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ABSTRACT 

 
The main objective of this study is to explore the 

complex nonlinear dynamics and chaos control of an 
automotive electronic throttle system.  The effects of 
varying the parameter values of an electronic throttle 
system can be observed in bifurcation diagrams.  
Various periodic solutions and nonlinear phenomena 
can be expressed using various numerical methods, 
such as time responses, phase portraits, Poincaré maps, 
and frequency spectra.  It is shown that electronic 
throttle systems can undergo a cascade of period-
doubling bifurcations prior to the onset of chaos.  
Estimates of the largest Lyapunov exponent based on 
synchronization properties reveal the occurrence of 
chatter vibrations, which is indicative of chaotic 
motion.  In addition, state feedback control and 
dither signal control are applied to suppress the chaotic 
behavior of electronic throttle systems.  Numerical 
simulation results demonstrate the effectiveness of 
these proposed control approaches. 
 

INTRODUCTION 
 
     An electronic throttle system adjusts the air 
inflow into the combustion chamber of the engine, 
which is a DC-motor-driven valve.  Throttle control 
is an important aspect of engine control.  The 
engine’s power dynamic response is achieved by 
adjusting the intake air volume.  Throttle control is 
the main method used to adjust engine air intake.  
Therefore, precise throttle control is vital for 
improving power dynamics, fuel efficiency, and 
comfort, as well as reducing emissions (Humaidi and 
Hameed, 2019); Sun and Jiao, 2020).  
 
 

 
 
 
 
 
 

The synthesis of a satisfactory electronic throttle 
control system is difficult owing to its nonlinear 
characteristics, such as the strong nonlinear effects of 
stick-slip friction, springs, and gear backlash (Bai et 
al., 2016; Yu et al., 2007; Pan et al., 2008). The most 
important issue in electronic throttle system operation 
is the improvement in vehicle drivability, fuel 
economy, and emissions.  Nonlinear control in 
electronic throttle system has been investigated 
extensively (Zeng and Wan, 2011; Al-samarraie and 
Abbas, 2012; Bai and Tong, 2014; Wan et al., 2016).  
An electronic throttle system is typically described by 
a nonlinear dynamical system of equations, including 
system parameters. Altering one of these parameters 
changes the electronic throttle system dynamics that 
exhibit chaotic, resulting in an unstable engine system.  
However, the chaotic motion in an electronic throttle 
system may cause destabilization, thereby resulting in 
misfires or the incomplete combustion of the engine 
system.  Modern nonlinear theories of bifurcation 
and chaos are widely adopted in studies of nonlinear 
systems, and chaos dynamics in electronic throttle 
systems have been widely investigated (Jin et al., 2008; 
Bernardo et al., 2009; Yuan et al., 2011; Yang et al., 
2012; Jiao et al., 2019; Zhai and Wu, 2020; Ren et al., 
2021). 
 
     In this study, a variety of numerical methods is 
applied, including bifurcation diagrams, phase 
portraits, Poincaré maps, and frequency spectra to 
explain the rich nonlinear dynamics in an automotive 
electronic throttle system.  Among various 
parameters, the Lyapunov exponent is the most 
effective for measuring the sensitivity of a dynamic 
system, as it pertains to the initial conditions.  It can 
be used to determine whether a system is susceptible 
to chaotic motion.  The algorithms used to compute 
Lyapunov exponents associated with smooth dynamic 
systems are well-established (Shimada and Nagashima, 
1979; Wolf et al., 1985; Benettin et al., 1980).  
However, a number of non-smooth dynamic systems 
possess discontinuities, such as those associated with 
dry friction, backlash, and saturation; hence, the 
abovementioned algorithms are not applicable to these 
systems.  Methods for calculating Lyapunov 
exponents associated with non-smooth dynamic 
systems have been proposed in several studies (Zhang 
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et al., 2020; Baumann and Leine, 2017; Stefanski, 
2000).  In this study, we adopted the method 
developed by Stefanski (2000) to estimate the largest 
Lyapunov exponent in an electronic throttle system.   
 
