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ABSTRACT 

 
Metal cladding is a process of depositing a thick 

layer of material over another material using a suitable 
welding process to preserve the material from corro-
sion problems. Cost estimation for producing the clad-
ding with desired quality is essential in fabrication 
industries, which includes the cost of consumable filler 
material. Analysis on volume of metal deposited 
during cladding process could provide necessary 
knowledge about consumption of filler wire and 
thereby the cost of consumables. In this work, an 
attempt was made to perform multi-criteria optimiza-
tion for depositing a heat resistant layer over a material 
used in boiler construction. Therefore, low thermal 
conductivity 316L grade of austenitic stainless steel 
was surfaced over IS:2062 structural steel plates using 
FCAW process. Rotatable central composite design for 
five factors and five levels was used to perform the 
experiments. Mathematical models were developed 
for the prediction of volume of reinforcement and 
volume of penetration and tested for adequacy with the 
help of ANOVA technique. Multi-objective 
constrained optimization was carried out using RSM 
and genetic algorithm tool to yield best optimum set of 
process variables for the responses of interest. 
Optimum settings and developed models were 
validated by good agreement shown during 
conformity test experiments. The findings have wide 
industrial applications in the field of surfacing. 
 
 
 
 
 
 

INTRODUCTION 
 

Weld metal cladding is a process to enhance 
chemical, mechanical and metallurgical properties of 
material surfaces. Numerous fields viz. chemical 
plants, fertilizer plants, nuclear power plants, pressure 
vessels, railways and even aircraft and missile compo-
nents are started making use of this technique to 
enhance the properties and/or repair of the worn-out 
components at their surfaces with feasible cost instead 
of replacing them completely (Murugan and Parmar, 
1994). Various welding processes such as Gas Metal 
Arc Welding (GMAW), Gas Tungsten Arc Welding 
(GTAW), Shielded Metal Arc Welding (SMAW), 
Plasma Arc Welding (PAW), Submerged Arc Welding 
(SAW), Flux Cored Arc Welding (FCAW), Oxy-
Acetylene Welding (OAW), Electroslag Welding 
(ESW), explosive welding and laser welding are 
imperative processes frequently employed for clad 
surfacing in fabrication industries (Palani and 
Murugan, 2006, 2007; Kannan and Yoganandh, 2010; 
Balan et al., 2018; Benyounis and Olabi, 2008; 
Senthilkumar et al., 2014; Gomes et al., 2012; Gao et 
al., 2016). Effective selection and control of FCA 
welding process parameters are very much essential in 
producing quality claddings (Kannan and Yoganandh, 
2010). Quality of cladding is assessed based on bead 
geometry. Basic clad bead geometry includes clad 
bead reinforcement height, clad bead width and depth 
of penetration (Sowrirajan et al., 2018). Figure 1 
shows the basic bead geometry factors of a cladding 
process. 

Pressure vessels involved in heat transfer 
through wall sections. Reduction in heat loss is 
possible, if the clad layer is formed using low thermal 
conductivity material as shown in Figure 2. Especially, 
Heat loss is possibly reduced with increase in clad 
bead height as it helps to increase the clad layer 
thickness. Temperature drop across a composite layer 
is depends on thermal conductivity (k1 & k2) of layer 
materials and thermal contact resistance at the 
interface. Fig. 2 shows the concept of temperature drop 
across the composite layers made by cladding process 
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(Sowrirajan et al., 2018). Stainless steel cladding is a 
trendy option to fabricate corrosion resistance surfaces 
on low carbon steel. Austenitic stainless steels possess 
low thermal conductivity than other grades, so that, it 
has the ability to reduce heat loss and better weldablity 
property of this grade made suitable for welding 
(Sowrirajan et al., 2018; Cengel, 2008; 
Kothandaraman and Subramanyan, 2014). Also, these 
alloy steels are effective to control wear problems as 
well. Usually, composite clad layer sections are 
formed in pressure vessels to improve surface 
properties of base material (Sowrirajan et al., 2018; 
Kannan et al., 2014). Regularly, a definite quantity of 
heat energy is continuously transferred to the 
atmosphere through the walls of the pressure vessels. 
Reducing this conduction heat loss up to a possible 
extend will increase the efficiency of thermal 
equipment up to a considerable level. This requires an 
effective study on cladding process. 
 

