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ABSTRACT 
 

Arc welding has low costs and offers high 
welding efficiency. Visual inspection, the easiest 
welding inspection method, is prone to human error. 
This research proposes a convolutional neural network 
(CNN)-based method for classifying welding defects 
into the following categories: ‘no defect’, ‘blow hole’, 
‘lack of fusion’, ‘incompletely filled groove’, and 
‘undercut’. The weld bead was positioned under a 
camera, and the captured images were transmitted to a 
computer, which recognised defects in the images. 
After recognition, the computer saved the images and 
added them to a defect detection dataset to ensure that 
the dataset was continuously updated. The proposed 
defect recognition model achieved an accuracy as high 
as 97.2%. A comparison was conducted for different 
numbers of images and training iterations. We 
recommend collecting a minimum of 800 images 
when a CNN model is to be trained from scratch to 
detect welding defects. 
 

INTRODUCTION 
 
Arc welding is a method in which metals are joined by 
creating a high-temperature arc by using electric 
current. This method is widely utilised in industries 
because of its low cost and high welding efficiency. 
Welding inspection in the form of visual inspection is 
typically conducted after welding is completed.   
 
 
 
 
 
 
 
 
 
 
 
 
 

However, visual inspection is susceptible to human 
factors, leading to potential flaws in the identification 
of welding defects. Therefore, designing a defect 
recognition system to enhance the accuracy of defect 
identification is essential (Wang & Zhu, 2021). 

Image recognition combined with deep learning 
has proven to be highly effective in defect detection. 
Luo (2005) showcased the ability of artificial neural 
networks to identify welding abnormalities during 
laser welding. The aforementioned study focused on 
laser welding, which limits the applicability of its 
findings to other welding methods such as arc welding. 
Moreover, previous studies have not addressed the 
real-time processing needs of industrial environments. 
Kasban (2011) successfully detected welding defects 
through radiographic and ultrasonic imaging, even in 
noisy environments. Despite the robustness of this 
method, the method is infeasible for widespread 
industrial application because it requires complex and 
costly imaging equipment. Moreover, interpreting 
radiographic images is a specialised skill demanded by 
the aforementioned approach. Related studies have 
shown the potential of machine learning and deep 
learning for improving precision and predictive 
capabilities in various applications. For instance, Peng 
et al. (2024) conducted nonlinear dynamic analysis 
and forecasting of symmetric aerostatic cavities 
bearing systems. Wang et al. (2022) demonstrated the 
use of an optimized XGBoost model for predicting 
turning precision. Lin et al. (2020) applied support 
vector machine based on the artificial fish-swarm 
algorithm for diagnosing ball-bearing faults. Jian et al. 
(2019) used a general regression neural network to 
predict spindle displacement caused by heat. Both 
Yang (2020) and Yang (2021) have reported high 
accuracy rates for a deep-learning-based method that 
was used to perform defect localisation during welding. 

To address these research gaps, the present 
study developed a convolutional neural network 
(CNN)-based approach for the automated detection of 
arc welding defects. Previous studies primarily 
focused on defect localization rather than defect 
classification, and the datasets used were limited, 
potentially not representing the diverse range of 
welding defects encountered in real-world 
applications. Our method involves training a CNN 
model using images of welding defects, designed to 
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recognize defects such as porosity, poor weld 
formation, insufficient filler metal, weld erosion, and 
defect-free regions. This approach effectively 
addresses errors overlooked during visual inspection. 
The main contributions of this research are as follows: 

 
1. A CNN-based approach was developed to detect 

arc welding defects to improve welding 
inspection systems. 

2. The developed CNN-based system can classify 
different types of welding defects. 

3. A total of 1250 images were annotated for 
classifying welding defects. 

4. Welding defects were classified with an 
accuracy as high as 97.2%. 

 
Classification of welding defects 

 
Blow hole 

Blow holes form when excessive gases are 
present during welding, which leads to the formation 
of cavities on the surface as the metal solidifies. Blow 
holes can reduce the strength of the weld bead and 
compromise the integrity of the structure (Choudhury, 
2023). Welding fractures typically initiate from blow 
holes (Ro, 2021). From an engineering perspective, 
blow holes form when (1) the surface of the welded 
workpiece is contaminated with rust or oil and when 
(2) the welding flux on the welding rod is damp. 
Robotic inspection achieves a 95% accuracy in the 
detection of blow holes in the weld bead. 
 

