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ABSTRACT 
 

This paper investigates the coupled 
micro-vibrations between a reaction wheel assembly 
(RWA) and a flexible structure. Firstly, the 
Lagrange's energy method is employed to develop 
vibration equation of the RWA. The RWA model is 
described by twelve-dof linear differential equation 
with gyroscopic term. Secondly, based on the 
established vibration equation, disturbance model of 
the RWA with a discrete flexible structure is obtained. 
This disturbance model is simulated and discussed by 
taking a six-dof system as the study object. Thirdly, a 
frequency domain substructure method (FDSM) is 
used to calculate coupled disturbance response of the 
RWA with a continuous flexible structure, which is 
designed as analog of the satellite flexible installation 
interface. The dynamic response is validated by 
numerical and finite element simulations. The 
coupled disturbance analysis method involved in this 
project will provide a theoretical basis for prediction 
of the coupled disturbance of RWA with satellite 
flexible interface. 
 
 

INTRODUCTION 
 

Development of high-precision observation 
satellite is currently an important topic, also is the 
inevitable trend in the development of space 
technology. Therefore, during the design process of 
satellite, more stringent standards for the satellite 
platform stability are put forward (Remedia et al.,  

 
 
 
 
 
 
 
 

2015). However, micro-vibrations of satellite, which 
are characterized by low amplitude and wide 
frequency band, can seriously degrade the satellite 
platform stability, and significantly influence imaging 
quality and pointing accuracy of the satellite (Chen et 
al., 2016). Satellite micro-vibrations are usually 
caused by moving parts on-board the satellite, such as 
reaction wheel assembly (RWA), control moment 
gyroscope (CMG), cryo-cooler assembly (CCA), 
camera shutter assembly (CSA) and solar array drive 
assembly (SADA), which in this situation are termed 
as micro-vibration sources. Among these moving 
parts, RWA and CMG are always regarded as the 
most prominent disturbance sources (Li et al., 2016; 
Zhang et al., 2010). 

RWA are commonly used as actuators of 
attitude control in satellite. RWA provides control 
torque for satellite via adjusting rotational 
acceleration of the high speed rotary flywheel. The 
rotary flywheel also produces adverse vibrations 
while providing control torque. Disturbances caused 
by RWA result primary from the following four 
factors: flywheel mass imbalance, internal resonance, 
imperfection in mechanical bearings and motor ripple 
(Li et al., 2014), in which flywheel mass imbalance is 
almost considered as the major factor. Masterson et al. 
(2002) assumed RWA disturbance caused by the 
flywheel mass imbalance consists of a series of 
harmonics at discrete frequencies with amplitude 
proportional to square of the flywheel speed. Internal 
resonance occurs when the disturbance harmonics 
cross structural modes. Masterson (1999) developed a 
four-dof linear flywheel analytical model with radial 
translational and rock vibrations, which captures the 
dynamic interaction between structural modes and 
inertia properties of the flywheel and gyroscopic 
stiffening effects. In this paper, the RWA model is 
considered as a twelve-dof linear vibration system 
which takes vibration of the frame into account. 
Vibration equation of the system is developed by the 
Lagrange's energy method. 

RWA micro-vibrations extremely easily to 
happen dynamic couple with the flexible satellite 
installation interface. The RWA disturbances induce 
vibrations in the satellite and excite its flexible modes. 
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The satellite vibrations subsequently drive the RWA 
and create additional disturbances, and this makes the 
RWA micro-vibrations more complex. The coupling 
characteristics between RWA and flexible satellite 
interface are complicated and will increasingly 
deteriorate point performances of the satellite 
(Narayan et al., 2008). Thus, with the development of 
high-precision observation satellite, study of coupled 
micro-vibrations characteristics between RWA with 
flexible structure is of great significance. There has 
been several researches focusing on investigate these 
coupled micro-vibrations. Elias et al. (2003) 
presented a traditional coupling disturbance analysis 
method, which directly applies the RWA 
hard-mounted testing spectrums to a spacecraft FRF 
to predict its performance. They also pointed out that 
this analysis method could bring a lager error when 
the internal elastic needs to be considered in the RWA 
model. To reduce the error caused by ignoring the 
internal elastic, Elias et al. (1999) and Elias et al. 
(2002) proposed a coupled disturbance analysis 
method based on dynamic mass measurement 
techniques. This method uses a correction term to 
correct the RWA hard-mount test spectrums, and then 
applies the corrected spectrums to a spacecraft FRF 
to predict its performance. This method makes a 
better correction effect in most frequency band, but it 
is still ineffective in some frequency band. The main 
cause is measurement of the RWA dynamic mass fails 
to consider influence of the flywheel gyroscopic 
effect. Zhou et al. (2011) and Zhang et al. (2013) 
studied influence of the flywheel gyroscopic effect on 
the coupling disturbance analysis based on theoretical 
modeling and experimental measurement. A seismic 
micro-vibration measurement system was developed 
to measure the coupled micro-vibrations, and an 
analytical model of the RWA with the test system was 
established to analyze the coupled micro-vibrations. 
The results indicate that the flywheel gyroscopic 
effect is important and cannot be ignored in the 
coupling disturbance analysis. 