 
Fig. 1. Basic bead geometry 

 
Engineers often search for optimum selection of 

controllable process parameters to produce desired 
bead geometry with cost and time benefits. Mathemat-
ical models in terms of controllable process parame-
ters are capable for the prediction of weld bead dimen-
sions and for the optimization the process variables. In 
present days, the traditional optimization techniques 
used for the optimization purpose is greatly reduced 
due to lack of robustness and non-conventional more 
intellectual techniques are on the working platform 
popularly with the accessibility and affordability of 
modernized computers. The Genetic Algorithm (GA) 
is a trendy intelligent optimization technique that was 
employed for the present work to avail optimal set of 
process parameters (Kannan et al., 2013; Sathiya et al., 
2013; Senthilkumar et al., 2017). 
 

 
Fig. 2. Concept of temperature drop across a 

composite layer 

Lot of research works were carried out already 
for achieving desired bead geometry dimensions with 
best quality and productivity. Preparation of budget for 
any engineering process is essential to take decision on 
feasibility. Consumption of filler wire is important in 
arriving total cost of cladding. Volume of filler metal 
deposited is required to calculate the cost of the filler 
wire. But, a separate analysis on volume of reinforce-
ment and volume of penetration could be helpful in 
controlling the quality of cladding effectively. Lack of 
previous works in this view is an evident to study the 
volume of reinforcement and volume of penetration. 
Hence, this work aims to produce the clad layer for 
reducing heat loss and to optimize the welding process 
parameters for producing required volume of filler 
metal deposition with best quality using genetic 
algorithm. 
 

EXPERIMENTAL WORK 
 

To investigate the heat transfer characteristics of 
the structural steel plates with the austentitic stainless 
steel-clad layer, the base structural steel specimens 
were prepared for the dimensions of 100×50×20 mm. 
Austenitic Stainless-steel clad layers were deposited 
using 316L flux cored filler wire of 1.2 mm diameter. 
Weld bead geometry dimensions and thermal 
properties are highly influenced by the parameters 
such as open circuit voltage (V), wire feed rate (F), 
welding speed (S), nozzle-to-plate distance (D) and 
electrode angle (E) were selected based on the 
previous studies (Sowrirajan et al., 2018). The limits 
of each variables were determined based on the trail 
runs and the levels were identified using suitable 
formula (Kannan et al., 2013). Table 1 indicates the 
selected variables and their levels for conducting the 
experimental studies. The edges of the specimen were 
prepared to ensure the good quality weld joints 
(Sathiya et al., 2013) through the pre-processes like 
grinding and cleaning on the steel plates. Based on 
central composite design, 32 experiments were carried 
out using Esseti-Unimacro 501C welding machine. In 
all the experiments, the three clad layers were made 
with the overlapping of 40% to ensure the dilution in 
the acceptable limit (Murugan and Parmar, 1994; 
Siddaiah et al., 2016). In order to prevent the 
undesirable reactions, a mixture of CO2 (95%) and 
Argon (5%) was used as shielding gas and the flow 
rate was set as 18 litres per minute. After the surfacing 
of clad layers, they were allowed to cool naturally. The 
cladded specimen surfaces are well prepared using 
emery paper and nital solution (etching) for metallur-
gical studies. All clad specimens obtained from 
experimental runs are shown in Figure 3. 

Reinforcement volume (VR) and penetration 
volume (VP) were considered as output responses. 
Measurements were made using profile projector for 
clad height (H), clad width (W), depth of penetration 
(P), area of reinforcement (AR) and area of penetration 
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(AP). Reinforcement volume and penetration volume 
values were calculated using the formulas, 
VR=AR*Length of plate, VP=AP* Length of plate and 
presented in the Table 2 (Gunaraj and Murugan, 2000). 
 

