Case 1: μ= 0.2 
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Case 2: μ=0.4 

 
Case 3: μ= 0.6 

 
Case 4: μ=0.8 

 
Case 5: μ=1 

Fig. 13. Stress variation with the crack depth. 

As shown in Figure 14, the effect of applied 
moment on the cracked shaft is investigated by two 
methods. Thus, five cases were considered. Each of 
these cases is related to a different value of dynamic 
moment for a constant crack depth ratio (μ=0.8). 

It can be determined, through Figs. 13 and 14 
that the magnitudes of the stress rise with both the 
applied load and the crack depth increase. Moreover, 
the crack depth plays a more important role than the 
applied load in the growth of the stress concentration 
in the crack region. This clearly proves that the stress 
changes according to the crack depth rather than to the 
load. Results of the stress field presented in Figs. 13 
and 14 have shown a good agreement between the 
analytical formulations and the numerical findings. 
These results prove that the analytical approach 
developed in this paper will be a major step to analyze 
the dynamic behavior for realistic industrial systems. 

 
Case 1: mt= 60 N.m 

 
Case 2: mt=70N.m 

 
Case 3: mt= 80 N.m 
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Case 4: mt=90N.m 

 
Case 5: mt=100N.m 

Fig. 14. Stress variation with load. 

 
Relative Discrepancy Between Analytical and 
Numerical Results 

Table 3 illustrates the relative discrepancies between 
the values of the stresses' field under the loads 
(mt=60Nm and 70Nm) obtained with the analytical 
formulation and the numerical simulation (case1 and 
case 2 in Fig.14). It can be noted that almost the same 
results of stresses field were found for both analytical 
and numerical methods with a tolerable error that 
varies between 0. 29% and 4.48% (for mt=60 Nm) and 
between 0. 2% and 4.68% (for mt=70 Nm). 

Figure 15 displays the evolution of the 
discrepancy between analytical and numerical results 
over a distance of 6.5 mm from the crack tip for two 
cases (mt=60Nm and mt=70Nm). According to this 
curve, it can be observed that the discrepancy does not 
exceed 5% in both cases and the average discrepancy 
between the two methods is 2.14% for mt=60Nm and 
2.08% for mt=70Nm. This accordance demonstrates 
clearly the reliability of the analytical approach. 

 
 

 

 

 

 
Table 3. Discrepancy between analytical and numerical results. 

r 0.250 0.933 1.866 2.798 3.730 4.662 5.594 6.525 

Stress Anal60 204.60 145.45 102.36 80.41 75.69 67.89 60.69 57.56 
Stress Num60 196.41 144.11 100.24 81.32 75.91 68.92 62.83 60.14 
Stress Anal70 230.16 162.62 156.60 111.15 91.44 83.42 73.83 65.63 
Stress Num70 221.42 161.11 153.81 112.44 91.62 84.85 76.11 68.70 

ε60(%) 4.17 0.93 1.10 1.13 0.29 1.52 3.53 4.48 
ε70 (%) 3.95 0.75 1.16 1.16 0.20 1.71 3.09 4.68 

 
 

 
Fig. 15. Discrepancy evolution. 

 
 

CONCLUSION 
 

Analytical approach and finite elements method 
were used in this study in order to determine the 
dynamic stress intensity factor for mode III as well as 
the stress field at the crack tip, taking into account the 
influence of the applied load and the variation of the 
crack depth. The obtained results from the two 
methods have shown a good accordance and the 
following conclusions can be forwarded: 
• The stress intensity factor KIII increases with the 

increase of both the crack depth and the applied load.  
• The effect of the crack depth on KIII appeared to be 

greater than that of the applied load.  
• The finite elements analysis, using ABAQUS 

software is considered as a reliable and efficient tool 
to validate the analytical results and to solve the 
dynamic problems. Interestingly, this analytical 
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approach plays an important role in connecting the 
fundamental research and the practical usage, and it 
can be extended in future studies in order to describe 
3D dynamic problems arising in other types of 
defects.  
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NOMENCLATURE 

 
 a Crack length (mm) 
 d Diameter of shaft (mm) 
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E Elasticity modulus (GPa) 

tF  Fictive force vector (N) 

fi Effort term (N) 
G Shear modulus (GPa) 
Ip Polar quadratic moment (mm4) 
[K] Stiffness matrix (N.m-1) 
[K*] Fictive stiffness matrix (N.m-1) 
KIII Stress intensity factor (MPa.m1/2) 
kij Stiffness term (N.m-1) 
k*

ij Fictive stiffness term (N.m-1) 
l Shaft length (mm) 
[M] Mass matrix (Kg) 
m Moment per unit length (Nm.m-1) 
mij Mass term (Kg) 
M0  External torque (Nm) 
mt Torsional moment (Nm) 

)(tq  Generalized displacement vector (mm) 

t
q
•

 Generalized speed vector (rd.s-1) 

t
q
••

 Generalized acceleration vector (rd.s-2) 

R Shaft radius (mm) 
S Shaft section (mm2) 
T Kinetic energy (J) 
t Time (s) 
U Potential strain energy (J) 
W Work of the external moment (J) 
xc Crack position (mm) 
xm Moment position (mm) 
Y Correction factor 
β NewMark’s parameter 
γ NewMark’s parameter 
δ Dirakfonction 
∆t Time increment (s) 
ω Frequency (s-1) 
µ Relative lengths of cracks 
ρ Density (Kg.m-3) 
τ Nominal shear stress (MPa) 
σij Stress field (MPa) 
φ Deformation angle (rd) 

 


