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ABSTRACT 

 
The harmonic drive has become a critical 

component in robotic arms, enhancing their load 
capacity. Therefore, the harmonic drive's health status 
affects robotic arms' operational stability. This study 
focused on diagnosing anomalies in harmonic drives 
before equipment failure. By artificially creating five 
common types of faults in harmonic drives and 
collecting vibration signals with a three-axis 
accelerometer, this study trained and verified the 
diagnostic capabilities of numerous classification 
algorithms, namely the random forest, K-Nearest 
Neighbors (KNN), Support Vector Classification 
(SVC), and eXtreme Gradient Boosting (XGBoost) 
algorithms. In the experiments performed in this study, 
SVC and XGBoost exhibited excellent abilities in 
identifying harmonic drive faults and classifying 
potential fault causes. Thus, these algorithms can 
facilitate the adoption of immediate fault-prevention 
measures.  
 

INTRODUCTION 
 

In 2022, the usage of industrial robotic arms 
reached 443,000 units, marking a 22% increase 
compared to the previous year (Chen et al., 2024). This 
surge has cemented their role as indispensable 
equipment in the Aerospace, Precision Medical, and 
Smart Manufacturing sectors. According to statistics, 
40% to 70% of industrial robotic arm failures are 
attributed to harmonic drives (Bosen et al., 2022). To 
ensure the stable operation of this critical component 

and to prevent unexpected failures due to harsh 
working environments, which could lead to production 
interruptions and even personnel injuries, there is an 
urgent need to develop effective health monitoring and 
fault diagnosis methods. Consequently, improving the 
operational stability of industrial robotic arms has 
become a significant focus for researchers in both 
academia and industry. (Javaid et al., 2021) (Anil 
Kumar et al., 2022). Conventionally, equipment 
inspection is conducted by experts with extensive 
practical threatening to the vehicle occupant. within 
the experience; however, training such experts is time-
consuming, thereby limiting the applicability of this 
approach. Therefore, machine learning techniques are 
being increasingly applied for detecting anomalies in 
equipment, with supervised and unsupervised learning 
methods being widely used for detecting anomalies in 
rotating equipment. These methods have achieved 
superior accuracy in identifying damage, thereby 
extending equipment life span (Li & Hao, 2022). 

In machine learning, supervised and unsupervised 
learning methods are widely applied for anomaly 
detection in rotating machinery. Supervised learning 
requires a large data set with labels, with learning and 
prediction being performed on the basis of known 
labels. Unsupervised learning does not require 
prelabeled data and can discover hidden structures and 
patterns. With advances in deep learning technologies, 
methods based on deep learning have shown potential 
for use in fault diagnoses for rotating machinery (Liu 
et al., 2018). Deep learning techniques such as 
convolutional neural networks, recurrent neural 
networks, and autoencoders are used to process and 
analyze vibration data from rotating machinery, 
thereby achieving high fault detection accuracy 
(Neupane & Seok, 2020). Therefore, sensor data 
collected through machine learning can be analyzed to 
predict the health status of equipment and reduce 
downtime (Yang, Zhong, Yang, Tao, et al., 2021). 

Assembly errors and manufacturing defects were 
identified as the two main causes of harmonic drive 
failures by previous researchers (Yang, Zhong, Yang, 
& Du, 2021), which often lead to multiple 
simultaneous failures in robotic arms (Yang et al., 
2023). Researchers (Raviola et al., 2021) identified 
factors affecting the reliability of robotic arms and 
harmonic drives; they employed fault tree analyses and 

 
Paper Received April, 2024. Revised August, 2024. Accepted  
August, 2024. Author for Correspondence: Nan-Kai Hsieh.  
 
* Ph.D. Program of Electrical and Compunctions Engineering, Feng 

Chia University, Taiwan, R.O.C.; Department of Computer 
Science and Information Engineering, National Taichung 
University of Science and Technology, Taiwan, R.O.C. 

 
**Department of Automatic Control Engineering, Feng Chia 

University, Taiwan, R.O.C. 
        

