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ABSTRACT 
 

Disc brake squeal is a nonlinear transient 
phenomenon of the friction-induced self-excited 
instability of an automotive brake system.  In most 
situations, decreasing this squeal noise to some extent 
during braking is very important for the comfort of 
passengers, which is dependent on an absence of chaos; 
consequently, suppressing chaos becomes quite 
important.  Therefore, this study aims to confirm 
chaotic motion and apply synchronization to control 
chaos for an automotive disc brake system.  Rich 
dynamics of the disc brake system were studied using 
a bifurcation diagram, phase portraits, a Poincaré map, 
frequency spectra, and Lyapunov exponents.  First, 
the largest Lyapunov exponent was estimated using 
synchronization to identify periodic and chaotic 
motions.  Next, complex nonlinear behaviors were 
thoroughly observed for a range of parameter values 
in the bifurcation diagram.  Finally, a continuous 
feedback control method based on synchronization 
characteristics was proposed to eliminate chaotic 
oscillations, improve the performance of the 
automotive disc brake system, and prevent brake 
squeal noise from occurring.  Numerical simulations 
were utilized to verify the feasibility and efficiency of 
the proposed control technique. 
 

INTRODUCTION 
 

In many engineering applications, dry friction, 
clearance, and impact factors often result in a sudden 
change of the vector fields describing the dynamic 
behaviors of mechanical systems.  These systems 

 
 

 
 
 
 

 

are not smooth, and are referred to as non-smooth 
dynamical systems.  Dry friction is a typical non-
smooth factor and plays an important role in 
engineering applications.  It is a source of self-
sustained oscillations, which are referred to as stick-
slip oscillations.  These oscillations often cause some 
undesired effects observed in engineering applications, 
including the noise of a squeaking automotive 
windshield wiper (Chang and Lin, 2004) and the action 
of squealing brakes. 
 In the automotive industry, brake squeal has 
become an important cost factor due to customer 
dissatisfaction and it has been a challenging issue for 
many engineers and researchers due to its immense 
complexity.  A great deal of research has focused on 
brake squeal using a variety of analysis and 
experimental methods (Quyang et al., 1992; Ahmed, 
2012; Chen, 2007; Kinkaid et al., 2003; Kang, 2012; 
Oberst et al., 2013).   The analysis of automotive 
disc brake squeal performed by Ouyang et al., leads to 
an important conclusion: chattering behavior is a self-
excited vibration based on a stick-slip phenomenon 
and exists only in a certain range of friction parameters.  
Beyond this range, chatter vibrations no longer occur.  
This property is a feature of the stick-slip phenomenon 
that can be observed in other physical systems (Tarng 
and Cheng, 1995; Mokhtar et al., 1998; Oancea and 
Laursen, 1998; Awrejcewicz et al., 2005).  Much 
progress and insight have been gained in recent years 
and brakes have become quieter.  However, 
squealing still occurs frequently, and therefore, much 
still needs to be understood and done.  The dynamic 
behaviors of the disc brake system can be investigated 
to find an effective way of controlling brake vibrations 
and squealing noises.  Thus, noise generation and 
suppression have become important factors in the 
design and manufacture of brake components. 

It is well known that brake squeal is a nonlinear 
transient phenomenon and a number of studies using 
analytical and experimental models of brake systems 
indicate that it can be treated as chaotic motion (Oberst 
and Lai, 2011; Shin et al., 2002a, b).  Shin et al. 
(2002a, b) showed that a forced two-degree-of-
freedom (2 - DOF), dry friction 
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analysis model with negative-velocity gradient 
characteristics developed chaotic pad motion when 
frequencies of the pad and the disc were close to each 
other.  Various numerical features such as 
bifurcation diagrams, phase portraits, Poincaré maps, 
frequency spectra, and Lyapunov exponents can be 
presented to observe periodic and chaotic motions.  
For a broad range of parameters, the Lyapunov 
exponent provides the most powerful means of 
measuring the sensitivity of a dynamical system to its 
initial conditions.  It can be used to determine 
whether a system is in chaotic motion.  The 
algorithms for computing Lyapunov exponents of 
smooth dynamical systems are well established 
(Shimada and Nagashima, 1979; Wolf et al., 1985; 
Benettin et al., 1980a, b).  However, some non-
smooth dynamical systems have discontinuities where 
this algorithm cannot be directly applied, such as those 
associated with dry friction, backlash, or impact.  
Many works have proposed methods for calculating 
the Lyapunov exponents of non-smooth dynamical 
systems (Muller, 1995; Hinrichs et al., 1997; Stefanski, 
2000).  The method proposed by Stefanski (2000) for 
estimating the largest Lyapunov exponent for a disc 
brake system is employed in this study. 

