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ABSTRACT 
 

Welding has broad applications. Nondestructive 
testing plays a crucial role in welding inspection. 
Every weld must be assessed for quality and the 
absence of defects, but such assessments must be done 
manually by an experienced operator. Thus, we 
formulated a deep-learning-based device that 
automatically conducts such assessments. We trained 
Welding Defects Net (WDNet) model with a small 
amount of images and adjusted the depth of 
convolutional layers and pooling layers during 
training. We also competitively evaluated several deep 
learning models for welding defect identification, the 
first in the literature to do so. In evaluation 
experiments, our device had accuracy rates as high as 
97.8%, outperforming Visual Geometry Group 16 
(VGG-16) and Residual Neural Network 50 
(ResNet50) demonstrating promise for use in 
industrial settings. 
 

INTRODUCTION 
 

Welding has a wide range of applications and 
can be adapted for use with materials of a diverse range 
of shapes. Welding inspections are crucial to ensure 
the structural integrity (and thus, safety) of the weld. 
However, because such inspections are traditionally 
done manually by an experienced operator, 
assessments cannot be done on the fly and 
misjudgments may occur. Researchers have thus 
formulated machine vision approaches, particularly 
convolutional neural network (CNN)-based ones, for 
welding assessment. 

 

 
 

Methods for welding defect detection can be 
destructive or nondestructive. Destructive detection 
methods are used in the testing and development of 
new products. Nondestructive detection methods are 
used for routine welding inspections and have the 
advantage of preserving the structural integrity of a 
workpiece. CNNs have performed well in industrial 
machine applications (Xiao, 2022). Lin (2020) used 
the support vector machine and artificial fish-swarm 
algorithms to inspect ball bearings to improve 
accuracy. Jian (2019) conducted domain testing on 
spindle displacement using a general regression neural 
network and found that the maximum error of this 
method was less than 1°C. Wang (2022) predicted 
turning precision using XGBoost and reduced the cost 
of predicting machining errors. Wang (2021) predicted 
the nonlinear behavior in a robotic arm by using impact 
recognition and machine learning, achieving very high 
accuracy. 

Image recognition technologies are widely 
applied in welding inspection applications. Typically, 
these technologies involve the use of trained models in 
the detection of welding defects (Zapata, 2011; 
Yaacoubi, 2022). In contrast to traditional approaches 
where trained models are often not directly integrated 
into practical applications to form tangible expert 
systems, our proposed method introduces a novel 
welding image recognition system utilizing CNN 
technology, named Welding Defects Net (WDNet). 
We established a welding image recognition system 
that preprocesses images and extracts welding defect 
features. Trained models are then employed to detect 
welding defects. We compared our method with VGG-
16 and ResNet50. We constructed a welding defect 
detection setup by integrating our image recognition 
system into a physical device. The primary 
contributions of this research are as follows: 
1. Developed a welding defect detection system 

that rapidly and effectively detects welding 
defects. 

2. Identification of weld bead defects using 
instance-based deep learning models. 

3. Developed a model that outperforms most 
existing models in weld bead detection. 

4. Annotated of 1131 welding defect images. 
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LITERATURE REVIEW 
 
Welding Defect Detection 

Artificial intelligence can be used to rapidly 
detect defects (Zeba, 2021). Yu (2021) investigated 
arc welding molten pool recognition, segmenting 
molten pools using U-Net, annotating molten pool 
images, and training a robust CNN that was reliable 
under various current and welding speed conditions. 
Lü (2022) examined weld seam recognition, fine-
tuning Alexnet, acquiring images, performing transfer 
learning, and developing a highly accurate method. 
Gantala (2021) investigated artificial intelligence–
assisted automatic identification of welding defects, 
performing finite element verification, batching finite 
element weld data creation, training weld data sets, 
extracting noise into simulated weld images, 
performing training using a CNN, and developing a 
method that can effectively improve the reliability and 
efficiency of welding quality control. Wang (2021) 
investigated the use of deep learning, data collection, 
image preprocessing, and CNN model training and 
testing for welding defect detection and developed a 
continuous input recurrent neural network model that 
uses a CNN to automatically extract image features 
and a recurrent neural network that has sequential 
processing capability and improves prediction 
accuracy. Lei (2021) investigated the multisensor 
tracking of tube-sheet TIG welding seams in motion. 
Through visual inspection, image tracking, and 
working principles (calibration and tracking), good 
control of tube core errors and better welds were 
achieved. Liu (2022) developed an accurate X-ray-
based welding image recognition system. Nacereddine 
(2019) classified welding defects by using a Gaussian 
mixture model with a 96% accuracy rate. 
 