  
 



 
J. CSME Vol.46, No.2 (2025) 

-122- 
 

failure mode, effects, and criticality analyses to 
identify the causes of component degradation. 
(Caccavale et al., 2013) and (Mi et al., 2017) installed 
various sensors at several joints of a robotic arm to 
collect data on speed, acceleration, and torque to detect 
early signs of equipment performance decline. The 
previous investigation (Huan-Kun et al., 2021) 
identified insufficient lubrication, belt loosening, gear 
wear, and breakage as common causes of failure in 
typical robotic arms, and they used principal 
component analyses and the support vector machine 
(SVM) algorithm to calculate the robot health index to 
detect aging and mechanical wear. The present study 
predicted the health status of harmonic drives by using 
the K-nearest neighbors (Pan et al., 2020; Pandya et al., 
2013), random forest (RF) (Shevchik et al., 2016; Zhou 
et al., 2013), and SVM (Husari & Seshadrinath, 2021; 
Li et al., 2018) algorithms to establish a prognostic and 
health management (PHM) mechanism for subsequent 
fault diagnoses and maintenance efforts. 

Numerous diagnostic methods for rotating 
machinery failures exist; however, harmonic drive-
related fault diagnoses remain an underexplored topic 
(Yang, Zhong, Yang, & Du, 2021; Yang, Zhong, Yang, 
Tao, et al., 2021). Building upon the research of 
Raviola et al. (Raviola et al., 2021), the present study 
identified five common causes of faults in rotating 
machinery (Figure 1): (1) gear wear, which can result 
from shaft eccentricity and excessive shaft surface 
roughness; (2) gear fracture, which is caused by 
foreign object entrapment and overload; (3) less grease, 
which can result from insufficient greasing and grease 
aging; (4) manufacturing defects, which can be caused 
by improper or misaligned installation; and (5) 
improper load, which is the consequence of failure to 
use equipment according to standard procedures. 
However, there is still a lack of a systematic diagnostic 
method for harmonic drives. To address this gap, this 
paper proposes an effective machine-learning model 
that leverages a triaxial accelerometer in combination 
with five fault conditions. The study further 
investigates the advantages of various analytical 
methods in fault identification for rotating machinery, 
with the aim of ensuring the stability of equipment 
operations. 

 
Fig. 1. Analysis chart of common fault causes 

The rest of this paper is organized as follows. 
Method describes four algorithms for multiclass 
classification, namely K-nearest neighbors, Random 
forest, eXtreme Gradient Boosting, and support vector 
classification; Data Preprocessing and Experimental 
details the data preprocessing and experimental 
methods used in this study; Experimental Results 
discusses the classification abilities of the adopted 
algorithms; and Conclusion provides the conclusion of 
this study. 
 

LITERATURE REVIEW 
 

Machine learning automatically extract features 
and perform feature classification and anomaly 
detection through supervised and unsupervised 
learning . Supervised learning methods, such as 
machine learning (ML) and artificial neural networks, 
rely on labeled datasets for training. In contrast, 
unsupervised learning methods, such as Principal 
Component Analysis (PCA) and Independent 
Component Analysis (ICA), can uncover hidden 
structures and patterns in unlabeled data, providing the 
advantage of automatic feature selection. 

Among various diagnostic methods, vibration 
signals have been widely applied in the early fault 
diagnosis of induction motors. Previous studies have 
shown that methods such as KNN, SVM, RF, and 
XGBoost (Chen et al., 2021; Jamil et al., 2021; Shaik 
et al., 2024) have been extensively used in the fault 
diagnosis of rotating machinery. KNN is commonly 
employed in applications like handwritten digit 
recognition and equipment anomaly classification due 
to its simplicity and ease of implementation. Similarly, 
SVM, which uses a statistical learning framework for 
feature classification, is one of the frequently used ML 
methods. RF, another common method in ML, allows 
the definition of feature importance, with the number 
of labeled samples being a significant factor 
influencing the classification accuracy of the RF 
classifier. XGBoost, on the other hand, can handle 
large datasets and multidimensional features, but 
careful hyperparameter tuning is required to achieve 
optimal results in specific problems. 