Although some chaotic behavior may be 
acceptable, it is generally undesirable as it degrades 
performance and restricts the operating range of many 
electrical and mechanical devices.  Recently, the 
control of a chaotic stick-slip mechanical system has 
advanced considerably and various techniques have 
been proposed (Galvanetto, 2001; Dupont, 1991; 
Feeny and Moon, 2000).  Galvanetto (2001) applied 
adaptive control to unstable periodic orbits embedded 
in chaotic attractors of some discontinuous mechanical 
systems.  Feeny and Moon (2000) used high-
frequency excitation, or dither, to quench stick-slip 
chaos.  A chaotic motion must be controlled to a 
periodic orbit in a steady state to improve the disc 
brake system’s performance and eliminate chatter 
vibration in an automotive disc brake.  For this 
purpose, a continuous feedback control method 
proposed by Pyragas (1992) and Kapitaniak (1995) is 
used in this paper to convert chaos into periodic 
motion through the adaptation of combined feedback 
with a periodic external force in a special form in 
chaotic systems.  Some numerical simulation results 
are presented to establish the feasibility of the 
proposed method. 
 

MODEL DESCRIPTION 
 

The basic dynamics of brake squeal noise can be 
understood using a 2-DOF model as shown in Fig. 1 
(Shin et al., 2002a, b).  The system with subscript 1 
denotes the pad, the system with subscript 2 denotes 
the disc, and m, k, and c denote mass, stiffness, and 
damping, respectively.  The motion of the first mass 
(m1) represents the tangential motion of the pad and 

the motion of the second mass (m2) represents the in-
plane motion of the disc.  The normal force acting on 
the interface is N = P × S where P is the pressure 
applied and S is the surface area of the interface.  The 
resulting frictional force Ff is dependent on the normal 
force and the dynamic coefficient of friction between 
the two sliding surfaces.  The disc motion is the 
superposition of a constant imposed velocity v0 and 
velocity �̇�𝑥𝑑𝑑, and the pad motion has velocity �̇�𝑥𝑝𝑝. 

 

 
 

Fig. 1.  Schematic diagram of an automotive disc 
brake system. 

 
The motion of the system is governed by a static 
frictional force during stick motion and by a velocity-
dependent frictional force during slip motion.  For 
the stick mode, the stick friction force is limited by the 
maximum state friction force, i.e., |𝐹𝐹𝑠𝑠| ≤ 𝜇𝜇𝑠𝑠𝑁𝑁, and is 
balanced with the reaction forces acting on the masses.  
To conduct this study a linear friction model for the 
interface is used, and this is shown as a function of the 
relative velocity vr between the pad and the disc.  𝜇𝜇𝑠𝑠 
is the static friction coefficient and 𝜇𝜇(𝑣𝑣𝑟𝑟)  is the 
dynamic friction coefficient, i.e., 𝜇𝜇(𝑣𝑣𝑟𝑟) = 𝜇𝜇𝑠𝑠 − 𝛼𝛼|𝑣𝑣𝑟𝑟|.  
The negative gradient of the dynamic frictional 
coefficient is α.  By considering the relative motion 
between the two masses, the static frictional force can 
be written as: 
 
 𝐹𝐹𝑠𝑠 = 𝑘𝑘1𝑥𝑥𝑝𝑝 + 𝑐𝑐1�̇�𝑥𝑝𝑝 − 𝑘𝑘2𝑥𝑥𝑑𝑑 − 𝑐𝑐2�̇�𝑥𝑑𝑑 ,             (1) 
  
and the frictional force can be described by: 
 

𝐹𝐹𝑓𝑓 = �
min(|𝐹𝐹𝑠𝑠|, 𝜇𝜇𝑠𝑠𝑁𝑁 ) ∙ sgn(𝐹𝐹𝑠𝑠), for 𝑣𝑣𝑟𝑟 = 0 stick,

𝜇𝜇(𝑣𝑣𝑟𝑟)𝑁𝑁 ∙ sgn(𝑣𝑣𝑟𝑟),             for 𝑣𝑣𝑟𝑟 ≠ 0 slip.
  (2) 