Convolutional Neural Network 

CNNs have been widely used in image 
recognition applications. Volume muscle neural 
networks have considerable advantages in two-
dimensional image recognition and classification 
applications (Paoletti, 2018). Su (2018) classified 
malware using an image recognition system that 
incorporated a distributed denial-of-service filter and 
an image classification and detection neural network. 
The system accurately classified malware. Shang 
(2018) developed a CNN image classification system 
for use with rail surface images. The system involved 
image preprocessing, removal of false edge points, and 
classification, was robust, and achieved accurate 
detection results. 

Fujiyoshi (2019) examined image recognition 
for autonomous driving, object detection, image 
classification, and image recognition. Their findings 
revealed that deep learning-based image recognition 
methods had a more pronounced impact compared to 
object recognition methods based on deep learning. 
Islam (2018) investigated the use of deep learning 

image recognition and corroborated the use of CNN 
for image recognition applications. Miao (2021) used 
a CNN for image recognition to inspect welding 
defects. The CNN quickly and accurately extracted 
weld positions and edge division areas. Hu (2022) 
improved the extraction range of weld features and 
reduced noise interference by using a CNN and 
performed X-ray weld defect identification, achieving 
improvements in accuracy. Xiao (2022) used a CNN 
to identify spot welding surfaces. The CNN has a fairly 
high accuracy rate. Yang (2020) proposed a CNN for 
image recognition in a laser welding application. The 
CNN has an accuracy rate as high as 95%. 
 
Image Detection 

Subtle changes in the picture compromise 
accuracy in image recognition, and nonlinear models 
accounting for image variability can be used to remedy 
this problem (Keysers, 2007). Image recognition 
models require large training sets. Augmenting raw 
image data through the Internet can greatly reduce the 
need for training data (Han, 2018). Pan (2020) used 
MobileNet for the identification and classification of 
welding defect images. Welding defects were 
classified using TL-MobileNet, and the model was 
found to be accurate in evaluation experiments. 

Joutou (2009) developed an image recognition 
system, performing feature extraction and multiple 
kernel learning. The system accurately performs food 
classification tasks. Al-Maadeed (2018) developed an 
image recognition system that involves the 
modification of two-dimensional feature points and 
that can be integrated into cars. The system combines 
scale-invariant feature conversion, multiscale Harris, 
and multiscale Hessian and achieves good recognition. 
Cusano (2017) identified aircraft mechanical parts 
using an image recognition system that helps 
maintenance personnel carry out aircraft maintenance. 
Ai (2023) used image recognition and deep learning 
methods to predict the weld seam area in laser welding. 
The methods were robust and accurate. Zhang (2022) 
performed transfer learning to develop an image 
recognition system for welding defects. Compared 
with traditional machine learning methods and deep 
learning models, the developed system has good 
robustness and generalization. Zhao (2022) used deep 
learning to develop an image recognition system for 
welds, segmented images by using a neural network, 
and achieved excellent results. Chen (2022) performed 
feasibility calculations, preselection, and reinspection 
and developed a welding robot that achieved excellent 
effects in terms of errors and omissions in the 
identification and positioning of welding fillets. 
 

METHODOLOGY 
 

We designed a set of welding defect detection 
models that employ CNNs. The images used in the 
present study were captured by researchers at a factory. 
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The captured images were examined to confirm the 
presence of welding defects and stored in a database. 
The models were then trained and tested using this 
database, and the quality of welds was assessed. We 
compared the designed models with VGG-16 and 
ResNet50. We compiled a training data set using 
images of welded joints. Our goal was to train the 
models and employ them to detect welding defects in 
joints. 