However, most contemporary research on 
harmonic drives is still focused on deep learning (DL) 
(Chen et al., 2024; Yang, Zhong, Yang, Tao, et al., 
2021). In contrast, ML offers advantages over DL in 
terms of lower data requirements, shorter training 
times, and reduced computational resource demands. 
Therefore, this study proposes an innovative technique 
that combines raw data with machine learning 
techniques for the classification of faults in harmonic 
drives.  

 
METHOD 

 
The KNN, RF, XGBoost, and SVC models were 

used in this study to validate the applicability of 
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machine learning in anomaly detection for harmonic 
drives. The machine learning models used in this study 
for fault detection in rotating machinery are described 
in the following section. 
 
K-Nearest Neighbors  

KNN is a classification algorithm designed for 
classifying data into known categories. It uses a data 
set of already classified instances and employs the 
Euclidean distance to find the KNN to a test sample. 
The category of the test data is then determined by a 
majority vote among these neighbors . If 𝐴𝐴 =
(𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛)  and 𝐵𝐵 = (𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛)  represent 
two points in an 𝑛𝑛-dimensional space, the Euclidean 
distance between them is defined as follows: 
 
‖𝐴𝐴 − 𝐵𝐵‖
= �(𝑎𝑎1 − 𝑏𝑏1)2, (𝑎𝑎2 − 𝑏𝑏2)2, … , (𝑎𝑎𝑛𝑛 − 𝑏𝑏𝑛𝑛)2) 

(1) 

 
The decision function of KNN is defined in 

Equation (2), where  𝐴𝐴  represents the data to be 
classified, and  𝐵𝐵 𝑖𝑖𝑐𝑐   denotes the 𝑖𝑖 th data in the 
original data set that belongs to class C. 
 
𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶(𝐷𝐷) = 𝑚𝑚𝑖𝑖𝑛𝑛‖𝐴𝐴 −  𝐵𝐵 𝑖𝑖𝑐𝑐‖ (2) 

 
Random Forest  

RF is an algorithm used for determining the 
health status of mechanical equipment. During the 
training process of this algorithm, the feature set is 
divided into in-bag (BAG) and out-of-bag (OOB) 
subsets. For each BAG subset, a decision tree is 
constructed, and the OOB subset is used to evaluate the 
decision tree’s classification accuracy. The OOB 
subset from the complete training data set is used to 
generate the RF algorithm’s final outcome, with a 
majority voting scheme being employed to obtain the 
final classifier accuracy . 
 
eXtreme Gradient Boosting  

XGBoost is an enhanced and optimized version 
of the Gradient Boosting Machine algorithm. 
XGBoost is extensively applied in classification 
applications, and its objective function is expressed as 
follows: 
 

𝑂𝑂𝑂𝑂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑂𝑂𝑂𝑂 = �𝐶𝐶(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�) + �Ω(𝑓𝑓𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 (3) 

 
Where 𝐶𝐶(𝑦𝑦𝑖𝑖 , 𝑦𝑦�𝑖𝑖)  represents the training loss 

function and ∑ Ω(𝑓𝑓𝑘𝑘)𝐾𝐾
𝑘𝑘=1  is the regularization term in 

the objective function. This term aggregates the 
complexity of 𝑘𝑘  trees to prevent the model from 
overfitting. 
 
Support Vector Classification 

Similar to SVM, SVC, which is an efficient 

computational learning method for classifying small 
data sets, is widely applied in anomaly detection and 
related fields. The core of the SVC algorithm is its 
support vectors , which play a crucial role in defining 
the decision boundaries of the classifier, as illustrated 
in Figure 2. 
 

 
Fig. 2.  Decision boundary diagram 

 
Model evaluation 

To thoroughly compare the differences between 
the KNN, RF, XGBoost, and SVC models as model 
training data sets, this study performed data reduction 
and K-fold cross-validation for training. In K-fold 
cross-validation, the original data set is divided into K 
equal parts. In each training cycle, K − 1 parts are used 
as the training set, and the remaining part is used as the 
test set. This process is repeated until each part has 
served as the test set (Figure 3). In the present study, K 
was set as 5; thus, five-fold cross-validation was 
performed (i.e., the data set was divided into five equal 
parts). 
 