 
For numerical analysis, the frictional force is switched 
appropriately according to the type of motion.  Also, 
a region of small band for the relative velocity is 
defined, i.e., |𝑣𝑣𝑟𝑟| < 𝜀𝜀 , where 𝜀𝜀 ≪ 𝑣𝑣0 .  Thus, the 
equations of motion become: 
 
𝑚𝑚1�̈�𝑥𝑝𝑝 + 𝑐𝑐1�̇�𝑥𝑝𝑝 + 𝑘𝑘1𝑥𝑥𝑝𝑝 = 𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0),       (3a) 
𝑚𝑚1�̈�𝑥𝑑𝑑 + 𝑐𝑐2�̇�𝑥𝑑𝑑 + 𝑘𝑘2𝑥𝑥𝑑𝑑 = −[𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)],    (3b) 
where 𝑣𝑣𝑟𝑟 = 𝑣𝑣0 + �̇�𝑥𝑑𝑑 − �̇�𝑥𝑝𝑝, and a constant, 𝐹𝐹𝑓𝑓(𝑣𝑣0) =
𝑁𝑁(𝜇𝜇𝑠𝑠 − 𝛼𝛼𝑣𝑣0) , is introduced to compensate for any 
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offset.  Considering the friction model, Eq. (3) can be 
written in the form of state equations to facilitate 
computation as follows: 
 
�̇�𝑥1 = 𝑥𝑥2,                                 (4a) 
�̇�𝑥2 = − 𝑐𝑐1

𝑚𝑚1
𝑥𝑥2 −

𝑘𝑘1
𝑚𝑚1
𝑥𝑥1 + 1

𝑚𝑚1
(𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)),  4(b) 

�̇�𝑥3 = 𝑥𝑥4,                                 4(c) 
�̇�𝑥4 = − 𝑐𝑐2

𝑚𝑚2
𝑥𝑥4 −

𝑘𝑘2
𝑚𝑚2
𝑥𝑥3 −

1
𝑚𝑚2

(𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)),  4(d) 
 
where xp = x1, �̇�𝑥𝑝𝑝 = �̇�𝑥1 = 𝑥𝑥2, xd = x3, �̇�𝑥𝑑𝑑 = �̇�𝑥3 = 𝑥𝑥4. 
Table 1 presents the values of the parameters used in 
the above equations. 
 
Table 1. Physical parameters of a disc brake system. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

THE OVERALL CHARACTERISTICS 
OF THE SYSTEM AND CHAOTIC 

ATTITUDE MOTION 
 

A series of numerical simulations based on Eq. 
(4) was performed to clearly understand the 
characteristics of the proposed system.  Figure 2 
shows the resulting bifurcation diagram, which 
comprehensively explains the dynamic behavior over 
a range of parameter values.  A bifurcation diagram 
is widely used to describe transitions from periodic to 
chaotic motion in dynamical systems.  The 
commercial package DIVPRK of IMSL in FORTRAN 
subroutines for mathematics applications was used to 
solve these ordinary differential equations (IMSL, Inc., 
1989).  This figure clearly indicates that the chaotic 
motions appear approximately in region III.  Period-
2n orbits appear in region II and period-1 orbits occur 
in region I.  The Poincaré map is constructed by 

