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ABSTRACT

The main objective of this study is to explore the
complex nonlinear dynamics and chaos control of an
automotive electronic throttle system. The effects of
varying the parameter values of an electronic throttle
system can be observed in bifurcation diagrams.
Various periodic solutions and nonlinear phenomena
can be expressed using various numerical methods,
such as time responses, phase portraits, Poincaré maps,
and frequency spectra. It is shown that electronic
throttle systems can undergo a cascade of period-
doubling bifurcations prior to the onset of chaos.
Estimates of the largest Lyapunov exponent based on
synchronization properties reveal the occurrence of
chatter vibrations, which is indicative of chaotic
motion.  In addition, state feedback control and
dither signal control are applied to suppress the chaotic
behavior of electronic throttle systems. Numerical
simulation results demonstrate the effectiveness of
these proposed control approaches.

INTRODUCTION

An electronic throttle system adjusts the air
inflow into the combustion chamber of the engine,
which is a DC-motor-driven valve. Throttle control
is an important aspect of engine control. The
engine’s power dynamic response is achieved by
adjusting the intake air volume. Throttle control is
the main method used to adjust engine air intake.
Therefore, precise throttle control is vital for
improving power dynamics, fuel efficiency, and
comfort, as well as reducing emissions (Humaidi and
Hameed, 2019); Sun and Jiao, 2020).
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The synthesis of a satisfactory electronic throttle
control system is difficult owing to its nonlinear
characteristics, such as the strong nonlinear effects of
stick-slip friction, springs, and gear backlash (Bai et
al., 2016; Yu et al., 2007; Pan et al., 2008). The most
important issue in electronic throttle system operation
is the improvement in vehicle drivability, fuel
economy, and emissions. Nonlinear control in
electronic throttle system has been investigated
extensively (Zeng and Wan, 2011; Al-samarraie and
Abbas, 2012; Bai and Tong, 2014; Wan et al., 2016).
An electronic throttle system is typically described by
a nonlinear dynamical system of equations, including
system parameters. Altering one of these parameters
changes the electronic throttle system dynamics that
exhibit chaotic, resulting in an unstable engine system.
However, the chaotic motion in an electronic throttle
system may cause destabilization, thereby resulting in
misfires or the incomplete combustion of the engine
system.  Modern nonlinear theories of bifurcation
and chaos are widely adopted in studies of nonlinear
systems, and chaos dynamics in electronic throttle
systems have been widely investigated (Jin et al., 2008;
Bernardo et al., 2009; Yuan et al., 2011; Yang et al.,
2012; Jiao et al., 2019; Zhai and Wu, 2020; Ren et al.,
2021).

In this study, a variety of numerical methods is
applied, including bifurcation diagrams, phase
portraits, Poincaré maps, and frequency spectra to
explain the rich nonlinear dynamics in an automotive
electronic throttle system. Among various
parameters, the Lyapunov exponent is the most
effective for measuring the sensitivity of a dynamic
system, as it pertains to the initial conditions. It can
be used to determine whether a system is susceptible
to chaotic motion. The algorithms used to compute
Lyapunov exponents associated with smooth dynamic
systems are well-established (Shimada and Nagashima,
1979; Wolf et al., 1985; Benettin et al., 1980).
However, a number of non-smooth dynamic systems
possess discontinuities, such as those associated with
dry friction, backlash, and saturation; hence, the
abovementioned algorithms are not applicable to these
systems. Methods for calculating Lyapunov
exponents associated with non-smooth dynamic
systems have been proposed in several studies (Zhang
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et al., 2020; Baumann and Leine, 2017; Stefanski,
2000). In this study, we adopted the method
developed by Stefanski (2000) to estimate the largest
Lyapunov exponent in an electronic throttle system.