Table 1. Details of FCAW process parameters 

 

 
Fig. 3.  Clad specimens during experimental runs 

 
Table 2. Design matrix with response values 

Runs 

Process parameters 
(Coded) Responses 

V  F  S  D  E  
Volume of 

Reinforcement, 
VR (cm3) 

Volume of 
penetration, 
VP  (cm3) 

1 -1 -1 -1 -1 +1 11.0 1.03 
2 +1 -1 -1 -1 -1 9.5 0.98 
3 -1 +1 -1 -1 -1 13.1 1.24 
4 +1 +1 -1 -1 +1 13.3 2.38 
5 -1 -1 1 -1 -1 6.0 1.60 
6 +1 -1 +1 -1 +1 6.2 1.91 
7 -1 +1 +1 -1 +1 9.2 1.43 
8 +1 +1 +1 -1 -1 12.3 1.31 
9 -1 -1 -1 +1 -1 10.2 0.78 

10 +1 -1 -1 +1 +1 10.5 1.56 
11 -1 +1 -1 +1 +1 14.3 0.98 
12 +1 +1 -1 +1 -1 13.1 1.54 
13 -1 -1 +1 +1 +1 6.2 0.80 
14 +1 -1 +1 +1 -1 7.2 0.93 
15 -1 +1 +1 +1 -1 7.9 1.06 
16 +1 +1 +1 +1 +1 8.3 1.45 
17 -2 0 0 0 0 9.3 0.84 
18 +2 0 0 0 0 9.7 1.69 
19 0 -2 0 0 0 6.6 1.46 
20 0 +2 0 0 0 12.8 1.54 
21 0 0 -2 0 0 18.0 1.47 
22 0 0 +2 0 0 6.0 1.60 
23 0 0 0 -2 0 9.3 1.83 
24 0 0 0 +2 0 9.35 1.20 
25 0 0 0 0 -2 9.15 1.22 
26 0 0 0 0 +2 9.15 1.32 
27 0 0 0 0 0 8.8 1.25 
28 0 0 0 0 0 9.5 1.60 
29 0 0 0 0 0 9.0 1.50 
30 0 0 0 0 0 9.5 1.40 
31 0 0 0 0 0 9.3 1.26 
32 0 0 0 0 0 8.7 1.56 

 

Development of mathematical models and 
conformity tests 

Mathematical models for the prediction of rein-
forcement volume and penetration volume were devel-
oped using the coefficients obtained from Minitab 14 
software package by performing response surface 
analysis of experimental results. The output function 
for an output response can be represented as Y = f (V, 
F, S, D, E). The following second order polynomial 
equation was selected to represent response surface of 
responses for five variables, in which coefficient b0 is 
the constant term; coefficients b1, b2, b3, b4 and b5 are 
linear terms; coefficients b11, b22, b33, b44 and b55 are 
square terms; coefficients b12, b13, b14, b15, b23, b24, b25, b34, 
b35 and b45 are interaction terms (Sowrirajan et al., 
2018). 
 
Y = b0 + b1V + b2F + b3S + b4D + b5E + b11V2 + b22F2 
+ b33S2 + b44D2 + b55E2 + b12VF + b13VS + b14VD + 
b15VE + b23FS + b24FD + b25FE + b34SD + b35SE + 
b45DE       (1) 
 

The detailed regression analysis, clearly indi-
cates their influencing levels on the cladding process 
and the insignificant coefficients are identified through 
the p-values (<0.05). It is a fact that the regression 
equations are usually simplified by neglecting the 
insignificant coefficients without compromising the 
accuracy level of the equation. Though, the final math-
ematical models for the present study were developed 
with the consideration of all significant and insignifi-
cant coefficients considering the genetic algorithm 
optimization. F-tests and t-tests were incorporated for 
checking the importance of coefficients and variables 
(Palani and Murugan, 2007). The developed models 
were involved to test their adequacy by using ANOVA 
technique. Moreover, the coefficient of determination 
(R2) was taken as furthermore deciding factor. Based 
on the evaluation of R2 values, it was found that the 
developed models are quite adequate. Table 3 depicts 
the ANOVA data of the present work. Final 
mathematical models developed in coded form for the 
responses are given in Equations (2) & (3). 
 