viewing the phase space diagram stroboscopically in a 
way such that motion is observed periodically.  The 
phase portrait evolves from a set of trajectories 
emanating from various initial conditions in the state 
space.  When the solution reaches a stable state, the 
asymptotic behavior of the phase trajectories is 
particularly interesting and the transient behavior in 
the system is ignored.  A frequency spectrum can 
also be employed to identify and characterize the 
system.  It is often used to distinguish between 
periodic, quasi-periodic, and chaotic motion in 
dynamical systems.  A stable periodic motion is 
present in region I.  Each response is characterized by 
a phase portrait, a Poincaré map (velocity vs. phase 
angle), and a frequency spectrum.  Figure 3 indicates 
that the equilibrium point of Eq. (4) is stable if the 
parameter (damping coefficient) lies in region I.  
When the parameter (damping coefficient) lies in 
region II, period-doubling bifurcations appear.  
Figure 4 shows that a cascade of period-doubling 
bifurcations causes a series of subharmonic 
components, which show the bifurcations with the new 
frequency components at Ω/2, 3Ω/2, 5Ω/2, … ect.  
As the parameter (damping coefficient) continues to 
decrease into region III in Fig. 2, a cascade of period-
doubling bifurcations, which lead to chaotic motion, 
are clearly visible.  Therefore, chatter vibration 
occurs.  Two descriptors, namely the Poincaré map 
and the frequency spectrum, characterize the essence 
of the chaotic behavior.  The Poincare map shows an 
infinite set of points that are collectively referred to as 
a strange attractor.  The frequency spectrum of 
chaotic motion contains a broad band.  These two 
features of the strange attractor and the continuous 
type Fourier spectrum are strong indicators of chaos.  
Figure 5 clearly shows chaotic behaviors in regions III.  
Figures (5a–5c) present the phase portraits, Poincaré 
maps, and frequency spectra, respectively.  
 

 
Fig. 2. Bifurcation diagram of the velocity of the disc 

versus the damping coefficient. 
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𝑚𝑚1: mass of the pad 1.0 
𝑚𝑚2: mass of the disc 1.0 
𝑘𝑘1: stiffness of the pad 1.0 
𝑘𝑘2: stiffness of the discθ 3.0 
 𝑐𝑐1: damping coefficient of the pad  
 𝑐𝑐2: damping coefficient of the disc    
 𝑣𝑣𝑟𝑟: relative velocity between the pad and the disc  
 𝑥𝑥𝑝𝑝,𝑥𝑥𝑑𝑑: displacement variables of pad and disc 

respectively 
 

 �̇�𝑥𝑝𝑝, �̇�𝑥𝑑𝑑: velocity variables of pad and disc respectively  
𝜇𝜇𝑠𝑠: static friction coefficient 0.6 
𝑣𝑣0: constant driving speed of the disc 1.0 
N: normal force 10.0 
α:: the negative gradient of the dynamic friction 

coefficient 
0.03 

ε : a region of small band for the relative velocity that 
defines the stick motion 10-5 

µ(vr): dynamic friction coefficient dependent on the 
relative velocity 

 

K: feedback gain  
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Fig. 3. Period-1 orbit for c1 = c2 = 0.075: 
      (a) Phase portrait; (b) Poincare map; (c) 

Frequency spectrum. 
 

 
Fig. 4. Period-2 orbit for 𝑐𝑐1 = 𝑐𝑐2 = 0.02: 
      (a) Phase portrait; (b) Poincare map; (c) 

Frequency spectrum. 
 

 
Fig. 5. Chaotic motion for 𝑐𝑐1 = 𝑐𝑐2 = 0.01: 

(a) Phase portrait; (b) Poincare map; (c)  
Frequency spectrum. 

 
ESTIMATION OF THE LARGEST 

LYAPUNOV EXPONENT 
 
 The largest Lyapunov exponent is one of the 

most useful indicators for chaotic system diagnostics.  
Every dynamical system has a spectrum of Lyapunov 
exponents (λ) that determine how the length, area, and 
volumes change in the phase space.  In other words, 
Lyapunov exponents measure the rate of divergence 
(or convergence) of two initially nearby orbits.  
Chaos can be identified by simply calculating the 
largest Lyapunov exponent, thus determining whether 
nearby trajectories diverge (λ > 0) or converge (λ < 0) 
on average.  Any bounded motion in a system 
containing at least one positive Lyapunov exponent is 
defined as chaotic, while non-positive Lyapunov 
exponents indicate periodic motion. 
      Algorithms for computing the Lyapunov 
spectrum of “smooth” dynamical systems are well 
established (Shimada and Nagashima, 1979; Wolf et 
al., 1985; Benettin et al., 1980a, b).  However, “non-
smooth” dynamical systems with discontinuities such 
as dry friction, backlash or stick-slip prevent this 
algorithm from being applied directly.  The disc 
brake is simply a system that is subjected to a dry-
friction force.  Hence, this study demonstrates the 
chaotic behavior of an automotive disc brake system 
by computing the largest Lyapunov exponent.  
Stefanski (2000) recently recommended a simple 
method for estimating the largest Lyapunov exponent 
based on synchronization properties.  The 
synchronization of two distinct systems, which may 
have identical structures or may be completely 
different, has recently aroused particular interest.  
The synchronization controls the response system 
using the output of the drive system, so that the output 
of the response system asymptotically follows the 
output of the drive system. 
      Stefanski’s (2000) method for estimating the 
largest Lyapunov exponent is described briefly herein 
as follows. 
The dynamical system is decomposed into the 
following two subsystems: 
drive system 
 