However, the aforementioned researches did 
not deeply discuss the coupled micro-vibration 
characteristics of RWA with flexible structure since 
only a few effective methods exist to model and 
analyze the coupled micro-vibrations. In this paper, 
the disturbance modeling methods of a RWA with 
both a discrete structure and a continuous flexible 
structure are presented. Taking a six-dof 
spring-damping-force of mass system as the discrete 
flexible structure, numerical model and finite element 
model (FEM) of the coupling system are established, 
based on which dynamic characteristics of the 
coupling system are simulated and investigated. 
Furthermore, the coupled disturbance response of a 
RWA with a continuous flexible structure is obtained 
by a frequency domain substructure method (FDSM) 
and then been validated by numerical and FEM 
simulations. The coupled disturbance modeling and 

analysis methods involved in this paper will provide a 
theoretical basis for prediction of the coupled 
disturbance of RWA with the satellite flexible 
installation interface.  
 
 

VIBRATION EQUATION OF RWA 
 
Description and Simplification of RWA Model 

As depicted in Fig. 1, the RWA structure 
mainly consists of three parts: a flywheel, two 
bearings and a frame, where the flywheel supported 
to the frame by a pair of face to face mounted angular 
ball bearings (Zhou et al., 2012). Defining coordinate 
o0x0y0z0 (coordinate 0) is the frame-fixed coordinate, 
where the origin o0 locates at center of mass (COM) 
of the frame, and z0-axis is in line with the flywheel 
axis. Assuming COMs of the flywheel and frame are 
coincident at the initial state. 

 

 
Fig. 1. Schematic diagram of RWA structure. 

 
Fig. 2. Equivalent springs model of the bearings. 

 
The flywheel and frame can be considered as 

six-dof rigid bodies since the flywheel rotary speed is 
usually far below the critical point. As shown in Fig. 
2, all the supporting bearings can be equivalent to 
linear springs, where kr and ka represent radial and 
axial equivalent stiffness of the bearings, respectively, 
cr and ca represent the equivalent damping, and d is 
the bearings supporting length. All the equivalent 
stiffness and damping can be equivalent to the origin 
o0 into a six-dof spring that the RWA model can be 
simplified into a twelve-dof mass-spring-damping 
system. 

The equivalent stiffness and damping matrixes 
of the six-dof spring are, respectively, defined as: 

[ ]
[ ]

0

0

diag ,

diag ,
t r

t r

=

=

K K K

C C C
  (1) 

where Kt and Kr represent translational and torsional 
stiffness matrixes of the six-dof spring, respectively, 
and Ct and Cr represent the damping matrixes. 

The translational stiffness and damping 
matrixes can be obtained by linear summation of the 
equivalent stiffness and damping, which are, 
respectively, given as: 
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[ ]
[ ]

diag 2 2 2

diag 2 2 2 .
t r r a

t r r a

k k k

c c c

=

=

K

C

,
  (2) 

Taking derivation of the y-axis torsional 
stiffness as example, calculation of the torsional 
stiffness matrix is demonstrated. As illuminated in 
Fig. 3, assuming the flywheel happen a small 
torsional deformation ε around y-axis, the two x-axis 
radial springs will generate opposite direction 
translational transformation Δε, which can be 
calculated by: 

sin .dε ε∆ =   (3) 
 

 
Fig. 3. Equivalent model of y-axis torsional spring. 

  
The reactive forces generated by the two x-axis 

radial springs are equal in value and opposite in 
direction. The two reactive forces can be equivalent 
to the origin o0 as a torque around y-axis: 

22 2 sin .rT F d k dε ε ε= =   (4) 
For axis rotation of the flywheel about the two 

radial directions, the rotary angular are quite small, so 
ε tends to zero. Then, the equivalent torque can be 
simplified as: 

22 .rT k dε ε=   (5) 
Thus, the equivalent torsional stiffness around 

y-axis can be obtained as: 
2/ 2 .ry rk T k dε ε= =   (6) 

Accordingly, we can obtain the equivalent 
torsional stiffness around x-axis. The equivalent 
torsional stiffness around z-axis is zero for the 
flywheel rotation axis is z-axis. Thus, the equivalent 
torsional stiffness matrix can be achieved as: 

2 2diag 2 2 0 .r r rk d k d =  K   (7) 
Similarly, we can obtain the equivalent 

torsional damping matrix as: 
2 2diag 2 2 0 .r r rc d c d =  C   (8) 

Finally, the equivalent stiffness and damping 
matrixes can be, respectively, achieved as: 

2 2
0

2 2
0

diag 2 2 2 2 2 0 ,

diag 2 2 2 2 2 0 .

r r a r r

r r a r r

k k k d k d k

c c c d c d c

 =  
 =  

K

C
  (9) 

 
Vibration Equation of RWA 

The Lagrange's energy method is used to 
develop vibration equation of the RWA (Chen, 1997). 
General form of the Lagrange's equation is given as: 

( , ) ( , ) ( , ) ( , ) ,d T T V D
dt
 ∂ ∂ ∂ ∂

− + + = ∂ ∂ ∂ ∂ 

q q q q q q q q p
q q q q
   

 
 

 (10) 
where q and p are generalized external force and 
coordinate vectors of the system, respectively, and T, 
V and D denote the kinetic, potential and dissipation 
energy. 