Reinforcement volume 
VR = 9.17727 + 0.1375V +
1.54583F-2.32083S-0.11667D-0.0125E +
0.04773V2 + 0.09773F2 + 0.67273S2 +
0.00398D2-0.03977E2 + 0.15625VF +
0.43125VS-0.09375VD-0.45625VE-0.03125FS-0.35625FD-0.14375F
0.13125DE 
 
VR = 9.17727 + 0.1375V + 1.54583F− 2.32083S−
0.11667D− 0.0125E + 0.04773V2 + 0.09773F2 +
0.67273S2 + 0.00398D2 − 0.03977E2 + 0.15625VF +
0.43125VS− 0.09375VD− 0.45625VE − 0.03125FS −
0.35625FD− 0.14375FE − 0.33125SD− 0.41875SE +
0.13125DE                      (2) 
Penetration volume 

Parameters with notations Units 
Levels 

-2 -1 0 +1 +2 
Open circuit voltage (V) Volts 30 32 34 36 38 
Wire feed rate (F) m/min 9 11 13 15 17 
Welding speed (S) m/min 0.18 0.26 0.34 0.42 0.5 
Nozzle-to-plate distance (D) mm 17 19 21 23 25 
Electrode angle (E) degree 5 10 15 20 25 
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VP = 1.44705 + 0.20167V + 0.08167F + 0.01083S−
0.16833D + 0.09583E − 0.05955V2 − 0.0008F2 +
0.00795S2 + 0.00295D2 − 0.0583E2 + 0.05VF−
0.1075VS + 0.03625VD + 0.18625VE − 0.11125FS +
0.0075FD + 0.005FE − 0.0775SD− 0.045SE −
0.07125DE        (3) 

 
Table 3. Analysis of variance table 

Response 

Sum of 
Squares                      

(SS) 

Degrees of 
freedom 

(DF) 

Mean Square 
value  
(MS) 

F-
Value 

p-value    
(Prob> 

F) 

R2 
(%) 

Adj. 
R2 

 (%) Reg. Res. Reg. Res. Reg. Res. 
Reinforceme
t volume (VR  215.144 6.623 20 11 10.7572 0.6021 17.87 0.000 97.0 91.6 

Penetration 
volume (VP) 3.4508 0.2734 20 11 0.17254 0.02485 6.94 0.001 92.7 79.3 

Reg.- Regression, Res. -Residual 
 
The validities of regression models were tested 

by plotting scatter charts. Typical scatter plots are 
presented in Figures 4 and 5 to show the perfection of 
fit between observed and predicted responses.  The 
scattered chart shows that the both responses are 
scattered very nearer to 45° straight line, evident a 
perfect fit for the responses (Palani and Murugan, 
2007). Also, an experimental run was performed 
checking the ability of models in predicting the 
responses using different values of process variables 
other than the values used in the design matrix.  The 
results show good agreement comparing to the 
experimental values towards the developed models. 
The results of conformity test run are presented in 
Table 6. 
 

 
Fig. 4.  Scatter chart for VR 

 

 
Fig. 5.  Scatter chart for VP 

 

MULTI-OBJECTIVE OPTIMIZATION 
 
A solution arrived for an individual single 

objective may not be suitable because of the reason 
that a solution set of input decision variables obtained 
for an optimum level may affect the remaining 
response variables accordingly. There is a possibility 
to produce unacceptable results for the output 
variables other than the objective (Sowrirajan et al., 
2018). Multi objective optimization is an appropriate 
process to be carried out for the problems with multi-
responses. Therefore, multi-response optimization 
was carried out since the successful metal deposition 
by FCAW process is completely a multi-response 
process. The foremost objective was set to enhance 
volume of reinforcement (VR) so that to increase the 
clad height. However, the other objective was to 
decrease volume of penetration (VP) in order to 
achieve quality benefits. 
 
