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ABSTRACT

This paper presents a stable nodal integration
method (SNIM) to solve nonlinear magnetostatic
and transient eddy current electromagnetic
problems. A weakened weak formulation based
on nodes is firstly considered, framing the
so-called node-based smoothing domains.
Secondly, the integration scheme of SNIM
formulation is derived by constructing
appropriate equivalent smoothing domains and
temporary integration points. And then, the
authors use the presented method to solve
various benchmark problems to observe its
properties adopting linear nodal tetrahedral
meshes. The results show that the proposed
approach is better in sense of accuracy than
traditional finite element method, and the
effectiveness and potentialities of SNIM for
electromagnetic applications can be witnessed.

INTRODUCTION
The usage of integrated mechatronic system
has strongly increased in the design of various
devices, and sensor is one of the most important
elements of the mechatronic system. Precision of

integration
eddy current,
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the sensing element is crucial to performance of
the whole system. Numerical simulation for
designed sensor structure is an effective way to
testify its efficacy [Wu, M.T. et al., 2018; Han,
R. et al., 2016; Psuj, G. et al., 2017], and it can
provide instructional ameliorated orientation in
preliminary design phase [Wang, J. et al., 2017,
Cui, Y. etal., 2017; Yu, Y. et al., 2007]. Sensors
designed based on electromagnetic principle are
fairly common in practical application [Carlos,
M. et al., 2015; Zhou, D. et al., 2017; Li, G. et
al., 2016], so study on efficient numerical
method for electromagnetic analysis is beneficial
to the usage of those sensors.

Numerical algorithm for computational
electromagnetics has been studied for years by
researchers. Various solutions have been
proposed and testified, and quite a few of these
methods have been proved to be effective.
Traditionally, the standard finite element method
(FEM) [Bir6, O. et al., 1989] and boundary
element method (BEM) [Matsuoka, F. et al.,
1988] are the most widely-used numerical tools
in computational electromagnetics. BEM shows
advantages in solving complex and large-scale
problems [Matsuoka, F. et al., 1988], since it
allows the simulation of fields in unbounded
domains, and FEM is commonly used to solve
various problems in commercial software for its
simplicity and stability. While new advanced
numerical methods that suitable for complicated
practical problems still capture the interest of
many researchers. Meshless methods developed
rapidly in recent decades, and various algorithms
have been put forwarded [Belytschko, T. et al.,
1994; Lai, S.J. et al., 2008; Viana, S.A. et al.,
1999]. Compared with FEM, meshless methods
can avoid the detailed operations for
pre-processing and post-processing. But the
complexity of meshless methods and the higher



computation cost hinder their development in
really large-scale and complicated problems. GR
Liu et al proposed a G space theory in recent
years [Liu, GR., 2010a], and it forms the
foundation for a series of methods, including the
node-based smoothed finite element method
(NS-FEM) [Nguyen-Thoi, T. et al., 2010] and
other methods. This series of methods are
established in weakened-weak Galerkin forms,
and adopt gradient smoothing operation to
approximate the derivatives of field functions
[Liu, GR., 2010g; Liu, GR., 2010b]. The model
stiffness can be effectively softened by the
smoothing operation, and a number of excellent
properties can be obtained simultaneously, such
as good accuracy, high convergence rate, and
insensitivity to element distortion [Liu, G.R. et
al., 2007]. They have been developed to solve
various problems, and their applications in
electromagnetics have arisen in the last years.
Efforts have been made on wave propagation
analysis [Soares, D., 2013] and electrostatic
problems [Lima, N.Z. et al., 2012; Lima, N.Z. et
al., 2014].