In Taiwan, welding inspections proceed in two 
stages. In the first stage is visual inspection after an 
assessment, and in the second stage is destructive 
testing. The CNN model proposed in this study was 
employed for the first stage. The model is based on 
codes on plates. Our proposed a large volume of welds 
to be inspected, initial surface inspection is necessary 
to distinguish between good and bad welds. Due to the 
difficulty in training welding inspectors and the high 
demand for welding inspectors, training a model with 
a small number of images can effectively reduce 
training costs. The inspection equipment developed in 
this study in figure 1 which include serval parts, 
consists of a base 1, a positioning device 11, four 
lighting devices 2, and a camera 3. A welding seam to 
be inspected is placed in the middle of the base, within 
the four positioning devices. The lighting devices are 
placed around the welding seam to provide 
illumination; the illumination conditions approximate 
those in real-world inspection. The weld bead length 
is 150 mm. The image size is 256 × 256 pixels. The 
image capture device is KEYENCE IV3-G120. An 
overhead camera captures the state of the welding 
seam for recognition (Figure 1). The welding 
parameters used in this experiment are shown in Table 
1. 
 

 
Figure 1 Model Inspection Illustration 

 
Table 1. Welding parameters and conditions. 

Welding methods Arc welding 

Materials SS400 carbon steel 
plates 

Pre-bending angle 10° 

Current size 200A 

Welding time 60sec 

Cooling time 120sec 

 
Image Preprocessing 

First, the collected images were labeled. We 
categorized the collected images into good shielded 
metal arc weld beads and bad shielded metal arc weld 
beads (Figures 2 and 3). We augmented the original 
data set by horizontally or vertically flipping the 
images. This expansion led to the data set's size being 
increased by a factor of one to two times its initial size. 
Additionally, contrast adjustments were applied to the 
images in the original data set, both increasing and 
decreasing contrast, resulting in a further data set 
expansion of one to two times the initial size. 
Ultimately, we standardized the images into matrices 
with dimensions of 64 × 64 × 3 pixels. This 
standardization enabled the images to be output on the 
basis of preceding classifications. The images were 
resized into matrices with dimensions of 64 × 64 pixels, 
taking into account their RGB color format. As a result, 
the images were represented as matrices with 
dimensions of 64 × 64 × 3 pixels. The images were 
automatically recognized as RGB. Subsequently, both 
the images and corresponding labels were prepared for 
output. The quantity of images in the data set is 
illustrated in Table 2. 

 
Table 2. Data set sizes. 

 Count 

Train Database 1000 

Test Database 300 

Verify Database 155 

 

 
Figure 2. Good shielded metal arc weld bead. 

 

 
Figure 3. Bad shielded metal arc weld bead. 
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VGG-16 Model Architecture 

The VGG-16 comprises three blocks, each 
composed of convolutional layers followed by pooling 
layers. The first block includes two convolutional 
layers (3 × 3 × 64) paired with a pooling layer (2 × 2 
× 64). The second block comprises two convolutional 
layers (3 × 3 × 128) paired with a pooling layer (2 × 2 
× 128). The third block, which must be stacked twice, 
consists of two convolutional layers (3 × 3 × 512) 
paired with a pooling layer (2 × 2 × 512). The 
convolutional layers all have a filter size of 3 × 3, and 
the pooling layers have a filter size of 2 × 2. The 
number of epochs is 50. The architecture of VGG-16 
is illustrated in Figure 3. 

 
 

 
Figure 4. VGG-16 model architecture. 

VGG-16 employs very small (3 × 3) 
convolutional layer filter sizes for deep learning 
(Simonyan, 2014). However, extended training of 
VGG-16 often results in a reduction in the learning 
rate, leading to the problem of vanishing gradients. 