Optimization using RSM  

The multi objective optimization was carried 
out using response optimizer in MINITAB 14 software 
with the suitable lower and upper values of the 
responses (Sowrirajan et al., 2018). The main 
objective of the work is to reduce the heat loss across 
the clad layer. Hence, the goal of the optimization 
process was set as maximizing the volume of 
reinforcement and minimizing the volume of 
penetration. The minimum value of volume of 
reinforcement in the response table has been set as 
lower limit and the maximum response as target values. 
Similarly, for the volume of penetration the target 
value has been as the lowest value in the response. 
Weight and importance values of the two objectives 
were set as unity. The optimum set of process variables 
were explored using response optimizer. Numbers of 
local solutions were obtained for the best solutions 
through the various starting points. Finally, a global 
solution which provides the best possible set of 
process parameters that satisfying the goals of the 
optimization was attained. These set of values were 
taken as near optimal values for genetic algorithm 
optimization. 
 
Optimization using GA 

The multi objective optimization solver 
(gamultiobj) available under optimization tools in 
MATLAB R2013a was used to carry out multi 
objective optimization (Konak et al., 2006; Goldberg, 
2000; Katherasan et al., 2014; Sathiya et al., 2012). 
The objectives were to maximize volume of 
reinforcement and to minimize volume of penetration. 
The regression models developed for the prediction of 
responses (eqns. (2) & (3)) were used to formulate 
objective functions. As GA always minimizing the 
objectives, fitness functions were written such that to 
meet the objectives of responses i.e. negative sign was 
included in order to maximize the reinforcement 
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volume and given in equations (4) & (5). A separate 
Matlab code file was generated to assign fitness 
functions for performing multi objective optimization. 
Constraints on five controllable FCAW process 
variables such as open circuit voltage, wire feed rate, 
welding speed, nozzle-to-plate distance and electrode 
angle were applied based on the lower and upper levels 
followed during experimental work. 
 
y(1) = −(9.17727 + 0.1375 ∗ x(1) + 1.54583 ∗ x(2) −
2.32083 ∗ x(3) − 0.11667 ∗ x(4) − 0.0125 ∗ x(5) +
0.04773 ∗ x(1) ∗ x(1) + 0.09773 ∗ x(2) ∗ x(2) +
0.67273 ∗ x(3) ∗ x(3) + 0.00398 ∗ x(4) ∗ x(4) −
0.03977 ∗ x(5) ∗ x(5) + 0.15625 ∗ x(1) ∗ x(2) +
0.43125 ∗ x(1) ∗ x(3) − 0.09375 ∗ x(1) ∗ x(4) −
0.45625 ∗ x(1) ∗ x(5) − 0.03125 ∗ x(2) ∗ x(3) −

0.35625 ∗ x(2) ∗ x(4) − 0.14375 ∗ x(2) ∗ x(5) −
0.33125 ∗ x(3) ∗ x(4) − 0.41875 ∗ x(3) ∗ x(5) +
0.13125 ∗ x(4) ∗ x(5))      (4) 
 
y(2) = 2.44705 + 0.20167 ∗ x(1) + 0.08167 ∗ x(2) +
0.01083 ∗ x(3) − 0.16833 ∗ x(4) + 0.09583 ∗ x(5) −
0.05955 ∗ x(1) ∗ x(1) − 0.0008 ∗ x(2) ∗ x(2) +
0.00795 ∗ x(3) ∗ x(3) + 0.00295 ∗ x(4) ∗ x(4) −
0.0583 ∗ x(5) ∗ x(5) + 0.05 ∗ x(1)  ∗ x(2) − 0.1075 ∗
x(1)  ∗ x(3) + 0.03625 ∗ x(1)  ∗ x(4) + 0.18625 ∗ x(1)  ∗
x(5) − 0.11125 ∗ x(2) ∗ x(3) + 0.0075 ∗ x(2) ∗ x(4) +
0.005 ∗ x(2) ∗ x(5) − 0.0775 ∗ x(3) ∗ x(4) − 0.045 ∗
x(3) ∗ x(5) − 0.07125 ∗ x(4) ∗ x(5)    (5) 
 
 

Table 4. Optimal solutions arrived for best fitness values in GA 
S.No V F S D E Reinforcement volume, VR (cm3) Penetration volume, VP  (cm3) 