The translational displacement vectors of the 
flywheel and frame COMs are, respectively, defined 
as: 

0 0 0 0

0 0 0 0

T

T

,

.

ft o x y z f f f

gt o x y z g g g

x y z

x y z

 =  

 =  

q

q
  (11) 

The angular displacement vectors of the 
flywheel and frame COMs are, respectively, defined 
as: 

0 0 0 0

0 0 0 0

T

T

,

.

fr o x y z f f f

gr o x y z g g g

α β γ

α β γ

 =  

 =  

q

q
  (12) 

The translational velocity vectors can be 
obtained from derivation of the translational 
displacement vectors: 

0 0 0 0

0 0 0 0

T

T

,

.

ft o x y z f f f

gt o x y z g g g

x y z

x y z

 =  

 =  

q

q

   

   
  (13) 

The angular velocity vectors can be obtained 
from derivation of the angular displacement vectors: 

0 0 0 0

0 0 0 0

T

T

,

.

fr o x y z f f f

gr o x y z g g g

α β γ

α β γ

 =  

 =  

q

q

  

  
  (14) 

Euler angles motions are used to define rigid 
body rotations of the flywheel and frame (Yuan, 
1997), as described in Fig. 4. Three rotations are β, α 
and γ, respectively, and corresponding rotating axes 
and rotated coordinates are y0-axis, xβ-axis, zα-axis 
and oβxβyβzβ, oαxαyαzα, oγxγyγzγ.  

 

 
Fig. 4. Euler angles motions of flywheel and frame. 

 
Assuming the flywheel spinning speed is a 

constant Ω, after the Euler angular motions, angular 
velocity vectors of the flywheel and frame COMs can 
be, respectively, expressed in coordinate oαxαyαzα as: 
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T

T

cos sin ,

cos sin .

fr o x y z f f f f f

gr o x y z g g g g g g

α α α α

α α α α

α β β Ω β β

α β β γ β β

 = − 

 = − 

q

q

  

   
 

 (15) 
Mass matrixes of the flywheel and frame are, 

respectively, given as follows: 

0 0 0 0

0 0 0 0

diag ,

diag ,

f o x y z f f f

g o x y z g g g

m m m

m m m

 =  

 =  

M

M
  (16) 

where mf and mg are mass of the flywheel and frame, 
respectively. 

Inertia matrixes of the flywheel and frame are, 
respectively, given as follows: 

0 0 0 0
diag ,

diag ,

f o x y z fr fr fz

g o x y z gr gr gz

J J J

J J J
α α α α

 =  

 =  

J

J
  (17) 

where Jfr and Jgr are radial inertia of the flywheel and 
frame, respectively, and Jfz and Jgz are the polar 
inertia. 

The total kinetic energy T of the system is 
determined by the following formula: 

T T T T1 1 1 1 .
2 2 2 2ft f ft gt g gt fr f fr gr g grT = + + +q M q q M q q J q q J q       

  (18) 
Thus, using Eqs. (13)–(18), the kinetic energy 

can be obtained as: 

( ) ( )

( ) ( )

( ) ( )

22 2 2 2

2 2 2 2

2 22

1 1 cos
2 2

1 1      sin
2 2

1 1       cos sin .
2 2

f f f f fr f f f

fz f f g g g g

gr g g g gz g g g

T m x y z J

J m x y z

J J

α β β

β β

α β β γ β β

 = + + + +  

+ Ω − + + + +

 + + −  

  

   

  

 (19) 
The elastic displacement and dissipation 

velocity vectors can be obtained by subtracting the 
displacement and velocity vectors of the frame from 
flywheel, respectively, and are expressed as: 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T TT T T

T TT T T T

, , 

, . 

T
t o x y z gt ft r o x y z gr fr

t o x y z gt ft r o x y z gr fr

∆ ∆

∆ ∆

   = − = −   

   = − = −   

q q q q q q

q q q q q q     
 

 (20) 
The potential energy and dissipation energy of 

the system are, respectively, determined by: 
T T

T T

1 1+ ,
2 2
1 1+ .
2 2

t t t r r r

t t t r r r

V

D

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

=

=

q K q q K q

q C q q C q   

  (21) 

Hence, we can obtain the potential energy and 
dissipation energy of the system by taking Eqs. (2), 
(7), (8) and (20) into Eq. (21) and are, respectively, 
expressed as: 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2 2 2

2 2 2

      ( ) ( ) ,

      ( ) ( ) .

r f g f g a f g

r f g f g

r f g f g a f g

r f g f g

V k x x y y k z z

d k

D c x x y y c z z

d c

α α β β

α α β β

 = − + − + −  
 + − + − 

 = − + − + −  
 + − + − 

     

  

  (22) 

The generalized external force vector acting on 
the flywheel is mainly caused by the flywheel mass 
imbalance, which contains static and dynamic 
imbalances, as shown in Fig. 5. Static imbalance is 
caused by offset of the flywheel COM from the 
rotation axis. Dynamic imbalance is resulted from 
angular misalignment of principle axis of the 
flywheel and the rotation axis. When the flywheel 
rotates, the static and dynamic imbalances will cause 
imbalances force and torque to the flywheel, which 
can be equivalent to a force and torque vectors acting 
on the COM of the flywheel, respectively. The 
equivalent force and torque vectors are, respectively, 
expressed as follows:  

T2 2

T2 2

sin( ) cos( ) 0 ,

sin( ) cos( ) 0 ,

s s s s s

d d d d d

U t U t

U t U t

Ω Ω ϕ Ω Ω ϕ

Ω Ω ϕ Ω Ω ϕ

 = + + 

 = + + 

f

f
  (23) 
where Us=msrs and Ud=mdrdhd denote the static and 
dynamic mass imbalances, respectively, and φs and φd 
are the initial phases. 
 