Chaotic behaviors in electronic throttle systems
are considered undesirable because of the restrictions
imposed on the operating ranges of electrical and
mechanical devices. In addition, the dynamics of an
electronic throttle system become unstable when
chaotic motions are exhibited. If instability is not
controlled effectively, the engine’s operating
efficiency will be affected, and the engine system
performance will be deteriorated (Yuan et al., 2011;
Yangetal., 2012; Jiao et al., 2019; Zhai and Wu, 2020;
Ren et al., 2021). Hence, in many engineering
applications, control approaches have been developed
to convert chaotic motions into periodic orbits or
steady states. Since the pioneering work of Ott et al.
(1990) pertaining to chaos control, many modified
methods and other approaches have been proposed
(Ditto et al., 1990; Hunt, 1991; Cai et al., 2002a;
Chang and Lue, 2020; Costa and Savi, 2018;
Tooranjipour and Vatankhah, 2018; Tacha et al., 2016;
Tutsoy and Brown, 2016; Chang, 2020).
Additionally, various control algorithms have been
presented to control the chaos of electronic throttle
systems (Renetal., 2021; Yuanetal., 2011). Herein,
we propose converting chaotic behaviors into periodic
motions to improve the performance of system
dynamics with electronic throttle system chaotic
behaviors.  In this study, chaotic motions in an
electronic throttle system were inhibited using state
feedback control (Cai et al., 2002a; Cai et al., 2002b)
and dither signal control (Fun and Tung, 1989; Liaw
and Tung, 1998), and simulations were performed to
confirm the feasibility and efficacy of the proposed
control approaches.

PROBLEM DESCRIPTION AND
MODELING OF ELECTRONIC
THROTTLE SYSTEM

Based on reference (Zeng and Wan, 2011), a
schematic illustration of an electronic throttle control
system is shown in Fig. 1, which is a mechatronic
device consisting of a DC motor, reduction gears, a
return spring, and a throttle valve. The DC motor is
an acuter that transmits torque to the throttle shaft to
drive the throttle valve for air flow control. In this
system, a shaped body duct regulates the relationship
between the angular position of the throttle valve and
the incoming air flow into the manifold.
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Fig. 1. Schematic of electronic throttle system.
The motor drive torque Tr, is proportional to the
current and can be expressed as

T, = kmi(t)r (1)

where kn is the motor torque coefficient.

The electrical device is modeled by an induction
L, a resistance R, and an electromotive force E = kyam
induced by the rotation of the motor angle, where ky is
the motor counter electromotive coefficient, and an is
the angular velocity of the motor rotor.  The equation
that expresses the DC armature circuit is as follows:

LS+ Ri = u(t) = kywn (0), @)

where u(t) is the applied voltage.

The spring torque changes with the throttle
valve opening. The nonlinear torque of the return
spring can be expressed as follows:

Ty = ks(6 — 6y) + Dsgn(6 — 6,), 3)

where ks is the spring coefficient; D is the spring
compensation coefficient; @is the throttle angle; & is
the throttle initial position, which is also known as the
limp-home position.

Many types of friction are involved in the
motion of the throttle plate, such as viscous and
Coulomb friction. The nonlinear friction torque is
expressed as

Ty = kqo(t) + kpsgn(a(t)), (4)

where kg is the viscous friction coefficient, k; is the
Coulomb friction coefficient, and  is the throttle
valve angular velocity.

Assuming that the total inertia is J, based on Egs.
(1)-(4), the dynamic equation for the electronic throttle
system is expressed as

do =T, T, — T,
]E —im ~— s — If
= ki —ks(60 —6,) — Dsgn(6 — 0,) —
kqw(t) — Krsgn(w (1)) , (5a)
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2 = w(t) = Noy(t). (5b)

Considering Egs. (2)-(5) and by introducing
state variables x1 = - &, X2 = @, and xs = i, the state
equations for the electronic throttle can be written as
follows:

.x,:l = XZ, (6a)
Xp = Ap1X1 + ApXp + Ap3x3 — a;5gN(xy) —
a;sgn(x,;), (6b)
.X:3 = a32x2 + a33x3 + b3u(t), (6C)
where
ks d km D
Ay =——, Qyy =——, Qyz3 =—, Q1 =—, Ay =
k21 ] 22 ] 23 ] 157 2
f _ k _ R
VR A3y = _N_il],' Q33 = =1

1 o~
b; = oou= Aysinat

For convenience, we first set w, =+/—a,;, Q= wi

n
and 7 = w,t, and then normalize Eqgs. (6a-6¢) to the
following form:

P = 1, (7a)
dx; _ azz azs ay
o St Xt oS — sen(x) -

a

L sgn(x), (70)
dxs _ a3 433 bs 4 o
o o, 2 + o, X3 + wnAosm(Qr). (7¢)

Table 1 (Pan et al., 2008) lists the numerical values for
all the parameters used in Eq. (7).

Table 1. Physical parameters of electronic throttle

system.

Symbol Parameter values
a —1.6801 x 103
sy —32.9820
Uy 4.2941 x 103
asz; —11.6039
a3 —5.2087 x 10?
a 4.6139 x 103
a; 2.1073 x 10®
b, 4.7438 x 102
A, 3.0

OVERALL CHARACTERISTICS OF
ELECTRONIC THROTTLE SYSTEM:
SIMULATIONS RESULTS AND
DISCUSSIONS

Numerical simulations were performed based on
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Eq. (7) to clearly understand the overall characteristics
of the electronic throttle system. The commercial
package DIVPRK of IMSL in FORTRAN subroutines
was utilized for mathematical applications to solve
ordinary differential equation problems (IMSL, Inc.,
1989). Figure 2 presents the resulting bifurcation
diagram, which shows that the first period-doubling
bifurcation occurred approximately Q = 1.619 and that
a chaotic motion appeared approximately below Q =
1.582.  Figures 3-7 show the various responses
exhibited by this system, where each type of response
was characterized comprehensively using a phase
portrait, a Poincaré map, and a frequency spectrum.
The equilibrium point indicated in Eq. (7) was stable
at Q > 1.619, indicating that no chatter vibration
occurred.  Figures 3(a-c) show period-1 motions.
In addition, Figs. 4(a-c) show a cascade of period-
doubling bifurcations with new frequency components
at Q/2, 3Q/2, 5Q/2..., which resulted in a series of
subharmonic components. Figures 5(a-c) show the
first period-four bifurcation, which occurred when Q
was less than 1.588. Subsequently, a cascade of
chaos-inducing period-doubling bifurcations appeared
as Q continued to decrease, as shown in Fig. 2,
resulting in chatter vibrations that could cause unstable
behaviors; consequently, the combustion of the engine
would be incomplete and the engine system
performance would be deteriorated. In other words,
the chaos in an electronic throttle system may cause
instability, thereby resulting in misfires or the
incomplete combustion of the engine. Two
descriptors, the Poincaré map and frequency spectrum,
can be utilized to characterize chaotic behavior. The
Poincaré map includes an infinite set of points known
as strange attractors.  Meanwhile, the frequency
spectrum of a chaotic motion is a continuous broad
spectrum.  These two main features, i.e., strange
attractors and continuous Fourier spectra are strong
indicators of chaos. Figures 6 and 7 show the chaotic
behavior in detail.
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g. 2. Bifurcation diagram of throttle valve angle vs.
Q.
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Fig. 3. Period-1 orbit of numerical simulation results

for O =1.63:
(a) Phase portrait; (b) Poincaré map; (c)
Frequency spectrum.
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Fig. 4. Period-2 orbit of numerical simulation results
for O =1.61:
(a) Phase portrait; (b) Poincaré map; (c)
Frequency spectrum.
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Fig. 5. Period-4 orbit of numerical simulation results
QO =1.584:
(@) Phase portrait; (b) Poincaré map; (c)
Frequency spectrum.
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Fig. 6. Chaotic motion of numerical simulation results
forQ=1.57:
(@) Phase portrait; (b) Poincaré map; (c)
Frequency spectrum.
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Fig. 7. Chaotic motion of numerical simulation results
for Q = 1.542:
(@) Phase portrait; (b) Poincaré map; (c)
Frequency spectrum.