NS-FEM is a kind of nodal integration
scheme, and it carries fairly attractive features
[Liu, GR., 2008]. In fact, nodal integration
formulations have been studied for years, and
their simplicity and convenience in computation
captures the attention of researchers. In 1994,
Belytschko et al proposed an element-free
Galerkin method and used the method to
analysis elasticity and heat conduction problems
[Belytschko, T. et al., 1994]. The proposed
method shows quite favorable features, such as
high convergence rate, high precision of shape
function gradients, and the convenience for
post-processing and data output [Belytschko, T.
et al., 1994]. However, numerical instability of
the method is inherent and therefore hinders its
further application [Chen, J.S. et al., 2001]. JS
Chen et al proposed a strain smoothing
stabilization scheme to eliminate spatial
instability in nodal integration [Chen, J.S. et al.,
2001, Yoo, J.W. et al., 2004]. And the papers
showed that the accuracy and convergent rates
of results by the stabilization conforming nodal
integration method are significantly improved
compared with original direct nodal integration.
NS-FEM is then proposed and developed based
on FEM theory [Liu, GR., 2008]. So it captures
some unique features compared with meshless
solutions [Feng, H. et al., 2017]: (1) it is usually
developed for tetrahedral or triangular meshes
which can be easily obtained for really
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complicated geometries; (2) it adopts linear
interpolation; (3) essential boundary conditions
can be directly applied; (4) supporting domain
and supporting nodes for each node are naturally
formed; (5) it does not contain any parameters to
be determined. Meanwhile, it acquires
advantages over traditional FEMs: (1) higher
convergence rate; (2) insensitivity to element
distortion; (3) good accuracy; (4) its data are
carried on nodes and requires no
post-processing. These features make NS-FEM
quite suitable for practical engineering
problems. So far NS-FEM have been used in
various applications, such as adaptive analysis
[Nguyen-Thoi, T. et al., 2011], fracture analysis
[Liu, GR. et al., 2010c], heat transfer analysis
[Wu, S.C. et al., 2009] and so on. The attractive
properties of NS-FEM can be witnessed through
these papers [Nguyen-Thoi, T. et al., 2011; Liu,
G.R. etal., 2010c; Wu, S.C. et al., 2009]. But the
application areas of NS-FEM are still limited,
and the overly-soft property of nodal integration
methods is considered to be the major difficulty
that hinders its further development [Zhang,
Z.Q. et al., 2010; Beissel, S. et al., 1996; Puso,
M.A. et al., 2008]. Numerical improvements
have been made to eliminate the temporal
instability of NS-FEM in recent years. In
[Zhang, Z.Q. et al., 2010], the authors cured the
overly-soft property by adding extra stabilization
terms, which inevitably incorporates uncertain
parameter. Further applications of NS-FEM is
still limited.

Since NS-FEM carries prominent features, a
stable nodal integration method (SNIM) based
on NS-FEM theory is proposed for the analysis
of electromagnetic problems in this work.
During our study on  computational
electromagnetics, it occurs to us that FEM
formulations usually use quadrilateral or
hexahedral elements, high order elements, and
edge elements [Bird, O. et al., 1989], and
meshless methods usually adopt complex
functions to approximate field variables [Lai,
S.J. etal., 2008; Viana, S.A. et al., 1999]. So this
work aims to achieve the utilization of linear
nodal  tetrahedral ~mesh in  nonlinear
electromagnetic analysis. SNIM formulation
adopting linear tetrahedral mesh is developed for
3-D nonlinear magnetostatic and transient eddy
current problems in this paper, and the results
proved to be successful and encouraging. The
authors are now working on the numerical
simulation of simple structured sensors based on
electromagnetic principle and the results are to
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be expected.

MATHEMATICAL FORMULATION

Governing Equations

To simplify the calculation procedure, field
variables in electromagnetic analysis are usually
expressed into  potential  forms.  The
electromagnetic field in conductors can be
derived in two basically different ways from
potentials. One is to use a magnetic vector
potential A and an electric scalar potential ¢.

The other is to employ an electric vector
potential T and a magnetic scalar potential
v . This work adopts the former one to analyze

magnetostatic and transient eddy current
problems.

The governing equation for magnetostatic
problems in Cartesian coordinates is written as
VIVxWxA=], (1)

where v is the magnetic reluctivity, J, is

the current density, and V denotes the whole
domain in analysis.

For transient eddy current problems, the
governing equations in Cartesian coordinates
can be expressed as

\Y :VX(VVXA)+G%+O'V8—¢=JS
ot ot @
ot ot

where o is the conductivity, and V, denotes
the conducting region.

Discrete Equations by FEM

The analysis domain of 3D electromagnetic
problems can be discretized by four-node
tetrahedral meshes. Within each element, linear
interpolation is adopted to approximate field
variables. Magnetic vector potential A can
then be expressed as

~ n
A=>NA, ®3)
j=1
where Aj is the field variable value at the node

and N; is the shape function of finite element

method.
By using the standard Galerkin method, we
can obtain the weak form of Eq. (1) as

[ N (vxwxA=3,)d0 =0 4)

Adopting the divergence theorem and applying
boundary conditions, it obtains

IQVxNi-(viA)dQ:IQNi-JSdQ ()
Substituting Eqg. (3) into Eq. (5), the discretized

system equation can be expressed in the
following matrix form
KA=F (6)
where K is the coefficient matrix,
Kll K12 KlNode
K _ K.21 K.22 K2!\lode
K Nodel K Node2 K NodeNode (7)
Cxx ny sz
sz Czy sz

A is the vector of node potentials,
A= [Al A Node ]T A= [Axi Ayi A, ]T (8)
and F is the external current source vector.