 
Fig. 5. Static and dynamic imbalances of flywheel. 

 
The generalized external force vector of the 

system is defined as: 

0 0 0 0

TT T ,R o x y z f g =  p f f   (24) 
where ff and fg represent the generalized external 
force vectors acting on the flywheel and frame COMs, 
respectively. 

Then, the generalized external force vector 
acting on the flywheel COM can be written as: 

0 0 0 0

TT T .f o x y z s d =  f f f   (25) 
Finally, substituting Eqs. (19) and (22) into Eq. 

(10), we can obtain vibration equation of the RWA in 
the time domain. Using small angle hypothesis and 
ignoring terms with order higher than O(qi

2), the 
vibration equation can be written in the following 
matrix form: 

( ) ,R R R R R R R R+ + + =M q C G q K q p    (26) 
where MR, CR and KR is the generalized mass, 
damping, and stiffness matrixes of the system, 
respectively, and GR denotes the centrifugal term 
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matrix. All the expressions are shown in follows: 

0 0 0 0

0 0 0 0

  

  ,

f gf
R f g

f gg

f
R R R

     
= = =     
      

− −     
= = =     − −     

M 0 M 0M 0
M M M

0 J 0 J0 M

K K C C G 0
K C G

K K C C 0 0


 



  (27) 
where Gf is the centrifugal matrix of the flywheel and 
can be calculated by: 

0

0 0
, 0 0 .

0 0 0

fz

f fz

J
J

Ω
Ω

 
   = = −       

0 0
G G

0 G 0   (28) 

The generalized coordinate vector of the 
vibration system is: 

0 0 0 0

TT T .R o x y z f g =  q q q                   (29)  

 
 
RWA WITH A DISCRETE FLEXIBLE 

STRUCTURE 
 
Description of the Coupling System 

Taking a six-dof spring-damping-force of mass 
system as the discrete structure, vibration 
characteristics of RWA with the discrete flexible 
structure are discussed. Simulation parameters of 
RWA are listed in Table 1. Fig. 6 shows the coupling 
system and its equivalent model, where d0 and d1 are 
distances from the frame COM and flexible structure 
to the RWA interface, respectively, and M1, C1 and 
K1 are mass, damping and stiffness matrixes of the 
mass system, values of which are defined by: 

[ ]
[ ]

[ ]

1

1

5
1

diag ,

diag 800 1200 4.5 5.8 11.5 ,

4 4 4 0.006 0.006 0.01

1000

10 2 1 1 0.17 0.1 5diag 0 0 0 8 ..

=

=

=

M

C

K

  (30) 

 

 
Fig. 6. RWA with a discrete flexible structure. 

 
Model of the Coupling System 

Numerical model and FEM of the coupling 
system are developed in this part. Based on the 
established vibration equation of RWA, numerical 
model of RWA with the discrete flexible structure can 
be obtained as: 

( ) ,s s s s s s s s+ + + =M q C G q K q p    (31) 
where Ms, Cs, Gs and Ks are the mass, damping, 
centrifugal and stiffness matrixes of the coupling 
system, respectively, and qs and ps are the generalized 

coordinate and external force vectors. All the 
expressions are shown in follows: 

1 1
2 1 4 1 3

0 0 1
1 1 1

2 0 2 0 1 4 1 3

0 0 1
1 1 1

2 0 2 0 1 4 1 3

TT T

, 

,    

, 

,  ,

f
s

g

s

s

f
s s f r

− −

− − −

− − −

 
=  

+  
− 

=  − + 
− 

=  − + 
   = =    

M 0
M

0 T M T T M T

K K T
K

T K T K T T K T

C C T
C

T C T C T T C T

G 0
G q q q

0 0





  (32) 

where qs is the generalized displacement vector of the 
RWA interface, T1 and T2 represent the transitive 
relations between the displacement and force of the 
frame COM with the RWA interface, respectively, 
and T3 and T4 represent relations between the flexible 
structure COM with the RWA interface. They are 
calculated by: 

T
3 0 3 3 3 1

1 2 3
3 3 0 3 3 3

3 3
4 T

1 3

, ,  

0 1 0
, 1 0 0 .

0 0 0

d d
d

d

    
= = =     
     

 
   = = −       

I L I 0 I L
T T , T

0 I L I 0 I

I 0
T L

L I

 

 (33) 
 

Table 1. Simulation parameters of RWA. 
Parameters Values Parameters Values 

mf 4.25 kg kr 2×106 N/m 

Jfr 0.011 kg·m2 ka 8×106 N/m 

Jfz 0.02 kg·m2 cr 150 N·s/m 

mb 10 kg ca 1000 N·s/m 

Jbr 0.015 kg·m2 d 0.04 m 

Jbz 0.03 kg·m2 d0 0.055 m 

Us 8.1×10-5 kg d1 0.005 m 

Ud 3.5×10-7 kg φs, φd 0 rad 

 
ANSYS 13.0 is used to create FEM of the 

coupling system. In the FEM, element MASS21 is 
used to mesh the flywheel, frame and mass of the 
discrete flexible structure, COMBIN14 to mesh the 
radial and axial equivalent springs of bearings and 
six-dof spring of the discrete flexible structure, and 
MPC184 to combine the RWA and mass system. 
 