)( pfp = ,                                (8) 
 
response system 
 

)(qfq = .                                (9) 
 
      Consider a dynamical system that comprise 
two identical n-dimensional subsystems; a coupling 
coefficient d is applied only to the response system (8), 
while the drive system remains unchanged.  The first 
order differential equations describing such a system 
can be expressed as, 
 

)( pfp = , 
)()( qpdqfq −+= .                      (10) 

 
     The condition of synchronization (Eq. (10)) is 
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given by the inequality 
 

maxλ>d .                               (11) 
 
     The smallest value of the coupling coefficient d 
in synchronization dS is assumed to be equal to the 
maximum Lyapunov exponent as follows: 
 

maxλ=sd .                              (12) 
 
Eq. (10) obtains the augmented system based on Eq. 
(4) as follows: 
 
�̇�𝑝1 = 𝑝𝑝2,                                                            
�̇�𝑝2 = − 𝑐𝑐1

𝑚𝑚1
𝑝𝑝2 −

𝑘𝑘1
𝑚𝑚1
𝑝𝑝1 + 1

𝑚𝑚1
(𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)),                             

�̇�𝑝3 = 𝑝𝑝4,                                                           
�̇�𝑝4 = − 𝑐𝑐2

𝑚𝑚2
𝑝𝑝4 −

𝑘𝑘2
𝑚𝑚2
𝑝𝑝3 −

1
𝑚𝑚2

(𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)).                            
�̇�𝑞1 = 𝑞𝑞2 + 𝑑𝑑(𝑝𝑝1 − 𝑞𝑞1),                                                            
�̇�𝑞2 = − 𝑐𝑐1

𝑚𝑚1
𝑞𝑞2 −

𝑘𝑘1
𝑚𝑚1
𝑞𝑞1 + 1

𝑚𝑚1
�𝐹𝐹�𝑓𝑓(𝑣𝑣�𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)� +

𝑑𝑑(𝑝𝑝2 − 𝑞𝑞2),                             
�̇�𝑞3 = 𝑞𝑞4 + 𝑑𝑑(𝑝𝑝3 − 𝑞𝑞3),                                                            
�̇�𝑞4 = − 𝑐𝑐2

𝑚𝑚2
𝑞𝑞4 −

𝑘𝑘2
𝑚𝑚2
𝑞𝑞3 −

1
𝑚𝑚2
�𝐹𝐹�𝑓𝑓(𝑣𝑣�𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)� +

𝑑𝑑(𝑝𝑝4 − 𝑞𝑞4),                              (13) 
 
where 
𝑣𝑣�𝑟𝑟 = 𝑣𝑣0 + 𝑞𝑞4 − 𝑞𝑞2  
𝜇𝜇�(𝑣𝑣�𝑟𝑟) = 𝜇𝜇𝑠𝑠 − 𝛼𝛼𝑣𝑣�𝑟𝑟 
𝐹𝐹�𝑠𝑠 = 𝑘𝑘1𝑞𝑞1 + 𝑐𝑐1𝑞𝑞2 − 𝑘𝑘2𝑞𝑞3 − 𝑐𝑐2𝑞𝑞4, 

𝐹𝐹�𝑓𝑓 = �
min��𝐹𝐹�𝑠𝑠�, 𝜇𝜇𝑠𝑠𝑁𝑁 � ∙ sgn�𝐹𝐹�𝑠𝑠�, for 𝑣𝑣�𝑟𝑟 = 0 stick,

𝜇𝜇�(𝑣𝑣�𝑟𝑟)𝑁𝑁 ∙ sgn(𝑣𝑣�𝑟𝑟),             for 𝑣𝑣�𝑟𝑟 ≠ 0 slip.
(14) 

                    
    The maximum Lyapunov exponent of the system 
is then determined for the chosen parameter values as 
described above.  Figure 6 presents the results of the 
numerical calculations showing the largest Lyapunov 
exponents obtained using the described 
synchronization method.  The system exhibits 
chaotic motion since all the largest Lyapunov 
exponents are positive for damping coefficients c1 = c2 
< 0.0168. 
 