 
Fig. 1 Schematic of blow holes in the weld bead  

 
Lack of fusion 

Lack of fusion occurs when the weld bead and 
the base material are incompletely fused together. 
From an engineering perspective, lack of fusion can 
occur because of (1) low electric current, which results 
in insufficient temperature for complete metal melting, 
and (2) welding rod bias towards one side during 
welding, which results in uneven fusion of the 
workpiece (Hong, 2018). Robotic inspection offers 
high accuracy in the detection of lack of fusion during 
the welding of ultrathin plates. This method can serve 
as a foundation for intelligent defect detection.  
 

 
 

Fig. 2 Schematic of lack of fusion between the weld 
bead and the base material  

 
Incompletely filled groove 

An incompletely filled groove refers to a groove 
with insufficient molten fill during the welding 
process. Such grooves can occur on the surface and 
bottom of the weld bead. Incompletely filled grooves 
occur because of (1) insufficient welding current and 
(2) excessive welding speed. For workpieces with poor 
heat conduction, flame heating can be employed to 
prevent the occurrence of defects. 
 

 
 

Fig. 3 Schematic of a weld bead with incompletely 
filled grooves 

 
Undercut 

An undercut refers to a groove that appears at the 
junction between the weld bead and the workpiece; 
such grooves cause excessive stress concentration 
within the material. Undercuts can occur because of (1) 
excessive current, which leads to inadequate molten 
fill in the weld groove, and (2) failure to clean the plate 
before welding. As the welding speed decreases, the 
occurrence of undercuts gradually decreases until they 
are completely eliminated. 
 

 
Fig. 4 Schematic of an undercut in the weld bead.  
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Experimental setup 
 

This research developed a CNN model for 
welding defect detection. The welding images used in 
this study were captured by the researchers at a factory. 
The captured images were sorted into a training 
database and test database, which facilitated 
subsequent deep learning training. Specific types of 
welding defects could be identified by the developed 
model. 

The welding defect detection system developed 
in this study consists of a computer, camera, and 
lighting system. The weld bead is positioned beneath 
the camera, and the captured images are transmitted to 
the computer, which performs defect recognition on 
the images, stores the images, and executes 
preprocessing. The images are then added to a welding 
defect dataset to ensure that this dataset is 
continuously updated. 

 
Fig. 5 Schematic of welding defect detection  

 
Image preprocessing 
 

The light source was positioned directly above 
the weld seam during imaging. System use was 
minimised to avoid excessive carbon emissions. The 
captured images were preprocessed by adjusting the 
brightness level by ±20. The images were subjected to 
contrast adjustments after they had been classified as 
‘blow hole’, ‘lack of fusion’, ‘incompletely filled 
groove’, ‘undercut’, or ‘no defect’. The contrast was 
individually increased and decreased, and rotations 
were applied. Because the captured images were 
colorised and were resized to 64 during deep learning 
training, all of them had the standardised dimensions 
of 64 × 64 × 3. These images were then sorted in a 4:1 
ratio into training and testing datasets. The quantity of 
images under each defect category is detailed in Table 
1. 
 
Table 1 Image count in the training and testing 
datasets  

 Good Blow 
Hole 

Lack of 
Fusion 

Incomp
letely 
Filled 

Groove 

Underc
ut 

Training  
Database 448 96 248 172 44 

Test  
Database 112 24 62 43 11 

 
Convolutional neural network  

A CNN is a type of deep learning model 
composed of convolutional, pooling, flatten, dropout, 
and dense layers. The convolutional layer is the core 
of a CNN model; this layer extracts local features from 
images by using filters. The pooling layers effectively 
compress images without losing information by 
dividing them into multiple windows and selecting the 
maximum value from each window. The flatten layer 
transforms the output data generated by the 
convolutional and pooling layers into one-dimensional 
data, which are required for input into the dense layer. 
The dropout layer randomly discards some neuron 
outputs to prevent overfitting, thereby enhancing the 
model’s generalizability. The dense layer is a fully 
connected layer that classifies images. The output 
generated by the convolutional and pooling layers is 
fed to the fully connected layer, where the extracted 
features are weighted to improve training accuracy. 
The complexity of deep learning models increases 
with the depth of training. However, although 
increased model complexity improves accuracy, it also 
increases the likelihood of overfitting. 