ESTIMATION OF LARGEST
LYAPUNOV EXPONENT FOR
ANALYZING CHAOS

The largest Lyapunov exponent is a useful
indicator for the analysis of chaotic systems. Every
dynamic system possesses a spectrum of Lyapunov
exponents (1), which determine the length, area, and
volume changes in the phase space. In other words,
Lyapunov exponents measure the rate of divergence
(or convergence) between two adjacent orbits.
Chaos can be identified calculating the largest
Lyapunov exponent, which allows one to determine
whether nearby trajectories will diverge (1 > 0) or
converge (4 < 0). Any bounded motion in a system
containing at least one positive Lyapunov exponent is
defined as chaotic, whereas non-positive Lyapunov
exponents indicate periodic motions. Several well-
established algorithms can be used to compute the
Lyapunov spectrum of smooth dynamic systems
(Shimada and Nagashima, 1979; Wolf et al., 1985;
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Benettin et al., 1980). However, non-smooth
dynamic systems with discontinuities, such as dry
friction, backlash, and saturation, do not allow the
direct application of such algorithms (Zhang et al.,
2020; Baumann and Leine, 2017; Stefanski, 2000).
In this study, we estimated the largest Lyapunov
exponent to identify the onset of chaotic motion in an
electronic throttle system. Stefanski  (2000)
proposed a simple method for estimating the largest
Lyapunov exponent based on properties associated
with synchronization.  Synchronization controls the
response system by accessing the output of the drive
system such that the output of the response system
asymptotically follows the output of the drive system.
This method is described briefly below.

The dynamic system is decomposed into the
following two subsystems:

a drive system expressed as

x = f(x), (8)

and a response system expressed as

y=f-. (9)

Consider a dynamic system comprising two
identical n-dimensional subsystems, where the
response system (9) is combined with the coupling
coefficient d, and the drive system (8) remains the
same. The first-order differential equation used to
describe such a system is as follows:

%= (),

y=f@)+dx-y). (10)

The condition of synchronization is provided by
the following inequality:

d > Amax- (11)

The smallest value of the coupling coefficient d
in synchronization dg is assumed to be equal to the
largest Lyapunov exponent, as follows:

ds = lmax- (12)

Eqg. (10) provides an augmented system based on
Eq. (7), as follows:

a1 _
o= X2, (13a)
dx3 _ G2z G23 , _ %1 _
o =Xt o, X2 + et Rl sgn(x,)

a

w—jz sgn(x,), (13b)
dxs _ 432 LEE RV Ry
w2 + o, X3 + wnAosm(Qr). (13c)

dy1

? = yZ + d(x1 - yl)a (13d)
d

2 sgn(y:) + (2 ya), (13¢)
d b i
f = ‘;_3;3’2 + Z_gjy3 + w_iAosm(QT) +d(x; -

¥3): (13f)

Next, we estimate the largest Lyapunov exponent
for the selected parametric values using the method
described above. Figure 8 presents the results of the
numerical calculations, which show the estimated
largest Lyapunov exponents obtained using the
synchronization method. At point Ps, the sign of the
largest Lyapunov exponent changed from negative to
positive as the forcing frequency € decreased
gradually. At points P12, the largest Lyapunov
exponents approached zero, beyond which the system
might undergo bifurcation. Nonetheless, the
Lyapunov exponent at that point does not indicate the
type of bifurcation involved, thereby necessitating the
application of the bifurcation diagram shown in Fig. 2.
By comparing of Figs. 8 and 2, the occurrences of
period-two bifurcation at Pi and period-four
bifurcation at P, are indicated. All of the largest
Lyapunov exponents were positive with regard to the
forcing frequency (Q < 1.582), indicating that the
system exhibited chaotic motion.  These results
provide a better understanding of chatter vibrations in
an electronic throttle system.
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g. 8. Evolutions of largest Lyapunov exponent
versus Q.
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SUPPRESSING CHAOQOS IN
ELECTRONIC THROTTLE SYSTEM