     Chaotic behaviors in electronic throttle systems 
are considered undesirable because of the restrictions 
imposed on the operating ranges of electrical and 
mechanical devices.  In addition, the dynamics of an 
electronic throttle system become unstable when 
chaotic motions are exhibited.  If instability is not 
controlled effectively, the engine’s operating 
efficiency will be affected, and the engine system 
performance will be deteriorated (Yuan et al., 2011; 
Yang et al., 2012; Jiao et al., 2019; Zhai and Wu, 2020; 
Ren et al., 2021).  Hence, in many engineering 
applications, control approaches have been developed 
to convert chaotic motions into periodic orbits or 
steady states.  Since the pioneering work of Ott et al. 
(1990) pertaining to chaos control, many modified 
methods and other approaches have been proposed 
(Ditto et al., 1990; Hunt, 1991; Cai et al., 2002a; 
Chang and Lue, 2020; Costa and Savi, 2018; 
Tooranjipour and Vatankhah, 2018; Tacha et al., 2016; 
Tutsoy and Brown, 2016; Chang, 2020).  
Additionally, various control algorithms have been 
presented to control the chaos of electronic throttle 
systems (Ren et al., 2021; Yuan et al., 2011).  Herein, 
we propose converting chaotic behaviors into periodic 
motions to improve the performance of system 
dynamics with electronic throttle system chaotic 
behaviors.  In this study, chaotic motions in an 
electronic throttle system were inhibited using state 
feedback control (Cai et al., 2002a; Cai et al., 2002b) 
and dither signal control (Fun and Tung, 1989; Liaw 
and Tung, 1998), and simulations were performed to 
confirm the feasibility and efficacy of the proposed 
control approaches. 
 
 

PROBLEM DESCRIPTION AND 
MODELING OF ELECTRONIC 

THROTTLE SYSTEM  
 

Based on reference (Zeng and Wan, 2011), a 
schematic illustration of an electronic throttle control 
system is shown in Fig. 1, which is a mechatronic 
device consisting of a DC motor, reduction gears, a 
return spring, and a throttle valve.  The DC motor is 
an acuter that transmits torque to the throttle shaft to 
drive the throttle valve for air flow control.  In this 
system, a shaped body duct regulates the relationship 
between the angular position of the throttle valve and 
the incoming air flow into the manifold. 

 

 
Fig. 1.  Schematic of electronic throttle system. 
 
     The motor drive torque Tm is proportional to the 
current and can be expressed as 
 
𝑇𝑇𝑚𝑚 = 𝑘𝑘𝑚𝑚𝑖𝑖(𝑡𝑡),                              (1) 
 
where km is the motor torque coefficient. 
     The electrical device is modeled by an induction 
L, a resistance R, and an electromotive force E = kvωm 
induced by the rotation of the motor angle, where kv is 
the motor counter electromotive coefficient, and ωm is 
the angular velocity of the motor rotor.  The equation 
that expresses the DC armature circuit is as follows: 
 
𝐿𝐿 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑅𝑅𝑖𝑖 = 𝑢𝑢(𝑡𝑡) − 𝑘𝑘𝑣𝑣𝜔𝜔𝑚𝑚(𝑡𝑡),                 (2) 
 
where u(t) is the applied voltage. 
     The spring torque changes with the throttle 
valve opening.  The nonlinear torque of the return 
spring can be expressed as follows: 
 
𝑇𝑇𝑠𝑠 = 𝑘𝑘𝑠𝑠(𝜃𝜃 − 𝜃𝜃0) + 𝐷𝐷sgn(𝜃𝜃 − 𝜃𝜃0),             (3) 
 
where ks is the spring coefficient; D is the spring 
compensation coefficient; θ is the throttle angle; θ0 is 
the throttle initial position, which is also known as the 
limp-home position. 
     Many types of friction are involved in the 
motion of the throttle plate, such as viscous and 
Coulomb friction.  The nonlinear friction torque is 
expressed as 
 