The CNN model developed in this study 
primarily consists of four blocks. Each of the first three 
blocks contains three convolutional layers and one 
pooling layer. The convolutional layers in the first, 
second, and third blocks have dimensions of 3 × 3 × 
32, 3 × 3 × 64, and 3 × 3 × 128, respectively. Moreover, 
the pooling layers in the first, second, and third blocks 
have dimensions of 2 × 2 × 32, 2 × 2 × 64, and 2 × 2 × 
128, respectively. The fourth block is composed of 
three (3 × 3 × 256) convolutional layers, one (2 × 2 × 
256) pooling layer, one flatten layer, one dropout layer, 
and one dense layer (Figure 6).  
 

 
Fig. 6 Architecture of the CNN model developed in 

this study 
 
Confusion matrix 

A confusion matrix is a table used for evaluating 
the prediction results of a supervised deep learning 
model. This matrix has dimensions of N × N, where N 
represents the number of classification categories 
(Table 2). The effectiveness of a deep learning model 
can be quickly determined by calculating its accuracy. 
The formula for calculating accuracy is presented in 
Equation (1). Moreover, the formulas for calculating 
F1 score, precision, and recall are presented in 
Equations (2)–(4), respectively. 
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Table 2 Structure of a 5 × 5 confusion matrix  
 

 A B C D E 

A 𝑀𝑀11 𝑀𝑀12 𝑀𝑀13 𝑀𝑀14 𝑀𝑀15 

B 𝑀𝑀21 𝑀𝑀22 𝑀𝑀23 𝑀𝑀24 𝑀𝑀25 

C 𝑀𝑀31 𝑀𝑀32 𝑀𝑀33 𝑀𝑀34 𝑀𝑀35 

D 𝑀𝑀41 𝑀𝑀42 𝑀𝑀43 𝑀𝑀44 𝑀𝑀45 

E 𝑀𝑀51 𝑀𝑀52 𝑀𝑀53 𝑀𝑀54 𝑀𝑀55 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑀𝑀𝑖𝑖𝑖𝑖
5
𝑖𝑖=1

∑ ∑ 𝑀𝑀𝑖𝑖𝑖𝑖
5
𝑖𝑖=1

5
𝑖𝑖=1

 ( 1 ) 

 
F1 − score = 2×precision×recall

precision+recall
 ( 2 ) 

 
Precision = 𝑀𝑀𝑘𝑘𝑘𝑘

∑ 𝑀𝑀𝑘𝑘𝑖𝑖
5
𝑖𝑖=1

 ( 3 ) 

 
Recall = 𝑀𝑀𝑘𝑘𝑘𝑘

∑ 𝑀𝑀𝑘𝑘𝑖𝑖
5
𝑖𝑖=1

 ( 4 ) 

 
Results 

 
The objective of the present study was to classify 

welding defects. The collected images were compiled 
into a dataset, and image recognition was conducted 
after deep learning training to categorise welding 
defects. The accuracy of our CNN model was 
evaluated at epochs 30, 50, 80, 100, and 150 by using 
400, 600, 800, and 1000 training images (Figure 7). 
 