Analyzing and predicting the behaviors of
chaotic systems is beneficial; however, the system
must be controlled to maximize its benefits.
Improving the performance of a dynamic system or
avoiding chaotic motions necessitate periodic motions,
which are crucial when specific conditions are
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involved. This section presents two control methods,
i.e., state feedback control (Cai et al., 2002a; Cai et al.,
2002b) and dither control (Fun and Tung, 1997; Liaw
and Tung, 1998), to suppress chaos in the electronic
throttle system used in this study.
State Feedback Control

Cai et al. (2002a; 2002b) proposed a simple and
effective method for converting chaos into periodic
motions at a steady state using the linear-state
feedback of an available system variable. For an n-
dimensional dynamic system, this method can be
expressed as follows:

x=f(xt), (14)

where x(t)eR" is the state vector; f = (fy,..., fi,..., fn),
where f; is a linear or nonlinear function, and f includes
at least one nonlinear function. If fi(x, t) is the key
nonlinear function that results in chaotic motion in Eq.
(14), then only one term of the state feedback of an
available system variable xn will be added to an
equation that includes fi(x, t), as follows:
X = fi(, t) + Kxp, k,m{1,2,...,n}, (15)
where K is the feedback gain, and the other functions
maintain their original forms.

State feedback control can be incorporated to
Eqg. (7) and rewritten as follows:

dx; _
— = X2 (16a)
dxy _ az2 az3 @
@ ST Xyt w—:zsgn(xl) -
%sgn(xz) + Kx,, (16b)
n
dxs

=82y 488, 4 b—3Aosin(QT) + Kx;.  (16¢)
Wn Wn

dt wn

Without state feedback control, Eq. (7) exhibits
chaotic behavior under the parameter O = 1.542.
Considering that the effect of the state feedback
control was added to the right-hand side of Eq. (7), by
decreasing the feedback gain K from 0 to —0.3, the
chaotic behavior disappeared at certain feedback gains.
Figure 9 presents the resulting bifurcation diagram,
which comprehensively illustrates the dynamic
behavior of the controlled electronic throttle system
over a range of feedback gains. Chaotic motion
appeared when Q > —0.064, and a stable periodic
motion appeared when Q decreased beyond —0.064.
Period-doubling bifurcations appeared when Q
decreased to approximately —0.128 and -0.065. A
further decrease in Q beyond —0.128 resulted in a
period-1 motion.  The efficacy of the proposed
system in controlling chaos was demonstrated by
applying a control signal after 60 s, as shown in Fig.

J. CSME Vol.44, No.4 (2023)

10. Therefore, to suppress the occurrence of chaos,
the simple state feedback of an available system
variable can be used to disrupt the balance of dynamic
behaviors in a chaotic system.
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-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0
Feedback Gain

Fig. 9. Bifurcation diagram of throttle valve angle
against K for electronic throttle system with
state feedback control, where K indicates
feedback gain.
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Fig. 10. Transformation of chaotic motion into period-
1 orbit for K = 0.2 and Q =1.542: (a) time
responses of controlled system; (b) phase
portrait of controlled system. State feedback
control signal was introduced after 60 s.