𝑇𝑇𝑓𝑓 = 𝑘𝑘𝑑𝑑ω(𝑡𝑡) + 𝑘𝑘𝑓𝑓sgn(ω(𝑡𝑡)),                 (4) 
 
where kd is the viscous friction coefficient, kf is the 
Coulomb friction coefficient, and ω is the throttle 
valve angular velocity. 
     Assuming that the total inertia is J, based on Eqs. 
(1)-(4), the dynamic equation for the electronic throttle 
system is expressed as 
 

𝐽𝐽
𝑑𝑑ω
𝑑𝑑𝑡𝑡

= 𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑓𝑓 
    = 𝑘𝑘𝑚𝑚𝑖𝑖 − 𝑘𝑘𝑠𝑠(𝜃𝜃 − 𝜃𝜃0) − 𝐷𝐷sgn(𝜃𝜃 − 𝜃𝜃0) −
              𝑘𝑘𝑑𝑑𝜔𝜔(𝑡𝑡) − 𝐾𝐾𝑓𝑓sgn(𝜔𝜔(𝑡𝑡)) ,         (5a)  
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔(𝑡𝑡) = 𝑁𝑁𝜔𝜔𝑚𝑚(𝑡𝑡).                      (5b) 
 
     Considering Eqs. (2)-(5) and by introducing 
state variables x1 = θ − θ0, x2 = ω, and x3 = i, the state 
equations for the electronic throttle can be written as 
follows: 
 
𝑥𝑥1̇ = 𝑥𝑥2,                                 (6a) 
𝑥𝑥2̇ = 𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + 𝑎𝑎23𝑥𝑥3 − 𝛼𝛼1sgn(𝑥𝑥1) −
           𝛼𝛼2sgn(𝑥𝑥2),                          (6b) 
𝑥𝑥3̇ = 𝑎𝑎32𝑥𝑥2 + 𝑎𝑎33𝑥𝑥3 + 𝑏𝑏3𝑢𝑢(𝑡𝑡),               (6c) 
 
where 
𝑎𝑎21 = −𝑘𝑘𝑠𝑠

𝐽𝐽
, 𝑎𝑎22 = −𝑘𝑘𝑑𝑑

𝐽𝐽
, 𝑎𝑎23 = 𝑘𝑘𝑚𝑚

𝐽𝐽
, 𝛼𝛼1 = 𝐷𝐷

𝐽𝐽
, 𝛼𝛼2 =

𝑘𝑘𝑓𝑓
𝐽𝐽

, 𝑎𝑎32 = − 𝑘𝑘𝑣𝑣
𝑁𝑁𝑁𝑁

, 𝑎𝑎33 = −𝑅𝑅
𝑁𝑁
,  

𝑏𝑏3 = 1
𝑁𝑁
, 𝑢𝑢 = 𝐴𝐴0sin𝜔𝜔�𝑡𝑡 

 
For convenience, we first set 𝜔𝜔𝑛𝑛 = √−𝑎𝑎21, Ω = 𝜔𝜔�

𝜔𝜔𝑛𝑛
, 

and 𝜏𝜏 = 𝜔𝜔𝑛𝑛𝑡𝑡, and then normalize Eqs. (6a-6c) to the 
following form: 
 
𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑

= 𝑥𝑥2,                                 (7a) 
𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑

= 𝑥𝑥1 + 𝑎𝑎22
𝜔𝜔𝑛𝑛

𝑥𝑥2 + 𝑎𝑎23
𝜔𝜔𝑛𝑛2

𝑥𝑥3 −
𝛼𝛼1
𝜔𝜔𝑛𝑛2

sgn(𝑥𝑥1) −

            𝛼𝛼2
𝜔𝜔𝑛𝑛2

sgn(𝑥𝑥2),                         (7b) 
𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑

= 𝑎𝑎32
𝜔𝜔𝑛𝑛

𝑥𝑥2 + 𝑎𝑎33
𝜔𝜔𝑛𝑛

𝑥𝑥3 + 𝑏𝑏3
𝜔𝜔𝑛𝑛
𝐴𝐴0sin(Ω𝜏𝜏).         (7c) 

 
Table 1 (Pan et al., 2008) lists the numerical values for 
all the parameters used in Eq. (7). 
 

Table 1. Physical parameters of electronic throttle 
system. 