F:[Fl FNode]T'Fi =[in Fyi in]T 9)
Fo = QNiJdedydz
Fyi = jQ N, J, dxdydz (10)
F,i =J-Q N;J,dxdydz
where Node is the number of nodes in

analysis, and terms of matrix Cij can be

expressed as  integral equations  of
oN, for,oN; Jor (r=x,y,2).

In the same way, the weak form of Eq. (2) can
be written as

_.[/[VxNi-VVx()]dV 0}{'0\]'_
I 0 0| Lo
—Lo-l\li~()dv [ Ny -v( v %

LoVNi-()dV LUVNi-V( v | op (D
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which can also be expressed in matrix form as

M%JrK-A:F (12)

In non-conducting regions, coefficient matrix
K is the same as Eq. (7), and in conducting
region, extra zeros concerning ¢ are added in

K; and makesita 4x4 matrix as



Cxx ny sz 0
c, ¢, C, O
KIJ ZVC” =V yz v vz (13)
sz Czy sz 0
0 0 0 O
M is a coefficient matrix concerning

conductivity which exists only in conducting
domain. M;; can be expressed as

D, 0 0 D,
0 D 0 D
vy yo
M; =oD; =c 0 0o D, D, (14)
D(PX DW DCDZ D‘ﬂ(ﬂ
And A, and F can be arranged

correspondingly in the conducting region. All
items of M, K, and F in Eqg. (12) can be
expressed as integral equations  of
N;,Nj,0N; /ar,eN; for, (r=x,y,z).

Node-based  Smoothed
Method (NS-FEM)

To implement NS-FEM formulation, based on
the tetrahedral mesh, the problem domain ¢ is
further divided into Node non-overlapping

smoothing domains f(k=1.2,...,Node). Each
smoothing domain with polyhedron shape is
centered by node of the mesh. Fig. 1 shows the
schematic of a typical node-based smoothing
domain. Boundary of o is labeled as r; and
the union of all ¢ forms exactly the global

domain Q.

Finite Element

O Field node
@ Centroid of the element
@ Center of the triangle

@ Mid-edge-point

Fig. 1. Schematic of a 3D node-based smoothing
domain for node k.
Adopting the node-based scheme, integration
in Eq. (6) and Eq. (12) can be performed upon
each smoothing domain ¢ . So items

oN, Jor,oN; /or(r=x,y,z) need to be
smoothed on ¢, and the smoothing operation
can be implemented upon the boundary r

according to the divergence theorem. For
example, the smoothing C,, can be calculated
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as Egs. (15) and (16). And other terms can be
obtained in the same way.

- N, N, aN, N,
I,

XX JdQ (15)
oy oy o e

N _ S%dgz:jsl\li-nydr

oy oy " (16)
N _ %dﬂzj N, -n,dl

oz % oz T

Stable Nodal Integration Method (SNIM)
After years of studying on numerical methods,
researchers found that FEM can offer stable
results for various problems. Up to now, FEM
has become the most commonly used algorithm
in commercial software. In contrast, NS-FEM
usually provides overly-soft system [Liu, GR,
2010a; Liu, GR, 2010b; Wu, S.C. et al.,
2009; Zhang, Z.Q. et al., 2010], and its
relatively weak stability hinders its further
applications [Zhang, Z.Q. et al., 2010]. To
improve the stability of NS-FEM, the authors
present a stable nodal integration method
(SNIM) referring to the integration scheme of

Fig. 2. The integration domain and integration
points for 3D problem: (a) FEM, (b)
SNIM.

Fig. 2(a) shows the smoothing domain Q;
and the integration points gf(i=1L ,N;) of
FEM formulation around node k. NS is the
number of surrounding elements of node k. To
obtain the stable nodal integration scheme, Qg
is approximated as a sphere domain Q;° with
the same volume V,; , and then QF is
subdivided into six sub-domains. The chosen
integration points are g'(i=12,3,4,56), which
lie in x-axis, y-axis, and z-axis and keep the
same distance |, to node k, as layout in Fig.