 
Fig. 3.  K-Fold cross-validation diagram 

 
DATA PREPROCESSING AND 

EXPERIMENTAL  
 

This study established a data set for harmonic 
drive failures to validate the application of multiclass 
classification in the diagnoses of faults in rotating 
machinery. Five fault models were manually created, 
and triaxial accelerometers were used to collect 
acceleration signals from these models. Axial 
measurements for the harmonic drive were conducted 
along the Z-axis, and radial measurements for the 
harmonic drive were conducted along the X-axis and 
Y-axis. We ensured that the three axes were aligned 
perpendicularly to the axis of rotation to obtain 
reference points and clear signals (Figure 4). A data 
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acquisition module (ADLink USB-2405) with a 
sampling rate of 51,200 was used to collect data along 
the three axes. A total of 170 signal samples with a 
duration of 1s each were obtained along each axis; thus, 
850 signal samples were obtained along each axis 
across the five fault models for subsequent data 
analyses. 
 

 
Fig. 4. Harmonic drive signal collection equipment 

 
Original dataset 

According to Li and Hao (Li & Hao, 2022) and 
Raviola et al. (Raviola et al., 2021), the main causes of 
faults in harmonic drives are equipment aging and 
improper human operation. Therefore, we 
distinguished the common states of harmonic drives 
into five categories, namely normal (N), gear wear 
(GW), less grease (LG), gear fracture (GF), and 
improper load (IL), to validate the effectiveness of 
multiclass classification in predicting harmonic drive 
faults. 
 
Experimental procedure and equipment 

The experiments of this study were performed on 
a computer with a 12th Gen Intel(R) Core(TM) i5-
12500H computer processing unit having a processing 
speed of 2.50 GHz, an Intel Iris Xe Graphics graphics 
processing unit, and 16.0 GB of memory. Five fault 
states were manually established (Table 1), after which 
signal collection and data preprocessing were 
performed. Data preprocessing was performed to 
achieve a processed data format of 170 × 51200, where 
170 represents the quantity of single-axis data for a 
single fault type, and 51200 is the sampling rate for 
fault identification training. Finally, multiclass 
classification was performed for accurately classifying 
the five types of faults, as illustrated in Figure 5. 

 
Fig. 5.  Experimental flowchart 

Table 1. Fault states 
Fault Type Description 

Normal 
(N) 

Brand-new equipment is used in 
this fault model, which serves as 
a benchmark for comparison 
against other fault models. 

Gear Wear 
(GW) 

The flexspline’s teeth are 
manually damaged by 50% in this 
fault model to simulate gear wear. 

Gear Fracture 
(GF) 

The distinction between this fault 
model and the GW model lies in 
the complete destruction of one 
of the gears (100% damage) in 
this model to simulate a gear 
tooth fracture scenario. 

Improper 
Load 
(IL) 

A 7-kg swing arm is added as an 
extra load on the harmonic drive 
in this fault model. 

Less Grease 
(LG) 

The use of lubricant is reduced by 
90% compared with normal 
conditions in this fault model. 

 
EXPERIMENTAL RESULTS  

 
We collected vibration signals along the X-axis, 

Y-axis, and Z-axis of harmonic drives under five fault 
states. To facilitate model training and validation, the 
data set was divided into training, testing, and 
validation sets, which comprised 70%, 20%, and 10% 
of the data, respectively. The RF, KNN, XGBoost, and 
SVC algorithms were used for training, and model 
recognition accuracy was assessed using confusion 
matrices, F1 score, recall, accuracy, and precision. The 
classification accuracies of the aforementioned 
algorithms for the GF, GW, IL, LG, and N fault states 
are described in the following text. 
 
RF model 

As presented in Figure 6~8, when the RF model 
was used for anomaly detection and classification, the 
highest prediction accuracies on the X-axis and Y-axis 
were obtained for the GW fault state, whereas the 
highest prediction accuracy on the Z-axis was obtained 
for the IL fault state. Table 2~4 present the evaluation 
results obtained for the RF model along the X-axis, Y-
axis, and Z-axis, respectively. 