 
 
 

OVERALL CHARACTERISTICS OF 
ELECTRONIC THROTTLE SYSTEM: 

SIMULATIONS RESULTS AND 
DISCUSSIONS 

 
Numerical simulations were performed based on 

Eq. (7) to clearly understand the overall characteristics 
of the electronic throttle system.  The commercial 
package DIVPRK of IMSL in FORTRAN subroutines 
was utilized for mathematical applications to solve 
ordinary differential equation problems (IMSL, Inc., 
1989).  Figure 2 presents the resulting bifurcation 
diagram, which shows that the first period-doubling 
bifurcation occurred approximately Ω = 1.619 and that 
a chaotic motion appeared approximately below Ω = 
1.582.  Figures 3-7 show the various responses 
exhibited by this system, where each type of response 
was characterized comprehensively using a phase 
portrait, a Poincaré map, and a frequency spectrum.  
The equilibrium point indicated in Eq. (7) was stable 
at Ω > 1.619, indicating that no chatter vibration 
occurred.  Figures 3(a-c) show period-1 motions.  
In addition, Figs. 4(a-c) show a cascade of period-
doubling bifurcations with new frequency components 
at Ω/2, 3Ω/2, 5Ω/2…, which resulted in a series of 
subharmonic components.  Figures 5(a-c) show the 
first period-four bifurcation, which occurred when Ω 
was less than 1.588.  Subsequently, a cascade of 
chaos-inducing period-doubling bifurcations appeared 
as Ω continued to decrease, as shown in Fig. 2, 
resulting in chatter vibrations that could cause unstable 
behaviors; consequently, the combustion of the engine 
would be incomplete and the engine system 
performance would be deteriorated.  In other words, 
the chaos in an electronic throttle system may cause 
instability, thereby resulting in misfires or the 
incomplete combustion of the engine.  Two 
descriptors, the Poincaré map and frequency spectrum, 
can be utilized to characterize chaotic behavior.  The 
Poincaré map includes an infinite set of points known 
as strange attractors.  Meanwhile, the frequency 
spectrum of a chaotic motion is a continuous broad 
spectrum.  These two main features, i.e., strange 
attractors and continuous Fourier spectra are strong 
indicators of chaos.  Figures 6 and 7 show the chaotic 
behavior in detail. 

 

 
Fig. 2. Bifurcation diagram of throttle valve angle vs. 

Ω. 
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Fig. 3. Period-1 orbit of numerical simulation results 

for Ω = 1.63: 
      (a) Phase portrait; (b) Poincaré map; (c) 

Frequency spectrum. 

 
 
Fig. 4. Period-2 orbit of numerical simulation results  

for Ω = 1.61: 
      (a) Phase portrait; (b) Poincaré map; (c) 

Frequency spectrum. 

 
 
Fig. 5. Period-4 orbit of numerical simulation results 

Ω = 1.584: 
(a) Phase portrait; (b) Poincaré map; (c)  
Frequency spectrum. 

 
Fig. 6. Chaotic motion of numerical simulation results 

for Ω = 1.57: 
(a) Phase portrait; (b) Poincaré map; (c)  
Frequency spectrum. 

 
Fig. 7. Chaotic motion of numerical simulation results 

for Ω = 1.542: 
(a) Phase portrait; (b) Poincaré map; (c)  
Frequency spectrum. 

 
 