2(0). I, =(3A¢ /az ) is radius of domain QF.
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In this way, the discrepancy between FEM and
NS-FEM can be introduced into SNIM to some
extent.

Name oN,/or,oN;/or (r=xy,z) as DN .
Assuming DN is continuous and derivable at
the first order in ., its Taylor expansion can
be expressed as
DN =DN, + > (6DN/ar)r-r,)

r=x,y,z

(17)

So DN at the six integration points are
DN, DN;°, DN, DNJ°, DN, and

DNZC. And terms of smoothing matrix K can

be calculated upon six integration points, for
instance

[N 0
N

6
:Z;((Ni,x)m'( 5

=
Considering Eq. (17), it turns out to be
J.QSCW'X.N_”dgﬁc Z(WD_NV)k V¢

(18)

s

(19)
+ Y ADNx, -ADNy, - Vk

r=x,y,z

where

oDN
27'% ("ZX,)’,Z)

And alaD—N can be calculated as

ADN, (20)

aDN oDN
e

T do-= j DN -n,dl (21)

FoIIowmg the same procedure as Egs. (18-21),
all items in Egs. (6) and (12) can be obtained by
SNIM. One can observe that the derivatives of

DN are smoothed on domain Qg , and are
finally calculated on boundary ¢ following the

divergence theorem.
Finally, it is worth mentioning that the six

integration points g'(i=12,3,4,5,6) are just

temporary variables during our derivation
process, and the integration scheme is
accomplished equivalently by one point
integration and stabilization terms, as shown in
Eg. (19). Corresponding code can be realized
conveniently by adding a couple lines
concerning stabilization terms to original
NS-FEM code, and the following examples
testify efficacy of these terms. By the way,
integration points of SNIM are the discretized
nodes of original background mesh. Therefore,
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eddy current density or magnetic flux density
values are carried on nodes and can be easily
obtained or transferred. So SNIM can be
considered as a kind of particle method, except
that it needs background mesh in the early stage
of computation.

Technique for Nonlinear Problem

The nonlinear problems are studied in
following numerical examples, and the simple
update with relaxation is adopted in nonlinear
iteration. Since the main part of this paper lies
on the node-based formulation, an easy to
implement method is utilized for nonlinear
treatment.

APPLICATIONS AND RESULTS

In this section, magnetostatic and transient
eddy current examples of 3-D geometry are
calculated using FEM and SNIM solutions to
perceive efficacy of the proposed formulation. It
is worth noting that 0.8xI. seems to obtain

quite favorable results and is therefore utilized in
magnetostatic problems.

TEAM Problem 20 (Nonlinear Magnetostatic
Problem)

i \llm ,/ - 3

| conl
|
- ' air

a
5
5
2
.
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; feenter po \IL

@

(b)
Fig. 3. Geometry model and computation model
of problem 20 for the TEAM Workshop:

(@ a quarter geometry model, (b)
computation model.

Benchmark problem 20 for the TEAM
Workshop [Takahashi, N. et al., 1995] is a 3-D
nonlinear ~ magnetostatic ~ problem.  The
computation model is a quarter of the original
symmetry model, as shown in Fig. 3(a). The
center pole and yoke are made of steel. The coil
is excited by dc current. The number of turns of
the coil is 381 and the ampere-turns are chosen
to be 1000, 3000, 4500, 5000 in order to
investigate the saturation effect [Takahashi, N. et
al., 1995]. The quantities to be computed
includes: (1) z-components Bz of flux
densities at mid-point P1(0,0,25.75) and edge

point P2 (12.55,25.75) in the gap between



center pole and yoke; (2) z-components Bz of
average flux densities along section (a-p) in the
center pole and section (y-0) in the yoke. B-H
curve of the steel is nonlinear, as demonstrated
in [Takahashi, N. et al., 1995].

Results computed by FEM and SNIM are
compared with experimental results. Numerical
results are acquired with linear tetrahedral mesh
containing 4271 nodes and 22108 elements, as
shown in Fig. 3(b).