1 -2.0 +0.5 -2.0 +2.0 +2.0 -23.61 0.45 
2 -2.0 -0.1 -2.0 +2.0 +2.0 -23.42 0.32 
3 -2.0 +1.8 -2.0 +2.0 +2.0 -24.30 0.75 
4 -2.0 +1.3 -2.0 +2.0 +2.0 -23.97 0.64 
5 -2.0 +0.8 -2.0 +2.0 +2.0 -23.72 0.51 
6 -2.0 -0.2 -2.0 +2.0 +2.0 -23.37 0.28 
7 -2.0 -2.0 -2.0 +2.0 +2.0 -23.27 -0.13 
8 -2.0 -0.5 -2.0 +2.0 +2.0 -23.35 0.22 
9 -2.0 +1.9 -2.0 +2.0 +2.0 -24.39 0.77 

10 -2.0 +2.0 -2.0 +2.0 +2.0 -24.46 0.79 
11 -2.0 +1.7 -2.0 +2.0 +2.0 -24.14 0.71 
12 -2.0 +1.2 -2.0 +2.0 +2.0 -23.92 0.61 
13 -2.0 +0.9 -2.0 +2.0 +2.0 -23.83 0.54 
14 -2.0 +0.4 -2.0 +2.0 +2.0 -23.49 0.42 
15 -2.0 +1.0 -2.0 +2.0 +2.0 -23.87 0.56 
16 -2.0 -2.0 -2.0 +2.0 +2.0 -23.27 -0.13 
17 -2.0 +0.9 -2.0 +2.0 +2.0 -23.79 0.54 
18 -2.0 +0.9 -2.0 +2.0 +2.0 -23.76 0.53 
19 -2.0 +2.0 -2.0 +2.0 +2.0 -24.42 0.79 
20 -2.0 +1.0 -2.0 +2.0 +2.0 -23.83 0.56 
21 -2.0 +0.7 -2.0 +2.0 +2.0 -23.72 0.49 
22 -2.0 +1.4 -2.0 +2.0 +2.0 -24.09 0.66 
23 -2.0 -0.1 -2.0 +2.0 +2.0 -23.46 0.32 
24 -2.0 +1.7 -2.0 +2.0 +2.0 -24.27 0.73 
25 -2.0 -0.2 -2.0 +2.0 +2.0 -23.42 0.29 
26 -2.0 -0.5 -2.0 +2.0 +2.0 -23.35 0.22 
27 -2.0 +1.1 -2.0 +2.0 +2.0 -23.91 0.58 
28 -2.0 +0.8 -2.0 +2.0 +2.0 -23.76 0.51 
29 -2.0 +0.4 -2.0 +2.0 +2.0 -23.60 0.42 
30 -2.0 +2.0 -2.0 +2.0 +2.0 -24.46 0.79 
31 -2.0 +1.4 -2.0 +2.0 +2.0 -24.09 0.66 
32 -2.0 +1.2 -2.0 +2.0 +2.0 -23.97 0.61 
33 -2.0 +1.9 -2.0 +2.0 +2.0 -24.39 0.77 
34 -2.0 +0.5 -2.0 +2.0 +2.0 -23.65 0.45 
35 -2.0 +0.6 -2.0 +2.0 +2.0 -23.69 0.47 
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Optimization was started initially with default 
settings of optimization toolbox. Further, the 
parameters were varied by changing one parameter at 
a time while keeping other parameters as set earlier. 
Number of trials was allowed on monitoring the 
solutions. Finally, 35 set of process parameters were 
arrived to yield best solutions after 203 iterations. 
These set of values with corresponding objective 
values are shown in Table 4. The settings of genetic 
algorithm toolbox for the input decision variables 
corresponding to the best fitness values of objectives 
are shown in Table 5. 