ESTIMATION OF LARGEST 
LYAPUNOV EXPONENT FOR 

ANALYZING CHAOS 
 The largest Lyapunov exponent is a useful 

indicator for the analysis of chaotic systems.  Every 
dynamic system possesses a spectrum of Lyapunov 
exponents (λ), which determine the length, area, and 
volume changes in the phase space.  In other words, 
Lyapunov exponents measure the rate of divergence 
(or convergence) between two adjacent orbits.  
Chaos can be identified calculating the largest 
Lyapunov exponent, which allows one to determine 
whether nearby trajectories will diverge (λ > 0) or 
converge (λ < 0).  Any bounded motion in a system 
containing at least one positive Lyapunov exponent is 
defined as chaotic, whereas non-positive Lyapunov 
exponents indicate periodic motions.  Several well-
established algorithms can be used to compute the 
Lyapunov spectrum of smooth dynamic systems 
(Shimada and Nagashima, 1979; Wolf et al., 1985; 
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Benettin et al., 1980).  However, non-smooth 
dynamic systems with discontinuities, such as dry 
friction, backlash, and saturation, do not allow the 
direct application of such algorithms (Zhang et al., 
2020; Baumann and Leine, 2017; Stefanski, 2000).  
In this study, we estimated the largest Lyapunov 
exponent to identify the onset of chaotic motion in an 
electronic throttle system.  Stefanski (2000) 
proposed a simple method for estimating the largest 
Lyapunov exponent based on properties associated 
with synchronization.  Synchronization controls the 
response system by accessing the output of the drive 
system such that the output of the response system 
asymptotically follows the output of the drive system.  
This method is described briefly below. 

The dynamic system is decomposed into the 
following two subsystems: 

a drive system expressed as 
 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) ,                             (8) 
 
and a response system expressed as 
    

�̇�𝑦 = 𝑓𝑓(𝑦𝑦) .                             (9) 
 
Consider a dynamic system comprising two 

identical n-dimensional subsystems, where the 
response system (9) is combined with the coupling 
coefficient d, and the drive system (8) remains the 
same.  The first-order differential equation used to 
describe such a system is as follows:  

 
�̇�𝑥 = 𝑓𝑓(𝑥𝑥), 
�̇�𝑦 = 𝑓𝑓(𝑦𝑦) + 𝑑𝑑(𝑥𝑥 − 𝑦𝑦) .                   (10) 

 
The condition of synchronization is provided by 

the following inequality: 
 

𝑑𝑑 > 𝜆𝜆𝑚𝑚𝑎𝑎𝑥𝑥 .                            (11) 
 
The smallest value of the coupling coefficient d 

in synchronization 𝑑𝑑𝑠𝑠 is assumed to be equal to the 
largest Lyapunov exponent, as follows: 

 
𝑑𝑑𝑠𝑠 = 𝜆𝜆𝑚𝑚𝑎𝑎𝑥𝑥 .                           (12) 

 
Eq. (10) provides an augmented system based on 

Eq. (7), as follows: 
 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑

= 𝑥𝑥2,                                (13a) 
 
𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑

= 𝑥𝑥1 + 𝑎𝑎22
𝜔𝜔𝑛𝑛

𝑥𝑥2 + 𝑎𝑎23
𝜔𝜔𝑛𝑛2

𝑥𝑥3 −
𝛼𝛼1
𝜔𝜔𝑛𝑛2

sgn(𝑥𝑥1) −

            𝛼𝛼2
𝜔𝜔𝑛𝑛2

sgn(𝑥𝑥2),                        (13b) 
 
𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑

= 𝑎𝑎32
𝜔𝜔𝑛𝑛

𝑥𝑥2 + 𝑎𝑎33
𝜔𝜔𝑛𝑛

𝑥𝑥3 + 𝑏𝑏3
𝜔𝜔𝑛𝑛
𝐴𝐴0sin(Ω𝜏𝜏).        (13c) 

 

𝑑𝑑𝑦𝑦1
𝑑𝑑𝑑𝑑

= 𝑦𝑦2 + 𝑑𝑑(𝑥𝑥1 − 𝑦𝑦1),                    (13d) 
 
𝑑𝑑𝑦𝑦2
𝑑𝑑𝑑𝑑

= 𝑦𝑦1 + 𝑎𝑎22
𝜔𝜔𝑛𝑛

𝑦𝑦2 + 𝑎𝑎23
𝜔𝜔𝑛𝑛2

𝑦𝑦3 −
𝛼𝛼1
𝜔𝜔𝑛𝑛2

sgn(𝑦𝑦1) −

            𝛼𝛼2
𝜔𝜔𝑛𝑛2

sgn(𝑦𝑦2) + 𝑑𝑑(𝑥𝑥2 − 𝑦𝑦2),            (13e) 
 