12 0.8 : : —
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1H-{---SNIM o SECSNIML | g

—_ e .6/
. Measured ,!/ o 0.6 —0—Measured/r
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508 - S04 / &
04 l/ . ’d et

/f 0.2 fel
02p—As &

1000 2000 3000 4000 5000 0

B:

1000 2000 3000 4000 5000

(@) (b)
Fig. 4. Z-component B, of flux density at certain
points for problem 20: (a) at point P1, (b)

at point P2.
25 0.5
o -FEM -o--FEM h
ol -=-sNim e 0.41-{ - SNIM
—+— Measured r/f“" . —+— Measured / ad
15 / i P 03 =
[ S [ J
8, // P // ez
05 /o 01—/ e
- 1000 2000 3000 4000 5000 - 1000 2000 3000 4000 5000
(a) (b)

Fig. 5. Z-component B, of average flux density
in certain sections for problem 20: (a) in
center pole (a-B), (b) in yoke (y-9).

E

(b) (©
Fig. 6. Magnetic flux density distribution in
conducting region for problem 20: (a)
FEM result, (b) SNIM result, (c) legend.
Fig. 4 shows the z-directional component Bz
of the flux density at mid-point P1 and at edge
point P2 in the gap. The discrepancy of Bz
between calculation and experiment at point P2
is larger than that at point P1, which is because
the errors of computation and experiment may
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increase at points where the flux densities
change abruptly [Takahashi, N. et al., 1995]. It is
obvious that traditional FEM fails to provide
results in accordance with measured data, and
the maximum relative error by FEM reaches
-41.01% at point P2 when adopting 3000
ampere-turn dc current. However, the proposed
SNIM offers much more accurate results and
reaches the maximum relative error 6.36% at
point P2 when adopting 5000 ampere-turn dc
current. Z-components of average flux density in
the center pole (a-f) and yoke (y-0) are shown in
Fig. 5. It is apparent that SNIM, which gets the
maximum relative error -6.15% in center pole
when wusing 1000 ampere-turn dc current,
generates better approximations than FEM,
whose maximum relative error reaches -50.76%
in yoke when using 1000 ampere-turn dc
current. And the accuracy of SNIM could be
improved by finer mesh. In general, traditional
FEM with linear tetrahedral mesh usually
behaves relatively stiff and provides lower
boundary for various fields. For electromagnetic
problems with linear tetrahedral mesh, this
situation becomes fairly severe. While SNIM
seems to achieve quite favorable system
stiffness. Fig. 6 shows the magnetic flux density
results in conducting region computed by FEM
and SNIM when using 5000 ampere-turns dc
current. Benefits from the gradient smoothing
technique, SNIM result appears to be more
smooth and accurate.

TEAM Problem 13 (Nonlinear Magnetostatic
Problem)

Benchmark problem 13 for the TEAM
Workshop [Nakata, T. et al., 1992] is a nonlinear
magnetostatic problem. The computation model
that occupies one half of the whole geometry is
shown in Fig. 7. An exciting coil is set between
two steel channels which are not aligned with
each other, and a steel plate is inserted between
the channels. The B-H curve of steel is
nonlinear, and the detailed expression can be
seen in [Nakata, T. et al., 1992]. The coil is
excited by dc current, and 1000 ampere-turn is
chosen to examine the magnetic flux densities
by numerical solutions. The quantities to be
computed includes: (1) spatial distribution of the
average flux density in the steel plates; (2)
spatial distribution of absolute value of flux
density along line ab.
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(b)

Fig. 7. Geometry model and computation model
of problem 13 for the TEAM Workshop:
(@) one half geometry model, (b)
computation model.

Numerical results are acquired with linear
tetrahedral mesh containing 14324 nodes and
80043 elements, as shown in Fig. 7. The
computational and experimental magnetic flux
density values in the plates and along line ab are
shown in Figs. 8 and 9.
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Fig. 8. Spatial distribution of average flux
density in steel plates (1000AT) for

problem 13.
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Fig. 9. Spatial distribution of absolute value of
flux density in air (L000AT) for problem
13.

It is obvious that FEM solution fails to
provide desirable outcomes. And since FEM
results are much smaller than experimental data,
the over stiff character of FEM can be observed
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again in this case. However, adopting the same
mesh, SNIM could offer results that are
generally in line with reference data except for
values on corners of the plates. Therefore,
effectiveness of SNIM for magnetostatic
problems can be testified by above benchmark
examples.

TEAM Problem 10 (Transient Eddy Current
Problem)

/center plate

Fig. 10. Geometry model of problem 10 for the
TEAM Workshop.