 
Table 5. GA parameter settings for the best fitness 

values of objectives 
Parameters Method/Value 
Number of variables 5 
Lower bounds [-2 -2 -2 -2 -2] 
Upper bounds [+2 +2 +2 +2 +2] 
Population type Double vector 
Population size 100 
Creation function Feasible 
Initial range [-2;+2] 
Selection function Tournament 
Tournament size 2 
Reproduction cross over fraction 0.7 
Mutation Constraint dependent 
Cross over function Scattered 
Migration Forward 
Migration fraction  0.1 
Distance measure function  Default 
Stopping criteria generation 250 
Stall generation 200 

 
 

RESULTS AND DISCUSSION 
 

The results obtained for the multi-response 
optimization using RSM for achieving maximum 
value volume of reinforcement (VR) and minimum 
value of volume of penetration (VP) of stainless-steel 
claddings are shown in Figure 6. The global solution 
for the optimization was arrived based on the 
consideration of effects of process variables on the 
responses by RSM. Best global solution suggested 
after went through a number of local solutions and 
optimum set of process parameter values are presented 
in the Table 6. Composite desirability values for all 
three responses were almost unity. Hence, this 
combination of process parameters is believed to be 
the best optimized settings of FCAW process 
parameters suggested by RSM to obtain the desired 
values of responses simultaneously. 

The genetic algorithm was also allowed to 
search for a best set of process parameters. In support 
to this, the relationship between average spread and 
generations obtained are shown in Figure 7. It is seen 
that, the spread was wider at the start and later the 
spread converges to a narrow range with respect to the 
increase in generations and therefore, no contravention 
noted. Also, the relationship between volume of 

reinforcement and volume of penetration is 
represented in the pareto front optimal points shown in 
Figure 8. These optimal points are supportive to 
choose a set of alternative process parameters for 
producing claddings with productivity and quality 
benefits. Optimization results obtained from RSM is 
shown in Figure 6 and compared with GA in Table 6 
for comparison purpose. It could be seen that GA 
results are better than RSM results to yield best set of 
optimum process variables of FCAW process, though, 
the difference in values between RSM and GA results 
was almost negligible. 
 

 
Fig. 6.  Optimal set of process parameters and 

responses using RSM 

 

 
Fig. 7.  Average spread for the optimization 

 

 
Fig. 8.  Pareto front optimal points between 

reinforcement volume (Objective 1) and penetration 
volume (Objective 2) 
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Table 6. Comparison of RSM and GA results 

Description Parameters/Responses Units 
Optimization 

results (coded) 
RSM GA 

Process 
variables 
(coded) 

Open circuit voltage 
(V) - -2 -2 

Wire feed rate (F) - +2 +2 

Welding speed (S) - -2 -2 
Nozzle-to-plate distance 
(D) - -2 +2 

Electrode angle (E) - +2 +2 

Cladding 
Responses 

Reinforcement volume 
(VR) cm3 18.57 24.45 

Penetration volume 
(VP) cm3 0.78 0.79 

Conformity 
test results 

Reinforcement volume 
(VR) cm3 - 24.22 

Penetration volume 
(VP) cm3 - 0.80 

 
Conformity tests were conducted with the 

settings suggested by genetic algorithm tool for 
validating the capability of developed mathematical 
model and optimization results. A like working 
conditions established during the experimental runs 
was developed and followed during this conformity 
test run also. Results obtained during this experiment 
are presented in Table 6. The prediction capability of 
the models and the optimum set of process variables 
were found to be quite acceptable with good 
agreements based on the results of conformity tests. 

 
CONCLUSION 

 
Following conclusions were arrived from this 

investigation. 
(i) Response surface methodology was successfully 

implemented to establish mathematical regression 
models for stainless steel-clad bead geometry 
factors (i.e. volume of reinforcement and volume 
of penetration) and to establish fitness functions 
for the GA optimization. 

(ii) It was revealed that the GA was able to produce the 
best optimal set of process parameters for the 
objectives considered though both RSM and GA 
producing optimal solutions with a negligible 
difference for multi-objective optimization. 

(iii) The genetic algorithm could suggest a number of 
optimal solutions to support the operator’s choice 
whereas RSM could be employed for availing near 
optimal solutions such that a reference point to GA. 

(iv) Conformity experiments reveal that prediction 
capability of developed models and optimization 
results obtained are readily acceptable to produce 
the claddings with desired goals. 

(v) The optimum set of the FCAW process parameters 
suggested by the GA was able to produce cladding 
with the volume of reinforcement of 24.22 cm3 and 
volume of penetration of 0.80 cm3 without 
compromising productivity and quality benefits. 
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