𝑑𝑑𝑦𝑦3
𝑑𝑑𝑑𝑑

= 𝑎𝑎32
𝜔𝜔𝑛𝑛

𝑦𝑦2 + 𝑎𝑎33
𝜔𝜔𝑛𝑛

𝑦𝑦3 + 𝑏𝑏3
𝜔𝜔𝑛𝑛
𝐴𝐴0sin(Ω𝜏𝜏) + 𝑑𝑑(𝑥𝑥3 −

            𝑦𝑦3).                              (13f) 
 
Next, we estimate the largest Lyapunov exponent 

for the selected parametric values using the method 
described above.  Figure 8 presents the results of the 
numerical calculations, which show the estimated 
largest Lyapunov exponents obtained using the 
synchronization method.  At point P3, the sign of the 
largest Lyapunov exponent changed from negative to 
positive as the forcing frequency Ω decreased 
gradually.  At points P1-2, the largest Lyapunov 
exponents approached zero, beyond which the system 
might undergo bifurcation.  Nonetheless, the 
Lyapunov exponent at that point does not indicate the 
type of bifurcation involved, thereby necessitating the 
application of the bifurcation diagram shown in Fig. 2.  
By comparing of Figs. 8 and 2, the occurrences of 
period-two bifurcation at P1 and period-four 
bifurcation at P2 are indicated.  All of the largest 
Lyapunov exponents were positive with regard to the 
forcing frequency (Ω < 1.582), indicating that the 
system exhibited chaotic motion.  These results 
provide a better understanding of chatter vibrations in 
an electronic throttle system. 

 
Fig. 8. Evolutions of largest Lyapunov exponent 

versus Ω. 
 

SUPPRESSING CHAOS IN 
ELECTRONIC THROTTLE SYSTEM 

 
     Analyzing and predicting the behaviors of 
chaotic systems is beneficial; however, the system 
must be controlled to maximize its benefits.  
Improving the performance of a dynamic system or 
avoiding chaotic motions necessitate periodic motions, 
which are crucial when specific conditions are 
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involved.  This section presents two control methods, 
i.e., state feedback control (Cai et al., 2002a; Cai et al., 
2002b) and dither control (Fun and Tung, 1997; Liaw 
and Tung, 1998), to suppress chaos in the electronic 
throttle system used in this study. 
State Feedback Control  
     Cai et al. (2002a; 2002b) proposed a simple and 
effective method for converting chaos into periodic 
motions at a steady state using the linear-state 
feedback of an available system variable.  For an n-
dimensional dynamic system, this method can be 
expressed as follows: 

 
�̇�𝑥 = 𝑓𝑓(𝑥𝑥, 𝑡𝑡),                              (14)  

 
where x(t)∈Rn is the state vector; f = (f1,…, fi,…, fn), 
where fi is a linear or nonlinear function, and f includes 
at least one nonlinear function.  If fk(x, t) is the key 
nonlinear function that results in chaotic motion in Eq. 
(14), then only one term of the state feedback of an 
available system variable xm will be added to an 
equation that includes fk(x, t), as follows: 

 
�̇�𝑥𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑥𝑥, 𝑡𝑡) + 𝐾𝐾𝑥𝑥𝑚𝑚,  𝑘𝑘,𝑚𝑚{1, 2, ... , 𝑛𝑛},      (15) 

 
where K is the feedback gain, and the other functions 
maintain their original forms.   

State feedback control can be incorporated to 
Eq. (7) and rewritten as follows: 

 
 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑

= 𝑥𝑥2,                                (16a) 
 
𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑

= 𝑥𝑥1 + 𝑎𝑎22
𝜔𝜔𝑛𝑛

𝑥𝑥2 + 𝑎𝑎23
𝜔𝜔𝑛𝑛2

𝑥𝑥3 −
𝛼𝛼1
𝜔𝜔𝑛𝑛2

sgn(𝑥𝑥1) −

            𝛼𝛼2
𝜔𝜔𝑛𝑛2

sgn(𝑥𝑥2) + 𝐾𝐾𝑥𝑥2,                  (16b) 
 
𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑

= 𝑎𝑎32
𝜔𝜔𝑛𝑛

𝑥𝑥2 + 𝑎𝑎33
𝜔𝜔𝑛𝑛

𝑥𝑥3 + 𝑏𝑏3
𝜔𝜔𝑛𝑛
𝐴𝐴0sin(Ω𝜏𝜏) + 𝐾𝐾𝑥𝑥3 .   (16c) 

 
     Without state feedback control, Eq. (7) exhibits 
chaotic behavior under the parameter Ω = 1.542.  
Considering that the effect of the state feedback 
control was added to the right-hand side of Eq. (7), by 
decreasing the feedback gain K from 0 to −0.3, the 
chaotic behavior disappeared at certain feedback gains.  
Figure 9 presents the resulting bifurcation diagram, 
which comprehensively illustrates the dynamic 
behavior of the controlled electronic throttle system 
over a range of feedback gains.  Chaotic motion 
appeared when Ω ≥ −0.064, and a stable periodic 
motion appeared when Ω decreased beyond −0.064.  
Period-doubling bifurcations appeared when Ω 
decreased to approximately −0.128 and −0.065.  A 
further decrease in Ω beyond −0.128 resulted in a 
period-1 motion.  The efficacy of the proposed 
system in controlling chaos was demonstrated by 
applying a control signal after 60 s, as shown in Fig. 

10.  Therefore, to suppress the occurrence of chaos, 
the simple state feedback of an available system 
variable can be used to disrupt the balance of dynamic 
behaviors in a chaotic system. 
       

 
Fig. 9. Bifurcation diagram of throttle valve angle 

against K for electronic throttle system with 
state feedback control, where K indicates 
feedback gain. 

 

 
 
Fig. 10. Transformation of chaotic motion into period-

1 orbit for K = −0.2 and Ω =1.542: (a) time 
responses of controlled system; (b) phase 
portrait of controlled system.  State feedback 
control signal was introduced after 60 s. 

      
Dither Control 
 
     This section describes the process to control 
motion in a chaotic system by injecting another 
external input dither signal to modify only the 
nonlinear terms.  A dither signal averages 
nonlinearity owing to its high frequency and periodic 
nature.  Researchers have developed dither 
smoothing methods (Fun and Tung, 1997; Liaw and 
Tung, 1998) to stabilize chaotic systems, and popular 
dither signals were proposed in Ref. (Cook, 1994).  
The simplest type of dither signal is the square-wave 
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signal, as shown in Fig. 11; the dither signal assumes 
constant values W and −W alternately, and each value 
is maintained for a half-period of T/2, where T is much 
smaller than the time constant of the system.  The 
amplitude W is applied in front of the nonlinearity, f(.).  
Hence, the effective value of 𝑛𝑛�  (the output of the 
nonlinear element) can be written as (Fun and Tung, 
1997) 
 
𝑛𝑛� = 1

2
[𝑓𝑓(𝑦𝑦 + 𝑊𝑊) + 𝑓𝑓(𝑦𝑦 −𝑊𝑊)].              (17) 

 
 
Consequently, the system equation can be expressed 
as 
 
 
�̇�𝑦 = 𝑛𝑛�.                                   (18) 
 
 
     Considering the effect of the dither signal 
control added to system (7) under the parameter Ω = 
1.542, by increasing the amplitude of the square-wave 
dither signal from W = 0 to W = 0.325, the dynamics 
changed from chaotic to periodic motion.  Figure 12 
shows the evolution of the bifurcation diagram.  Next, 
we considered an electronic throttle system with a 
coefficient form of friction 𝑛𝑛� , which is the original 
nonlinearity f described in Eqs. (3) and (4).  
Subsequently, we set W = 0.312 and plotted the 
effective nonlinearity 𝑛𝑛� and original nonlinearity f, as 
shown in Figs. 13 and 14, respectively.  Figure 15(a) 
shows the time response of the angle with the 
amplitude of the square-wave dither signal, W = 0.315, 
injected after 60 s.  The chaotic behavior system was 
transformed into a period-3 orbit.  Figure 15(b) 
illustrates the phase portrait of the controlled system.  
As shown, the system exhibited chaotic behavior 
before the dither was introduced, but exhibited a 
periodic motion subsequently. 
 