 
ResNet50 Model Architecture 

ResNet50 has several key components. It begins 
with an initial convolutional layer using a (7 × 7 × 64) 
convolutional kernel for the first block. The second 
block is formed by combining three convolutional 
kernels (1 × 1 × 64, 3 × 3 × 64, and 1 × 1 × 256). This 
block is stacked three times. The third block contains 
three convolutional kernels (1 × 1 × 128, 3 × 3 × 128, 
and 1 × 1 × 512) and is stacked four times. The fourth 
block contains three convolutional kernels (1 × 1 × 256, 
3 × 3 × 256, and 1 × 1 × 1024) and is stacked six times. 
The fifth block contains three convolutional kernels (1 
× 1 × 512, 3 × 3 × 512, and 1 × 1 × 2048) and is stacked 
three times. The network includes supplementary 
layers, such as a pooling layer and fully connected 
layers. Overall, ResNet50 has a total of 50 layers. The 
number of epochs is 50. The architecture of ResNet50 
is illustrated in Figure 4. 
 

 

 
Figure 5. ResNet50 model architecture. 

Improvements in model accuracy are not 
associated with the depth of model training. Deeper 

models are more susceptible to the vanishing gradient 
problem (Renjun, 2022). ResNet50 employs identity 
mapping. When training the next layer, only the 
residual function needs to be trained. When the 
dimensions of convolutional layers are the same, using 
residual functions simplifies the deep learning 
network, facilitating the training of deep learning 
models (He, 2016). The calculation of the residual 
function is illustrated as follows: 

𝑦𝑦 = 𝐹𝐹(𝑥𝑥) + 𝑥𝑥 (1) 

When the dimensions of convolutional layers are 
different. W represents a convolutional layer. X is used 
to adjust the intermediate dimensions. The calculation 
of the adjusted residual function is as follows: 

𝑦𝑦 = 𝐹𝐹(𝑥𝑥) + 𝑊𝑊𝑥𝑥 (2) 

 
WDNet Model Architecture 

CNNs primarily consist of convolutional, pooling, 
and fully connected layers. When these layers are 
stacked together, they form a CNN module. The 
convolutional layer is the first layer of the CNN, and 
multiple convolutional layers and pooling layers can 
be connected behind the convolutional layer. With 
each additional layer, the complexity of the CNN 
module and the accuracy of detecting and predicting 
objects increase. 

Where the convolutional layer is responsible for 
extracting image features, different features are 
extracted from the input image. These extracted 
features are regarded as filters, and the mathematical 
operation of convolution is performed on the input of 
the image and the filter of a specific size. Calculated 
results are transmitted to the next layer. The pooling 
layer reduces the size of the convolutional feature map 
and preserves extracted image features by using the 
convolutional layer. The pooling layer is used to 
reduce the number of operations to improve the 
operational efficiency of the CNN and prevent over-
learning. 

 
 

 
Figure 6. WDNet model architecture. 

 
The CNN in this study consists of three modules. 

The first module contains four convolutional kernels 
with dimensions of 3 × 3 × 32 accompanied by a 
pooling layer of size 2 × 2 × 32. The second module 
contains four convolutional kernels with dimensions 
of 3 × 3 × 64 and a pooling layer of size 2 × 2 × 32. 
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The third module contains four convolutional kernels 
with dimensions of 3 × 3 × 128 paired with a pooling 
layer of size 2 × 2 × 32. The architecture of our 
proposed model is illustrated in Figure 6. 
 

RESULTS 
 

We conducted welding defect recognition. 
Accuracy indicates the proportion of correctly 
identified welding defects. We employed WDNet and 
measured accuracy rates at epochs 10, 30, 50, 100, and 
200 (Table 3). 
 
Table 3. Accuracy of WDNet at different epochs. 

Epochs 10 30 50 100 200 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 68.5

% 
93.2
% 

96.6
% 

97.5
% 

97.8
% 

 
The process by which we trained WDNet model 

is illustrated in Figures 6 through 10. At 10 epochs of 
training, the loss decreased considerably (Figure 6). 
By the 30th epoch, the loss decreased from 0.7 to 0.1 
(Figure 7). At the 50th epoch, the loss increased before 
decreasing (Figure 8). After approximately the 60th 
epoch, the loss plateaued (Figure 9). After the 100th 
epoch, the loss fluctuated slightly before stabilizing 
(Figure 10). 