 
Table 2. RF classifiers in the X-axis 

Fault type Accuracy F1-Score Precision Recall 
GF 0.9045 0.9042 0.9049 0.9078 
GW 0.9119 0.9112 0.9116 0.9140 
IL 0.9070 0.9062 0.9072 0.9095 
LG 0.9053 0.9046 0.9052 0.9079 
Normal 0.9069 0.9062 0.9065 0.9107 
Average 0.9071 0.9065 0.9071 0.9100 
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Table 3. RF classifiers in the Y-axis 
Fault type Accuracy F1-Score Precision Recall 
GF 0.9532 0.9532 0.9534 0.9546 
GW 0.9517 0.9517 0.9521 0.9531 
IL 0.9521 0.9519 0.9520 0.9535 
LG 0.9523 0.9519 0.9520 0.9533 
Normal 0.9551 0.9548 0.9547 0.9564 
Average 0.9528 0.9527 0.9528 0.9542 

 
Table 4. RF classifiers in the Z-axis 

Fault type Accuracy F1-Score Precision Recall 
GF 0.8504 0.8485 0.8510 0.8508 
GW 0.8549 0.8516 0.8533 0.8551 
IL 0.8518 0.8498 0.8526 0.8520 
LG 0.8549 0.8524 0.8542 0.8545 
Normal 0.8484 0.8467 0.8494 0.8492 
Average 0.8521 0.8498 0.8521 0.8523 

 

 
Fig. 6. RF X-axis confusion matrix 

 

 
Fig. 7. RF Y-axis confusion matrix 

 
Fig. 8. RF Z-axis confusion matrix 

 
KNN model 

As presented in Figure 9~11, when the KNN 
model was used for anomaly detection and 
classification, the highest prediction accuracies on the 
X-axis and Z-axis were obtained for the IL fault state. 
In contrast, the highest prediction accuracy on the Y-
axis was obtained for the GW fault state. Tables 5~7 
present the results obtained for the KNN model. 

 
Table 5. KNN classifiers in the X-axis 

Fault type Accuracy F1-Score Precision Recall 
GF 0.8062 0.8032 0.8071 0.8411 
GW 0.8096 0.8055 0.8093 0.8436 
IL 0.8051 0.8008 0.8048 0.8390 
LG 0.8103 0.8061 0.8103 0.8429 
Normal 0.8063 0.8016 0.8059 0.8392 
Average 0.8075 0.8034 0.8075 0.8412 

 
Table 6. KNN classifiers in the Y-axis 

Fault type Accuracy F1-Score Precision Recall 
GF 0.9543 0.9543 0.9541 0.9573 
GW 0.9525 0.9529 0.9527 0.9563 
IL 0.9541 0.9540 0.9540 0.9566 
LG 0.9542 0.9540 0.9541 0.9567 
Normal 0.9538 0.9537 0.9538 0.9564 
Average 0.9537 0.9538 0.9537 0.9567 

 
Table 7. KNN classifiers in the Z-axis 

Fault type Accuracy F1-Score Precision Recall 
GF 0.7708 0.7658 0.7698 0.8092 
GW 0.7714 0.7654 0.7709 0.8070 
IL 0.7756 0.7714 0.7767 0.8146 
LG 0.7775 0.7727 0.7758 0.8132 
Normal 0.7690 0.7648 0.7711 0.8085 
Average 0.7728 0.7680 0.7729 0.8105 



 
J. CSME Vol.46, No.2 (2025) 

-126- 
 

 
Fig. 9. KNN X-axis confusion matrix 

 

 
Fig. 10. KNN Y-axis confusion matrix 

 

 
Fig. 11. KNN Z-axis confusion matrix 

 
XGBoost model 

As presented in Figure 12~14, when the XGBoost 
model was used for anomaly detection and 
classification, the highest prediction accuracies on the 

X-axis and Y-axis were obtained for the GW fault state, 
whereas the highest prediction accuracy on the Z-axis 
was obtained for the IL fault state. Tables 8~10 present 
the evaluation results obtained for the XGBoost model 
along the X-axis, Y-axis, and Z-axis, respectively. 
 