Modal Analysis of the Coupling System 

When the flywheel at rest (Ω=0), based on the 
numerical model and FEM, first eight orders 
undamped natural frequencies of the coupling system 
are obtained and illustrated in Table 2. The results 
obtained from the numerical model compare well 
with that from FEM, allowing verification of the 
numerical model. Only first eight orders natural 
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frequencies are analyzed since the ninth order natural 
frequency is 273.69 Hz and far greater than the 
flywheel rotational excitation frequency. 

 
Table 2. Natural frequencies of the coupling system. 

Order 1 2 3 4 

Numerical (Hz) 34.19 40.14 70.48 70.48 

FEM (Hz) 34.19 40.14 70.00 70.48 

Order 5 6 7 8 

Numerical (Hz) 112.55 116.10 124.41 137.97 

FEM (Hz) 112.55 116.10 124.41 137.97 

 
Using the FEM, we can obtain first eight orders 

mode of vibration, as described in Fig. 7. The first 
order mode is translational mode of the system along 
y-axis, and second is rock mode about y-axis. The 
third and fourth orders modes are rock modes of the 
flywheel about x-axis and y-axis, respectively. The 
fifth order mode is translational mode of the coupling 
system along y-axis, where the flywheel and frame 
tend to different directions and involve rock modes. 
The sixth order model is the translational mode of the 
flywheel about x-axis and rock mode of the frame 
around y-axis. The seventh and eighth order modes 
are rock mode of the system about y-axis and x-axis, 
respectively, where the flywheel and frame rock to 
different directions. 

 

 
Fig. 7. Modes of vibration of the coupling system. 

 
Fig. 8. Campbell diagram of the coupling system. 

 
For a rotating system, the eigenfrequencies 

often depend on the rotational speed as a result of the 
gyroscopic effect. The variation of the 
eigenfrequencies with the rotational speed is often 
plotted in a diagram called a Campbell diagram. Fig. 
8 shows Campbell diagram of the coupling system, 
which plots the variation of the first eight order 
undamped natural frequencies with the flywheel 
rotating speed, and eight curves are defined as ωi (i=1, 
2…8) corresponding to the ith order natural 
frequency. In addition, the dotted line refers the 
excitation frequency of the flywheel imbalance. 

It can be seen from Fig. 8 that there is a pair of 
backward and forward whirl curves, ω3 and ω4, ω3 is 
the backward whirl curves, decreasing with the speed 
of the flywheel, and ω4 is the forward whirl curves, 
increasing with the flywheel rotation speed, very 
close to the translational mode of the coupling system, 
ω5, when the rotational speed is higher than 2800 rpm. 
The other six natural frequencies basically remain 
unchanged at low rotational speed and would change 
when the rotational speeds are higher than 2000 rpm. 
These changes are no more than 5 Hz, except ω7 and 
ω8 beyond 10 Hz. 

The spin speeds at which one of the excitation 
functions has a frequency coinciding with one of the 
natural frequencies of the system are usually referred 
to a critical speed (Genta et al., 2005). In the coupling 
system, the excitation frequency of the flywheel 
imbalance is ω=Ω/60. Thus, as labeled in Fig. 8, there 
are three critical speeds in the coupling system, 
which nearly locate at 2050 rpm, 2250 rpm and 2800 
rpm corresponding to excitation frequency are 
34.17Hz, 37.5Hz and 46.67Hz, respectively. At these 
critical speeds, the flywheel imbalance can trigger 
dynamic amplification of amplitude, and the system 
will experience large vibrations. 

 
Dynamic Response Analysis of the RWA Interface 

Assuming initial condition is s s= =q q 0  and 
taking the Laplace transform to Eq. (31), we can 
obtain that: 

2
0 0

0 0 1
1

2 0 0

1 2
2 0 0 1

1 2
4 1 1 1 3

,

( ) ,

( ) ,

( ),

( )

       ( ) ,

f f

r

f f
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s s
s

s

s s

s s

−

−

−

    
=    

    
= + + +

= −

= −

= +

+

XA B F
XC D 0

A M G C K
B C + K T

C T C + K

D T M + C + K T

T M + C K T





  (34) 

where s=wi=2πfi, i is the square root of –1, w and f 
are vibration angular frequency and vibration 
frequency, respectively, and vectors Xf, Xr, and Ff are 
frequency domain form expressions of the 
generalized displacement vectors. 

The generalized external force vector in the 
frequency domain form can be expressed as: 
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T2 2 2 20 0 .f s s d dU w U w i U w U w i =  F  (35) 
Then, acceleration response of the RWA 

interface can be obtained as: 
1 2( ) .r f s−= −X B AC D F   (36) 

Matlab R2017a and ANSYS 13.0 are used to 
simulate acceleration response of the RWA interface 
via the numerical model in Eq. (36) and the 
established FEM of the RWA, respectively. The 
numerical simulations are performed when the 
flywheel rotating speed is stabilizing at Ω=1, 
2…4000 rpm. Acting unbalance force and moment to 
the MASS element of the flywheel, the FEM 
simulations are performed when the flywheel rotating 
speed is stabilizing at Ω=(2l–1)·60 rpm (l=1, 2…34). 