 

 
 

Fig. 7 Accuracy of the developed CNN model under 
different numbers of epochs and images 

 
Table 3 summarises the training times exhibited 

by the proposed CNN model at epochs 30, 50, 80, 100, 
and 150 when 400, 600, 800, and 1000 training images 
were used. The training time increased with the 
number of images. Table 3 and Figure 7 reveal that the 
model accuracy did not vary considerably with the 
number of images at epoch 30. At epoch 50, the use of 
800 and 1000 images resulted in a considerable 
enhancement in the model accuracy, whereas the use 
of 400 and 600 images did not produce a notable 
increase in accuracy. At this epoch, the best results 

were obtained with 800 images, followed by 1000 
images. At epoch 80, the best accuracy was achieved 
when 1000 images were used for training. At this 
epoch, training with 600 and 800 images also resulted 
in a considerable accuracy improvement, whereas 
training with 400 images led to a noticeable decline in 
accuracy. At epoch 100, training with 1000 images 
yielded the highest accuracy. Training with 400, 600, 
and 1000 images resulted in only marginal variations 
in accuracy. At epoch 150, training with 400, 600, 800, 
and 1000 images resulted in a decrease in accuracy, 
which indicated the occurrence of overfitting. 
 
Table 3 Training times of the proposed CNN model at 
different epochs when different numbers of training 
images were used 
 

Counts 
 

Epochs 

400 
 

 600    800 
Time(s) 

1000 
 

30 230.38 380.67 516.64 590.84 
50 383.53 642.54 844.43 948.38 
80 631.46 1029.91 1375.76 1546.25 

100 820.39 1182.17 1701.25 1974.03 
150 1176.03 1951.98 2606.38 3261.75 

 
The results indicated that the highest model 

accuracy was achieved when 1000 training images 
were used. Therefore, the confusion matrix was 
determined for training with 1000 images. At epoch 30, 
the model failed to recognise welding defects, yielding 
an accuracy of only 44.4% (Figure 8). At epoch 50, the 
model's welding defect recognition improved, with its 
accuracy being 68.2% (Figure 9). At epoch 80, the 
model exhibited good accuracy in welding defect 
recognition, with its accuracy in detecting 
incompletely filled grooves being 95.2% (Figure 10). 
At epoch 100, the model achieved an accuracy of 
97.2% (Figure 11). Finally, at epoch 150, the model 
accuracy marginally reduced to 95.6% (Figure 12), 
which indicated the occurrence of overfitting. 
 

 
Fig. 8 Confusion matrix at epoch 30 
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Fig. 9 Confusion matrix at epoch 50 

 

 
Fig. 10 Confusion matrix at epoch 80 

 

 
Fig. 11 Confusion matrix at epoch 100 

 

 
Fig. 12 Confusion matrix at epoch 150 

 
The highest model accuracy was achieved at 

epoch 100 (Figure 7). Therefore, precision, recall, and 

F1 score were calculated at epoch 100. Extremely high 
precision, recall, and F1 scores were obtained for ‘lack 
of fusion’ and undercuts. However, relatively low 
recall and precision were achieved for incompletely 
filled grooves and blow holes, respectively. 
 
Table 4 Precision, recall, and F1 scores at epoch 100. 

 Good Blow 
Hole 

Incomp
letely 
Filled 

Groove 

Lack of 
Fusion 

Underc
ut 

Precisi
on 0.9735 0.8276 0.9821 1.0000 1.0000 

Recall 0.9821 1.0000 0.8871 1.0000 1.0000 
F1-

Score 0.9778 0.9057 0.9321 1.0000 1.0000 

 
 

 
CONCLUSIONS 

 
This study developed an image recognition 

model for welding defect classification. The 
developed CNN model not only detects welding 
defects but also distinguishes between different types 
of defects. Images of different types of welding defects 
were compiled into a dataset for training and testing. 
This study analysed the training time and accuracy of 
the proposed model at different epochs when different 
numbers of training images were used. The following 
conclusions were drawn on the basis of the results of 
this study: 
1. The proposed CNN model achieved an accuracy 

of up to 97.2% in welding defect classification. 
2. The highest model accuracy was achieved for 

100 training epochs. Further enhancement in 
model performance can be achieved by 
optimising the training parameters. 

3. The use of 400 images resulted in poor model 
accuracy. Overall, the results indicate that a 
minimum of 800 images should be used to train 
the proposed CNN model for welding defect 
detection and classification. 

Future research can improve the system proposed in 
this paper for welding defect detection. A weld may 
exhibit multiple defects, which can affect the accuracy 
of defect identification. An expert system capable of 
detecting and locating multiple defects can be 
designed, thereby reducing material wastage during 
training and ensuring environmental sustainability. 
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