Table 8. XGB classifiers in the X-axis 
Fault type Accuracy F1-Score Precision Recall 
GF 0.9263 0.9268 0.9270 0.9286 
GW 0.9278 0.9281 0.9279 0.9295 
IL 0.9302 0.9300 0.9301 0.9313 
LG 0.9295 0.9294 0.9293 0.9311 
Normal 0.9304 0.9301 0.9299 0.9317 
Average 0.9288 0.9289 0.9288 0.9304 

 
Table 9. XGB classifiers in the Y-axis 

Fault type Accuracy F1-Score Precision Recall 
GF 0.9747 0.9748 0.9748 0.9750 
GW 0.9742 0.9744 0.9744 0.9745 
IL 0.9744 0.9744 0.9744 0.9747 
LG 0.9739 0.9738 0.9737 0.9741 
Normal 0.9760 0.9759 0.9758 0.9763 
Average 0.9746 0.9747 0.9746 0.9749 

 
Table 10. XGB classifiers in the Z-axis 

Fault type Accuracy F1-Score Precision Recall 

GF 0.9162 0.9160 0.9164 0.9166 
GW 0.9136 0.9126 0.9128 0.9136 
IL 0.9128 0.9127 0.9133 0.9134 
LG 0.9153 0.9147 0.9148 0.9154 
Normal 0.9090 0.9090 0.9096 0.9096 
Average 0.9134 0.9130 0.9134 0.9137 

 
 

 
 

Fig. 12. XGB X-axis confusion matrix 
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Fig. 13. XGB Y-axis confusion matrix 

 

 
Fig. 14. XGB Z-axis confusion matrix 

 

SVC model 
As presented in Figure 14~16, when the SVC 

model was used for anomaly detection and 
classification, the highest prediction accuracies on the 
X-axis and Y-axis were obtained for the GW fault state, 
whereas the highest prediction accuracy on the Z-axis 
was obtained for the IL fault state. Table 11~13 
presents the evaluation results obtained for the SVC 
model along the X-axis, Y-axis, and Z-axis, 
respectively. 
 
 

Table 11. SVC classifiers in the X-axis 

Fault type Accuracy F1-Score Precision Recall 

GF 0.9767 0.9767 0.9767 0.9769 
GW 0.9774 0.9774 0.9775 0.9776 
IL 0.9753 0.9753 0.9753 0.9755 
LG 0.9777 0.9776 0.9775 0.9779 
Normal 0.9776 0.9775 0.9776 0.9777 
Average 0.9769 0.9769 0.9769 0.9771 

 

 
Fig. 14. SVC X-axis confusion matrix 

 

 
Fig. 15. SVC Y-axis confusion matrix 

 

 
Fig. 16. SVC Z-axis confusion matrix 
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Table 12. SVC classifiers in the Y-axis 

Fault type Accuracy F1-Score Precision Recall 

GF 0.8788 0.8779 0.8789 0.8860 
GW 0.8803 0.8785 0.8801 0.8871 
IL 0.8793 0.8780 0.8796 0.8867 
LG 0.8786 0.8790 0.8842 0.8773 
Normal 0.8781 0.8763 0.8775 0.8851 
Average 0.8790 0.8776 0.8790 0.8858 

 
Table 13. SVC classifiers in the Z-axis 

Fault type Accuracy F1-Score Precision Recall 

GF 0.9826 0.9825 0.9825 0.9826 
GW 0.9851 0.9851 0.9850 0.9852 
IL 0.9824 0.9823 0.9824 0.9824 
LG 0.9836 0.9835 0.9835 0.9836 
Normal 0.9835 0.9835 0.9835 0.9836 
Average 0.9834 0.9834 0.9834 0.9835 