 

 

 
Fig. 9. Comparison result of translational 

acceleration. 
 

Figs. 9 and 10 plot the translational and angular 
acceleration amplitudes of the two simulations at the 
fundamental frequency, respectively. It can be seen 
from the figures that the two simulation results are 
basically consistent, which further validates the 
numerical model. The acceleration response can 
trigger obvious amplitude amplification at the critical 
speed as discussed in last part, but the critical speed 
points have small difference with the Campbell 
diagram because influence of the damping. The first 
critical speed is intersection of the excitation 
frequency with the first order mode (translational 
mode of the system along y-axis) and triggers 
amplification of translational acceleration amplitude 

along y-axis near 2040 rpm. Similarly, the second 
critical speed triggers amplification of translational 
acceleration amplitude along x-axis near 2280 rpm. 
Since the height difference between the flywheel 
imbalance excitations with the RWA interface, force 
excitations of the flywheel along x-axis and y-axis 
can bring moments about y-axis and x-axis, 
respectively. Hence, the first and second critical 
speeds also trigger amplification of angular 
acceleration amplitudes about x-axis near 2040 rpm 
and y-axis near 2280 rpm, respectively. The third 
critical speed is the backward whirl curves with the 
excitation frequency and can excite amplification of 
translational acceleration amplitude along x-axis and 
angular acceleration amplitude about x-axis and 
y-axis near 2830 rpm. 
 

 

 
Fig. 10. Comparison result of angular acceleration. 

 
 

RWA WITH A CONTINUOUS 
FLEXIBLE STRUCTURE 

 
Frequency Domain Substructure Method 

A FDSM is used to develop the coupling 
analysis model. Early FDSM is the Impedance 
Coupling method (IC method), which uses receptance 
of substructures to obtain that of the assembly 
structure (Imregun et al., 1987). However, this 
method is computationally inefficient since it needs 
to inverse the receptance of each substructure firstly. 
Tsai and Chou et al. (1988) developed a Receptance 
Coupling method (RC method), which is more 
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computational efficiency by synthesizing receptance 
of substructures directly and will be adopt by this 
paper. 

Taking coupling process of two substructures as 
example, the RC method is deduced, as described in 
Fig. 11. Subscripts a and b represent internal 
coordinates on the two substructures, respectively, 
and c represent the connection coordinates. Defining 
coordinate o1x1y1z1 (coordinate 1) and coordinate 
o2x2y2z2 (coordinate 2) are their local coordinates. 

 
Fig. 11. Coupling process of two substructures. 

 
Defining receptance matrixes of assembly 

structure S, substructures I and II in partitioned form 
as follows: 

,  ,

S S S S S
aa ac ab a a

S S S S S S S
ca cc cb c c
S S S S S
ba bc bb b b

     
     = =    

         

H H H X F
H H H H X H F

H H H X F
  (37) 

I I I I
I I

I I I I, ,aa ac a a

ca cc c c

        = =    
        

H H X F
H H

H H X F
  (38) 

II II II II
II II

II II II II, ,bb bc b b

cb cc c c

        = =    
        

H H X F
H H

H H X F
  (39) 

where H represents receptance matrix, and X and F 
refer to response and excitation vectors, respectively. 

When coordinates 1 and 2 are inconsistent, they 
need been transformed into accordant. After the 
transformation, assuming coordinate 2 accordance to 
coordinate 1, all the coordinates of substructure II 
need to be transformed by a coordinate 
transformation matrix, which is defined as: 

II ,b

c

 
=  
 

T 0
T

0 T
  (40) 

where Tb and Tc are the orientation cosine matrixes 
between internal and connection coordinates of 
substructure II with that of substructure I, 
respectively. 

After been transformed, Eq. (39) can be rewritten 
as: 

1 1II II II II
II I

1 1
I

II II II II, ,b bb b b bc c b b

c cb b c cc c c c

− −

− −

        = =    
        

T H T T H T X F
H H

T H T T H T X F

 
 

 
 

 (41) 
where IIX  and IIF  refer to excitation and response 
vectors of substructure I on coordinate 1, respectively, 

and IIH  represents the receptance matrix. 
Basic conditions of the substructures synthesis 

are compatibility and equilibrium of the connection 
coordinates, which are given as: 

I II I II, .S S
c c c c c c= = + =X X X F F F    (42) 

In the substructures coupling process, response 
and excitation of the internal coordinates are not 
changed, which can be expressed by: 

I II I II, = , = , .S S S S
a a b b a a b b= =X X X X F F F F    (43) 

Combining Eqs. (37)–(43), we can obtain 
expression of receptance matrix of the assembly 
structure: 

1 I 1I II

T

1

I1 I

II

1
         .

aa ac ac
S

ca cc cc

b bb b b bc c

ca

cc c cc c cc

c cb b

− −

−−

−

   
   = −   
   −   

 
  +   
 − 

H H 0 H
H H H 0 H

0 0 T H T T H T

H
H T H T H

T H T

Ⅰ Ⅰ Ⅰ

Ⅰ Ⅰ Ⅰ

Ⅰ

Ⅰ Ⅰ

  (44) 