 

 
Figure 7. Training and loss results at 10 epochs. 

 
 

 
Figure 8. Training and loss results at 30 epochs. 

 
 

 
Figure 9. Training and loss results at 50 epochs. 

 
 

 

 
Figure 10. Training and loss results at 100 epochs. 

 
 

 

 
Figure 11. Training and loss results at 200 epochs. 

 
Accuracy is a simple metric of model 

performance and is defined in Equation (3). The F-
measure is often used to represent the importance of 
precision in image recognition and is defined in 
Equation (4). Precision and Recall are defined in 
Equations (5) and (6), respectively. The F-measure is 
based on the numbers of true positives (TP), false 
negatives (FN), false positives (FP), and true 
negatives (TN), where a positive instance was defined 
as the presence of a fault. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

 (3) 
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𝐹𝐹 −𝑚𝑚𝑚𝑚𝐴𝐴𝑚𝑚𝐴𝐴𝐴𝐴𝑚𝑚 = 2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

 (4) 

𝑃𝑃𝐴𝐴𝑚𝑚𝐴𝐴𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (5) 

𝑅𝑅𝑚𝑚𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (6) 

WDNet model was evaluated against VGG-16 
and ResNet50. WDNet model had the highest 
accuracy at 97.8%, higher than VGG-16's accuracy of 
94.1% and slightly higher than ResNet50's accuracy. 
WDNet model had the second-best F-measure at 
97.7%, higher than VGG-16's 94% but slightly lower 
than ResNet50's 97.8%. WDNet model had the 
second-best precision at 96.7%, higher than VGG-16's 
91.9% but lower than ResNet50's 99.3%. WDNet 
model had the best recall at 98.6%, higher than VGG-
16's 91.9% and ResNet50's 96.4%.  

In general, WDNet model is feasible. The 
accuracy results of the three models are shown in 
Table 4. 

 
Table 4. Accuracy of proposed CNN model, VGG-16, 
and Resnet50. 

 WDNet VGG-16 Resnet50 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 97.8% 94.1% 97.8% 

 
CONCLUSIONS 

 
We formulated a welding defect detection device 

that accurately identifies defects through images 
captured by a camera. In particular, our method, 
WDNet effectively extracts irregular features from 
images of welds. Through images captured by the 
camera within the model, it identifies welding defects 
and accomplishes the task of defect detection. After 
validation, this approach has achieved high accuracy, 
demonstrating the effectiveness of the proposed model 
in extracting irregular features of welds. Upon 
comparison with the VGG-16 and ResNet50 models, 
our model has proven to outperform most existing 
approaches. It performed well against VGG-16 and 
ResNet50 in evaluation experiments. 

While the model proposed in this study has 
achieved promising results in welding defect detection, 
this remarkable research outcome underscores the 
potential of the method. However, during the data 
collection process, external factors such as welding 
slag can introduce numerous uncontrollable 
interferences due to environmental influences. In the 
future, continuous research can be conducted in the 
field of welding inspection to develop new methods 
that could more effectively identify welding defects 
within the welding recognition domain. Future studies 
should refine our model to account for external factors, 
such as welding slag and environment factors, that 
compromise model performance. 
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摘 要 

銲接具有廣泛的應用，非破壞檢測在銲接檢

測中發揮著至關重要的角色。主要用於評估銲接

必須質量並檢查是否存在缺陷，但這些評估必須

由經驗豐富的操作員手動進行。因此，我們制定

了一種基於深度學習的設備，可以自動進行這些

評估。我們用少量圖像訓練了用於銲接缺陷的神

經網路模型（WDNet），並在訓練期間調整了卷積

層和池化層的深度。針對銲接缺陷識別方面進行

了幾個深度學習模型的評估與比較，在評估實驗

中，透過本研究的模型預測準確率高達 97.8%，

優於 VGG-16和 ResNet50，呈現在工業環境中檢測

銲道用於非破壞檢測應用的潛力。 