 
Fig. 6. Evolution of the largest Lyapunov exponent. 
 
 

CONTROLLING CHAOS BY 
SYNCHRONIZATION 

 
Learning to predict the behaviors of a chaotic 

system can be beneficial; however, the ultimate 
objective is to assume control of the system.  
Avoiding chaotic phenomena to enhance the 
performance of dynamic systems requires that chaotic 
motion be transformed into periodic motion.  
Suitable control methods must therefore be developed.  
Pyragas (1992) and Kapitaniak (1995) proposed a 
simple and effective time-continuous control method 
that converts chaos into periodic motion by 
constructing a special form of a time-continuous 
perturbation and a feedback mechanism.  Figure 7 
shows the proposed feedback controlling loop with the 
external periodic perturbation.  This method is 
explained briefly below. 
      Consider an n-dimensional dynamical system: 
 

)(zPz = ,                               (15) 
)()( tFyQy += ,                         (16) 

 
where nRtytz ∈)( ),(  is the state vector, and )(tF  
denotes the input signal.  Without an input signal (F(t) 
= 0), the considered system (16) is assumed to have a 
stranger attractor, while system (15) is a periodic 
system.  Usually, the periodic system is referred to as 
the drive system and the chaotic system as the 
response system.  These two distinct systems were 
synchronized using the strategy shown in Fig. 7.  The 
difference between the signals y(t) and the signals z(t) 
are used as a control signal, 
 

)]()([)( tztyKtF −= ,                     (17) 
 
which is introduced into the chaotic system (16) as a 
negative feedback.  In Eq. (17), K represents 
feedback gain. 
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Fig. 7. Block diagram of the continuous chaos control 

method. 
 
     When 𝑐𝑐1 = 𝑐𝑐2 = 𝑐𝑐𝑧𝑧 = 0.1  is selected for the 
drive system, Eq. (4) reveals period-1 motion. 
 
�̇�𝑧1 = 𝑧𝑧2,                                (18a) 
�̇�𝑧2 = − 𝑐𝑐𝑧𝑧

𝑚𝑚1
𝑧𝑧2 −

𝑘𝑘1
𝑚𝑚1
𝑧𝑧1 + 1

𝑚𝑚1
(𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)),  (18b) 

�̇�𝑧3 = 𝑧𝑧4,                                (18c) 
�̇�𝑧4 = − 𝑐𝑐𝑧𝑧

𝑚𝑚2
𝑧𝑧4 −

𝑘𝑘2
𝑚𝑚2
𝑧𝑧3 −

1
𝑚𝑚2

(𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)).  (18d) 
 
     When 𝑐𝑐1 = 𝑐𝑐2 = 𝑐𝑐𝑦𝑦 = 0.01 is selected for the 
response system, Eq. (4) reveals chaotic motion. 
 
�̇�𝑦1 = 𝑦𝑦2,                                (19a) 
�̇�𝑦2 = − 𝑐𝑐𝑦𝑦

𝑚𝑚1
𝑦𝑦2 −

𝑘𝑘1
𝑚𝑚1
𝑦𝑦1 + 1

𝑚𝑚1
(𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)), (19b) 

�̇�𝑦3 = 𝑦𝑦4,                                (19c) 
�̇�𝑦4 = − 𝑐𝑐𝑦𝑦

𝑚𝑚2
𝑦𝑦4 −

𝑘𝑘2
𝑚𝑚2
𝑦𝑦3 −

1
𝑚𝑚2

(𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)).  (19d) 
 
A control signal Eq. (17) was introduced into Eq. (19) 
as feedback control to synchronize Eqs. (18) and (19). 
     When incorporated into Eq. (19), the control 
signal Eq. (17) yielded the following coupled system, 
which is capable of achieving synchronization: 
 