RC method can be used to structure receptance 
matrix of the coupling system by taking impedance 
matrixes of RWA and flexible structure into Eq. (44). 
The whole process requires only inversion of 
impedance matrix of the connection coordinates, 
making improvement of the calculation accuracy and 
efficiency. Steps involved in the coupling process can 
be summarized as follows: 

1) Dividing the coupling system into RWA and 
flexible structure substructures; 

2) Calculating impedance matrixes of the RWA 
and flexible structure and the coordinate 
transformation matrix; 

3) Achieving receptance matrix of the coupling 
system by substituting the obtained impedance 
matrixes and coordinate transformation matrix into 
Eq. (44). 
 
Division of Substructures 

Taking an aluminum honeycomb sandwich 
palate (AHSP) as the continuous flexible structure, 
coupling system of RWA with a continuous flexible 
structure is shown in Fig. 12, where RWA is mounted 
on the central of the aluminum honeycomb sandwich 
palate with 45º angle of inclination about y-axis. 

 

 
Fig. 12. Coupling system of RWA with an AHSP. 
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The coupling system can be divided into RWA 
substructure (substructure I) and flexible structure 
substructure (substructure II). 
 
Substructure I 

Receptance matrix of substructure I can be 
obtained by the vibration equation of RWA. Internal 
coordinates of substructure I are the flywheel COM, 
and connection coordinates are the RWA interface. 
Vibration equation of the RWA based on the internal 
and connection coordinates can be expressed as: 

0 0 1
1 11

2 0 2 0 12 1

0 0 1
1 1

2 0 2 0 1

.

ff ff

r rg

f f

r r

− −−

− −

  + −    
+ +      −       

−     
=    −     

G C C Tq qM 0
T C T C Tq q0 T M T

K K T q p
T K T K T q p

  

  

  (45) 
Using Eq. (45), we can obtain receptance 

matrix of substructure I: 

12
0 0 0 0

I I
I

I I

1
1 1 2

2 0 0 2 0 0 1

( ) ( )
.

( ) ( )

aa ac

ca cc

f f

g

s s s
s s s

−

− −

 
= = 
 

 + + + −
 

−  

H H
H

H H

M C G K K + C T
T K + C T M + C + K T





  (46) 
 

Substructure II 
Substructure II only takes connection 

coordinate of the RWA interface into account. 
Receptance matrix of substructure II will be 
calculated using FEM of the AHSP.  

 
Fig. 13. Schematic diagram of the AHSP. 

 
As described in Fig. 13, the AHSP structure is 

made of two layers of aluminum skins on the two 
sides with hexagon honeycombs core in the middle. 
The AHSP can be regarded as a laminate with three 
layers palate since the honeycombs core can be 
equivalent into homogeneous orthotropic material. 
The thickness of single layer aluminum skin is 0.3 
mm. Material properties of the aluminum skins and 
honeycombs core equivalent model are listed in 
Tables 3 and 4, respectively, which are derived from 
Sun et al. (2017), where E, G, ρ and υ are Young's 
module, shear module, density and Poisson ratio, 
respectively. 

 
Table 3. Material properties of aluminum alloy. 

Young's modules (E) Density (ρ) Poisson Ratio (υ) 

71 GPa 2700 kg/m3 0.33 

Table 4. Equivalent properties of honeycombs core. 
Properties Value Properties Value 

Exx 0.0354 MPa Gzx 92.463 MPa 

Eyy 0.0354 MPa ρ 24.94 kg/m3 

Ezz 655.87 MPa υ12 0.999856 

Gxy 0.0266 MPa υ23 0 

Gyz 141.12 MPa υ31 0 

 
ANSYS 13.0 is used to establish FEM of the 

AHSP. In the FEM, element SHELL181 is applied to 
mesh the AHSP and the shell section is made of three 
layers of planes, nodes at four corners are fixed, and 
structural damping ratio is set as 0.01. Employing 
harmonic response analysis to the FEM, receptance 
matrix of substructure II can be obtained by acting 
six-dof unit force to the RWA interface independent. 

 
Dynamic Response of the Coupling System 

Connection coordinates of substructure II need 
to be transformed, and the coordinate transformation 
matrix is given as: 

1
1

1

cos 0 sin
, 0 1 0 .

sin 0 cos

c
c c

c

θ θ

θ θ

 
   = =      − 

T 0
T T

0 T
  (47) 

Thus, receptance matrix of the coupling system 
is achieved by taking the receptance matrix of 
substructure II, Eqs. (46) and (47) into Eq. (44), 
which is expressed as: 

T
11 .S ac ca

cc c cc c
cc cc

−−   
 = − +    

   

H H
H H H T H T

H H

Ⅰ Ⅰ
Ⅰ Ⅰ Ⅱ

Ⅰ Ⅰ
  (48) 

For the coupling system, only external 
excitation acts on the flywheel. The external 
excitation vector of the coupling system can be 
written as: 

TT T .S f =  F F 0   (49) 
Multiplying receptance matrix of the coupling 

system by the external excitation vector, we can 
obtain the displacement responses, by which the 
acceleration responses are achieved: 

2 .S
S S s=X H F   (50) 
 

Simulation and Verification 
To validate the acceleration responses obtained 

by the RC method, Matlab R2017a and ANSYS 13.0 
are used to perform numerical and FEM simulations 
of the coupling system. The numerical simulations 
are conduct by using Eq.(50), when the flywheel 
rotating speed is stabilizing at Ω=l rpm (l=1, 
2…4000). Based on the FEMs of the RWA and AHSP 
established on the previous, FEM of the coupling 
system is established. The FEM simulations are 
performed when the flywheel rotating speed is 
stabilizing at Ω=(2l–1)·60 rpm (l=1, 2…34). 
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Fig. 14. Comparison result of translational 

acceleration. 