To illustrate the application of SNIM to
transient eddy current problems, the authors
programmed corresponding codes by FEM and
SNIM solutions. In this subsection, these codes
are used to solve benchmark problem 10 for the
TEAM Workshop [Nakata, T. et al., 1995]. In
this problem, an exciting coil is set between two
steel channels, and a steel plate is inserted
between the channels. Fig. 10 shows the
geometry model, which contains one eighth of
the original symmetry model for simplicity. The
B-H curve of the steel is nonlinear, and is
illustrated in [Nakata, T. et al., 1995].
Conductivity of the center plate and two

channels is 7.505x10°S/m . The exciting
current |, inthe coil varies with time as
0 (t<0)

{Im(l—et/’) (t=0)
The amplitude 1, =5.64A is chosen so that

the steel plates can be saturated sufficiently.
Time constant 7 =0.05s is selected to obtain a
relatively not small and measurable eddy current
density. The number of turns of the coil is 162.

In order to examine the accuracy of numerical
solutions, the computed average flux densities at
various positions of the steel plates (shown in
Fig. 10) are compared with experimental data. In
this case, to testify efficacy of mesh refinement
on FEM solution, SNIM results are gained with
mesh containing 8579 nodes and 45045
elements, and FEM(fine) results are gained with
mesh of 23000 nodes and 126415 elements.

= (22)

lo
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Fig. 11. Time variations of average flux density
at certain sections for problem 10: (a) at
position S1, (b) at position S2, (c) at
position S3.

Fig. 11 shows time variation of the flux
densities. It can be seen that SNIM solution
acquires quite favorable results in keeping with
experimental ones at various positions, and its
final relative errors are 0.96%, 1.10% and
2.11%. However, large discrepancies are
observed for FEM results with refined mesh,
which leads to final relative errors -16.56%,
-20.10% and -21.20%. Again in this case,
readers could find that traditional FEM adopting
linear tetrahedral mesh behaves relatively stiff
and it offers much smaller results than the
reference ones. While the proposed SNIM
solution maintains high accuracy all along, and
it seems to offer potentiality for the utilization of

B

linear tetrahedral mesh in other complex
electromagnetic problems.

= 15000

5

510000 |

g s000 1 }—fi

O 0 L

FEM(fine) SNIM

Fig. 12. Computation time of various solutions
for solving TEAM Problem 10.

Except for accuracy, the computational cost
analysis is also necessary to assess one new
developed algorithm. To note that, results in this
section were all obtained under the same
platform in a computer with CPU Inter Core
i5-6600 at 3.30GHz with 4.00GB of RAM

J. CSME \ol.41, No.5 (2020)

memory and the Microsoft Windows 7
Professional X64 Edition V2009 operating
system. All codes were written in Visual Studio
2008 Standard Edition and run with single
thread. Fig. 12 shows the CPU time of the
adopted solutions for solving TEAM Problem
10. It shows that the computation time of SNIM
is shorter than that of FEM(fine), so the
attractive feature of SNIM can be proved.

CONCLUSION

The main objective of this work is to
formulate a stable nodal integration method
(SNIM) with linear tetrahedral mesh for solving
electromagnetic problems. It turns out that the
proposed method completes well in several
benchmark examples, and the magnetic flux
density can be captured with high accuracy and
low computation cost. And the adopted linear
tetrahedral mesh is quite favorable when applied
for problems with complex structure in
mechatronic system. All in all, numerical
examples show the adequacy of the proposed
solution for electromagnetic analysis, and its
attractive features produce potential for further
study.
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NOMENCLATURE

A magnetic vector potential

A; magnetic vector potential at node j

C; node based smoothing C;;

DN simplified expression of shape function
derivatives

DN DN atthe integration points of SNIM

F the external current source vector

g’ integration points around node k in FEM
formulation

g; integration points of SNIM method

the current density vector

k  node number

K the coefficient matrix

K the smoothing coefficient matrix

distance between g; and node k

coefficient matrix concerning conductivity

outward normal of ¢

number of related elements around node k

shape function of finite element method

terms that form K matrix by multiplying v

N
N
V  the whole geometric domain in analysis
V, the conducting region

V.’ volume of Q

Greek symbols
¢ electric scalar potential

v magnetic reluctivity
o conductivity
Q the whole discretized domain

Q; node-based smoothing domain
Q;° a sphere domain around node k with the

same volume as Q;
rs boundary of the smoothing domain ©f
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