�̇�𝑦1 = 𝑦𝑦2 + 𝐾𝐾(𝑦𝑦1 − 𝑧𝑧1),                     (20a) 
�̇�𝑦2 = − 𝑐𝑐𝑦𝑦

𝑚𝑚1
𝑦𝑦2 −

𝑘𝑘1
𝑚𝑚1
𝑦𝑦1 + 1

𝑚𝑚1
�𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)� +

𝐾𝐾(𝑦𝑦2 − 𝑧𝑧2),                             (20b) 
�̇�𝑦3 = 𝑦𝑦4 + 𝐾𝐾(𝑦𝑦3 − 𝑧𝑧3),                     (20c) 
�̇�𝑦4 = − 𝑐𝑐𝑦𝑦

𝑚𝑚2
𝑦𝑦4 −

𝑘𝑘2
𝑚𝑚2
𝑦𝑦3 −

1
𝑚𝑚2
�𝐹𝐹𝑓𝑓(𝑣𝑣𝑟𝑟) − 𝐹𝐹𝑓𝑓(𝑣𝑣0)� +

𝐾𝐾(𝑦𝑦4 − 𝑧𝑧4).                             (20d) 
 
     Eq. (20) reveals chaotic motion when K = 0 
and  𝑐𝑐𝑦𝑦 = 0.01 .  Adjusting the feedback gain K > 
0.024 converts the dynamics of system (20) from 
chaotic motion into periodic motion.  Figure 8 
presents the resulting bifurcation diagram, which 
comprehensively explains the dynamic behavior over 
a range of feedback gains.  Chaotic motion appeared 
when K ≤ 0.024 and periodic motion appeared when K 
> 0.024.  Accordingly, if the chaotic motions were 
converted into periodic motions, then the feedback 

gain should be selected to satisfy the condition K > 
0.024.  The chaotic disc brake system (19) can be 
synchronized by applying the control signal.   Thus, 
this chaotic disc brake system can be managed using 
the control signal (K = 0.05), such that chaotic motion 
is converted into period-2 motion.  The control signal 
is introduced after t = 200 s.  Figure 9 presents the 
time response and phase portrait for K = 0.05. 
 

 
Fig. 8. Bifurcation diagram of a system with 

continuous control, where K is the feedback 
gain. 

 

 
Fig. 9. Controlling chaotic motion (𝑐𝑐1 = 𝑐𝑐2 = 0.01) to 

a desired period-two orbit for K = 0.05: (a) 
time response of the displacement; (b) phase 
portrait of the controlled system (20), the 
control signal is added after 200 s. 

 
 

CONCLUSIONS 
 
     This investigation studied complex nonlinear 
behavior and the chaos control problem on an 
automotive disc brake system.  Numerical methods 
including time responses, Poincaré maps, frequency 
spectra, and the largest Lyapunov exponent were 
employed to obtain the characteristics of the nonlinear 
disc brake system.  The resulting bifurcation diagram 
showed many nonlinear dynamics and chaotic 
phenomena, revealing that the disc brake system 
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exhibits chaotic motion at lower damping coefficients.  
Nonlinear analysis using a 2-DOF model has been 
presented to demonstrate the rich nonlinear dynamics 
of the disc brake squeal noise and to show the 
importance of damping.  The Lyapunov exponent is 
a very powerful tool for determining whether a system 
exhibits chaotic motion.  The largest Lyapunov 
exponent of the disc brake system was estimated from 
the properties of its synchronization phenomenon.  
Finally, a continuous control method based on 
synchronization characteristics was applied to 
suppress chaotic motion, improve the performance of 
the disc brake system, and prevent brake squeal noise 
from occurring.   
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基於同步化應用於車輛碟

式煞車系統之渾沌控制 
 

張舜長 
大葉大學機械與自動化工程學系 

 
 

摘 要 

    車輛碟式煞車所產生的尖銳聲音是由摩擦力

導致的一種非線性現象。，降低在煞車時的尖銳聲

對乘客舒適性而言是很重要的，而此現象造成因素

是煞車系統產生渾沌運動所致。因此，本文旨在探

討碟式煞車系統的非線性動態。藉由分歧圖、相圖、

龐克映相圖、頻譜圖及李亞譜諾指數來呈現其非線

性行為。利用最大的李亞譜諾指數來驗證系統是否

有存在渾沌行為。最後，採用同步化法及連續控制

法去控制渾沌運動，並經由數值模擬結果顯示，所

提出的控制方式皆能有效地控制煞車系統渾沌行

為的發生並能將之轉換為穩定的周期運動，以抑制

煞車時產生的尖銳聲。。 

 
 
 
 
 
 
 
 
 