 
The vibration of mechanical equipment is 

typically anisotropic, meaning that the vibration may 
have different intensities and frequencies in different 
directions. Accelerometers measure vibration along 
three distinct axes, which usually correspond to 
different directions of the mechanical equipment. As a 
result, the amplitude and frequency of the vibrations 
captured by each axis can vary, reflecting the 
characteristics of the vibration in each direction. For 
the X-axis data, the SVC model achieved the highest 
accuracy, followed by the XGBoost, RF, and KNN 
models. Moreover, for the Y-axis data, XGBoost 
showed the highest accuracy, followed by the KNN, 
RF, and SVC models. Finally, for the Z-axis data, the 
SVC model exhibited the highest accuracy, followed 
by the XGBoost, RF, and KNN models, as shown in 
Figure 17. 

 

 
Fig. 17. Accuracy Comparison of Machine Learning 
Methods Applied to Triaxial Data 
 

These results highlight the superior performance 
of the SVC and XGBoost models in fault data 
categorization across various axes. This finding is also 
supported by the literature, which indicates that SVC 
is effective in handling high-dimensional data and 
complex classification (Abdul & Al-Talabani, 2022; 
Zhang et al., 2022). However, the aforementioned four 

classifiers exhibited performance variations along the 
different axes, which underscores the importance of 
selecting the appropriate classifier according to the 
data characteristics and classification task. 

The results indicate that SVC is the optimal 
algorithm for predicting the GW fault state on the Z-
axis and the LG fault state on the X-axis. In addition, 
XGBoost is the optimal algorithm for predicting the N 
fault state on the Y-axis (Table 14). These findings 
provide crucial insights for enhancing the recognition 
accuracy of multiclass fault classification models in 
the monitoring of the operational status of harmonic 
drives. The results of this study are specific to the 
adopted data sets and classifiers. Therefore, future 
studies can examine whether improved outcomes can 
be achieved using other classifiers or by performing 
parameter fine-tuning. Moreover, future research can 
examine whether additional features such as vibration 
and current signal can further enhance the accuracy 
and stability of fault prediction models. 
 

Table 14. The best anomaly detection methods and 
projects for X, Y, and Z axes 

Method X-axis Y-axis Z-axis 

XGB - Normal - 

SVC Less Grease - Gear Wear 

 
CONCLUSION  

 
This study demonstrated the effectiveness and 

feasibility of using four multiclass classification 
models, namely the KNN, RF, XGBoost, and SVC 
models, for predicting the health status of harmonic 
drives. By enabling the real-time monitoring of the 
operating conditions of robotic arms, these models 
facilitate immediate surveillance and maintenance, 
thereby enhancing production efficiency and reducing 
downtime. Three-axis vibration data were obtained 
using accelerometers, and the analyses of these data 
with the aforementioned models revealed that the SVC 
model exhibited the optimal performance along the X-
axis and Z-axis, whereas the XGBoost exhibited the 
optimal performance along the Y-axis. These models 
enable the rapid identification of anomalies in 
harmonic drives, thereby facilitating efficient PHM.  

Overall, the results of this study suggest that 
multiclass classification is effective for predicting and 
diagnosing faults in harmonic drives. This method can 
be used to develop automatic fault prediction and 
maintenance strategies for industrial manufacturing, 
thereby facilitating industrial automation. Future 
studies should continue to investigate the industrial 
applications of the aforementioned method. 
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摘 要 

諧波減速機已成為機器手臂中之關鍵零件，並

能增強其負載能力。因此，諧波減速機的健康狀態

與機器手臂的運行穩定性息息相關。本研究著重於

診斷諧波減速機的異常狀況，且以人為方式建立諧

波減速機的五種常見故障類型，搭配三顆單軸加速

度計收集振動信號。同時，訓練並驗證隨機森林

(RF)、K 最近鄰（KNN）、支持向量分類（SVC）
和極限梯度提升（XGBoost）等演算法之故障分類

能力。最後，藉由實驗證實 SVC 和 XGBoost 在辨

識諧波減速機異常和分類潛在故障具較高之準確

率。因此，這些演算法將可協助早期故障偵測，且

立即採取故障預防措施。 
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