Dither Control

This section describes the process to control
motion in a chaotic system by injecting another
external input dither signal to modify only the
nonlinear terms. A dither signal averages
nonlinearity owing to its high frequency and periodic
nature. Researchers have developed dither
smoothing methods (Fun and Tung, 1997; Liaw and
Tung, 1998) to stabilize chaotic systems, and popular
dither signals were proposed in Ref. (Cook, 1994).
The simplest type of dither signal is the square-wave
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signal, as shown in Fig. 11; the dither signal assumes
constant values W and —W alternately, and each value
is maintained for a half-period of T/2, where T is much
smaller than the time constant of the system. The
amplitude W is applied in front of the nonlinearity, f(.).
Hence, the effective value of 7 (the output of the
nonlinear element) can be written as (Fun and Tung,
1997)

A=+ W)+ fly—W)l. (17)

Consequently, the system equation can be expressed
as

=]

Considering the effect of the dither signal
control added to system (7) under the parameter Q =
1.542, by increasing the amplitude of the square-wave
dither signal from W = 0 to W = 0.325, the dynamics
changed from chaotic to periodic motion. Figure 12
shows the evolution of the bifurcation diagram.  Next,
we considered an electronic throttle system with a
coefficient form of friction n, which is the original
nonlinearity f described in Egs. (3) and (4).
Subsequently, we set W = 0.312 and plotted the
effective nonlinearity 7 and original nonlinearity f, as
shown in Figs. 13 and 14, respectively. Figure 15(a)
shows the time response of the angle with the
amplitude of the square-wave dither signal, W = 0.315,
injected after 60 s. The chaotic behavior system was
transformed into a period-3 orbit.  Figure 15(b)
illustrates the phase portrait of the controlled system.
As shown, the system exhibited chaotic behavior
before the dither was introduced, but exhibited a
periodic motion subsequently.

Fig. 11. Square-wave dither signal.
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Fig. 15. Square-wave dither signal was injected to
control chaotic motion of electronic throttle
system for W = 0.315 and Q = 1.542: (a) time
responses of controlled system; (b) phase
portrait of controlled system. Square dither
signal was introduced after 60 s.

CONCLUSIONS

The rich nonlinear dynamics and chaos control
of an electronic throttle system were presented herein.
The resulting bifurcation diagram showed many
nonlinear behaviors, indicating that the electronic
throttle system exhibited chaotic motion at a lower Q;
this implies that the system can undergo a cascade of
period-doubling bifurcations prior to the onset of
chaos. Numerical approaches, including phase
portraits, Poincaré maps, and frequency spectra, have
been employed to investigate the dynamics of
electronic throttle systems.  The most effective
approach to determine whether an electronic throttle
system is in chaotic motion is to use the Lyapunov
exponent. The method for estimating the largest
Lyapunov exponent of an electronic throttle system
involves the use of synchronization properties. The
presence of chaotic behavior is generic for certain
nonlinearities, parameter ranges, and external forces,
and it may need to be avoided or controlled to improve
the performance of the electronic throttle system.
The state feedback control scheme is simple and
effective for chaos suppression, and it can be
implemented by adding the feedback of suitable
variables to the original system with sufficient control
gain to prevent chaos development. Additionally,
the square wave of the dither signal can be applied to
efficiently convert a chaotic motion into a periodic
orbit by injecting a dither signal in front of the
nonlinearity of the electronic throttle system. These
findings indicate that the proposed system is
applicable across a wide range of functions for the
design of intelligent vehicles.

Other numerous methods for chaos control have
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been devised, such as synchronization control, time-
delayed feedback control, neuro-fuzzy control,
adaptive control and bang-bang control.  In this study,
state feedback control and dither signal control to
control the chaotic behavior of an electronic throttle
system. The effectiveness of these proposed chaos
control strategies was illustrated through numerical
simulations.  Overall, it was found that compared
with other chaos control methods, the state feedback
control and dither signal control techniques are simple
and can be easily implemented in chaos suppression.
We believe that an in-depth understanding of the
dynamics and chaos control of an electronic throttle
system will help to advance the development of smart-
engine vehicles.
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