 

 

 
Fig. 15. Comparison result of angular acceleration. 

 
Simulation results of translational and angular 

acceleration responses of the two simulations at the 
fundamental frequency are shown in Figs. 14 and 15, 
respectively. What can be obtained from the figures 
that the two simulation results are basically 
consistently. The simulation errors of the dynamic 
response by the RC method are within plus-minus 
five percent. The results turn out that the RC method 
can accurately predict the coupled micro-vibrations 
of RWA with the flexible structure. In addition, 
similar to the discrete flexible structure, the 
acceleration response of RWA with the continuous 
flexible structure also would trigger obvious 
amplitude amplification at the critical speed, which in 
this situation occurs nearly 1900 rpm. 
 
 

CONCLUSIONS 
 

In this paper, the coupled micro-vibrations 
between a RWA with both a discrete and continuous 
flexible structures are discussed. At first, the RWA 
model is simplified into a twelve-dof linear vibration 
system with gyroscopic term, where the flywheel and 
frame are considered as six-dof rigid bodies, and the 
bearings are equivalent to a six-dof spring with 
stiffness and damping. The generalized external force 
vector acting on the flywheel is caused by the 
flywheel static and dynamic mass imbalances. The 
Lagrange's energy method is used to develop its 
vibration equation. Then, based on the established 
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vibration equation, disturbance model of the RWA 
with a six-dof discrete flexible structure is developed. 
Vibration characteristics of the coupling system are 
simulated and analyzed by numerical and FEM 
simulations. The results illustrate that natural 
frequencies of the coupling system are changed with 
the flywheel rotational speeds, especially for a pair of 
backward and forward whirl curves, and the system 
contains three critical speeds, at which the flywheel 
imbalance will trigger dynamic amplification of 
amplitude and the system could experience large 
amplitude vibrations. Last but not least, a coupling 
system of the RWA with a continuous flexible 
structure is studied based on the RC method. The 
coupling system is divided into RWA and flexible 
structure substructures, and the RC method is used to 
calculate its disturbance response. Numerical and 
FEM simulations performed to validate this dynamic 
response are presented with encouraging results: 
predictions of dynamic responses achieved by the RC 
method consistently predicted the results of the FEM 
simulation with the simulation error less than five 
percent. Therefore, the RC method can be used to 
predict micro-vibrations characteristics of the 
RWA-flexible structure coupling system with high 
prediction accuracy and computational efficiency. In 
conclusion, on the basis of all the conclusions drawn 
from this paper, this paper will provide a theoretical 
basis for prediction of the coupled disturbance of 
RWA on the satellite flexible installation interface. 
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NOMENCLATURE 
 
m mass 
J inertia 
k stiffness 
c damping 
F force 
T torque 
d bearings supporting length 
d0 distance between COMs of the frame and RWA 

interface 
d1 distance between COMs of the flexible structure 

and RWA interface 
q generalized coordinate 
p generalized external force 
T   kinetic energy 
V   potential energy 
D dissipations energy 
Ω flywheel spinning speed  
fs static imbalance force of the flywheel 
fd dynamic imbalance torque of the flywheel 
ω excitation frequency of the flywheel imbalance 
G centrifugal term matrix 
H receptance matrix 
X response vector 
F excitation vector 
T orientation cosine matrix 
E Young's module 
G shear module 
ρ density 
υ Poisson ratio 

 

Subscripts 

f the flywheel  
g the frame 
t translational direction 
r radial direction 
R vibration system of the RWA 
s vibration system of the RWA with discrete 

flexible structure 
a,b internal coordinates on two substructures 

c connection coordinates on two substructures 

 

Superscript 

S assembly structure 
I substructure I 
II substructure II 
 
 

動量輪與彈性結構的耦合

微振動特性研究 
 

李雄飛    程偉 
北京航空航天大學航空科學與工程學院 

 

 

摘 要 

本文主要研究動量輪與彈性結構的耦合微振

動特性。首先，將動量輪模型簡化爲考慮陀螺效

應的12自由度線性微分方程，並採用Lagrange能

量方法建立其振動方程；其次，基於該振動方程

建立動量輪與離散彈性結構的耦合振動方程，並

選取一個6自由度系統作爲離散彈性結構，仿真分

析了耦合系統的振動特性；再次，應用頻域子結

構法方法推導動量輪與連續彈性結構的耦合振動

響應，並運用數值仿真和有限仿真進行了驗證，

該方法可以用於計算動量輪與衛星彈性安裝界面

的振動響應。本文提出的耦合振動分析方法可爲

預測動量輪與衛星彈性安裝界面的微振動響應提

供理論基礎。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