 

 
 
Fig. 11. Square-wave dither signal. 

 
Fig. 12. Bifurcation diagram of throttle valve angle 

against W for electronic throttle system with 
square-wave dither, where W represents 
dither amplitude. 

 

 
Fig. 13. Equivalent nonlinearity 𝑛𝑛�  (solid line) 

expressed in Eq. (17).  Original 
nonlinearity 𝑇𝑇𝑠𝑠 (dashed line) expressed in 
Eq. (3). 

 

 
 
Fig. 14. Equivalent nonlinearity 𝑛𝑛�  (solid line) 

expressed in Eq. (17).  Original 
nonlinearity 𝑇𝑇𝑓𝑓 (dashed line) expressed in 
Eq. (4). 
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Fig. 15. Square-wave dither signal was injected to 

control chaotic motion of electronic throttle 
system for W = 0.315 and Ω = 1.542: (a) time 
responses of controlled system; (b) phase 
portrait of controlled system.  Square dither 
signal was introduced after 60 s. 

 
 

CONCLUSIONS 
 
     The rich nonlinear dynamics and chaos control 
of an electronic throttle system were presented herein.  
The resulting bifurcation diagram showed many 
nonlinear behaviors, indicating that the electronic 
throttle system exhibited chaotic motion at a lower Ω; 
this implies that the system can undergo a cascade of 
period-doubling bifurcations prior to the onset of 
chaos.  Numerical approaches, including phase 
portraits, Poincaré maps, and frequency spectra, have 
been employed to investigate the dynamics of 
electronic throttle systems.  The most effective 
approach to determine whether an electronic throttle 
system is in chaotic motion is to use the Lyapunov 
exponent.  The method for estimating the largest 
Lyapunov exponent of an electronic throttle system 
involves the use of synchronization properties.  The 
presence of chaotic behavior is generic for certain 
nonlinearities, parameter ranges, and external forces, 
and it may need to be avoided or controlled to improve 
the performance of the electronic throttle system.  
The state feedback control scheme is simple and 
effective for chaos suppression, and it can be 
implemented by adding the feedback of suitable 
variables to the original system with sufficient control 
gain to prevent chaos development.  Additionally, 
the square wave of the dither signal can be applied to 
efficiently convert a chaotic motion into a periodic 
orbit by injecting a dither signal in front of the 
nonlinearity of the electronic throttle system.  These 
findings indicate that the proposed system is 
applicable across a wide range of functions for the 
design of intelligent vehicles. 
     Other numerous methods for chaos control have 

been devised, such as synchronization control, time-
delayed feedback control, neuro-fuzzy control, 
adaptive control and bang-bang control.  In this study, 
state feedback control and dither signal control to 
control the chaotic behavior of an electronic throttle 
system.  The effectiveness of these proposed chaos 
control strategies was illustrated through numerical 
simulations.  Overall, it was found that compared 
with other chaos control methods, the state feedback 
control and dither signal control techniques are simple 
and can be easily implemented in chaos suppression.  
We believe that an in-depth understanding of the 
dynamics and chaos control of an electronic throttle 
system will help to advance the development of smart-
engine vehicles. 
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汽車電子節氣門系統的複

雜性和抑制渾沌運動 
 

張舜長 
大葉大學機械與自動化工程學系 

 
 

摘 要 

    本文旨在研究探討汽車電子節氣門系統的複

雜非線性動態及渾沌控制。因此，利用數值模擬方

法，例如：分歧圖、相圖、龐克映相圖、頻譜圖及

李亞譜諾指數來探討各種非線性動態行為。研究中

發現汽車電子節氣門是經由週期-2 的分歧現象的

途徑進入渾沌運動。利用同步性質來估算最大的李

亞譜諾指數來驗證系統是否有存在渾沌行為。最後，

利用狀態回授及抖振訊號控制法來控制渾沌運動，

並經由數值模擬結果來驗證，所提出的控制方式皆

能有效地控制汽車電子節氣門系統渾沌行為。 

 
 
 
 
 
 
 
 
 


