
中國機械工程學刊第四十五卷第二期第 129~143 頁(民國一百一十三年) 
Journal of the Chinese Society of Mechanical Engineers, Vol.45, No.2, pp129~143 (2024) 

-129- 
 

Design of Drawing Die for Rear Wheel Cover 
Outer Panel and Optimization of Wear Process 

Parameters 
 
 
 

Guoqing Gong*,Youmin Wang* and Kefan Yang* 
 
 
 
Key words: die wear; drawing die, process parameter 
optimization, whale algorithm 

ABSTRACT 

Aiming at the problem of the wear caused by the 
mutual movement between the convex die and the 
sheet material in the stamping process, which results 
in a decrease in the die service life. In the paper, the 
three-dimensional design of the drawing die for the 
outer plate of the rear wheel cover was carried out by 
using UG, the simulation of the die stamping process 
was carried out by using Deform-3D, the main wear 
positions of the die were determined, the four process 
parameters of die clearance, friction coefficient, 
stamping speed and die hardness were selected as the 
test factors, the amount of die wear was used as the 
evaluation index to establish an orthogonal test, the 
multiple linear regression analysis of the test results 
was carried out by using SPSS software, and the 
empirical formula for the surface wear of the drawing 
die was established. Finally, the BP neural network 
model between process parameters and wear amount 
was constructed using MATLAB. The weights and 
thresholds of the nodes in the implicit layer of the 
model were optimized by using the whale algorithm to 
obtain the optimal combination of process parameters 
with minimum wear amount predicted based on the 
optimized WOA-BP neural network model. The 
minimum wear amount of the optimized convex die 
was 1.02× 10−6  mm. The optimal combination of 
process parameters was friction coefficient 0.12, 
stamping speed 22mm/s, die hardness 62HRC, and die 
clearance 0.88mm, which completes the design of the 
automotive rear wheel cover outer plate drawing die 
and optimizes 

its surface wear process parameters. 

INTRODUCTION 

Automobile covering parts are characterized by 
many curved surfaces, thin sheet material and complex 
spatial structure. In the process of forming automotive 
cover parts, drawing is the most important step. The 
current research mainly focuses on the simulation 
analysis of the forming process of parts. Still, there is 
less research on the wear analysis and life prediction 
of the drawing die for the outer plate of the rear wheel 
cover, and the wear formula for this type of die is not 
uniform. If we can find a formula that can reasonably 
predict the wear of the die, it will help to improve the 
service life of the drawing die. With the continuous 
development and improvement of CAE technology, it 
is meaningful to combine simulation technology with 
parameter optimization based on artificial intelligence 
algorithms to improve the quality of part forming and 
reduce the amount of die wear. 

Michal Krzyzanowski et al. (2018) validated the 
main model assumptions, such as the assumed 
material flow stress curve and the damage criteria. 
Taguchi method is utilized to effectively model and 
analyze the relationship between process parameters. 
Roll-over and burr formation for a given punch-die 
clearance and cutting radius have been discussed and 
analyzed in terms of tool wear reduction for different 
materials. Fan et al. (2022) applied Deform-3D to 
numerically simulate the sheet stamping process in 
order to reduce the die wear during the stamping 
process of automotive-shaped stainless steel sheet 
parts and optimized the stamping process parameters 
based on the response surface method with the wear 
depth of convex and concave dies as the optimization 
target. At the same time, the life of the stamping die 
was predicted according to the maximum wear depth 
results, and finally, it was proved by stamping practice 
that the die life was significantly improved by using 
the optimal combination of stamping process 
parameters. E. Falconnet et al. (2012) investigated the 
punch wear resulting from the blanking of copper alloy 
thin sheet has been conducted by means of 
experimental and numerical analyses. Firstly, the 
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experimental method has consisted in measuring 
punch worn profiles from replicas, and secondly in 
obtaining the wear coefficient by using a specific 
tribometer. The numerical modelling of blanking 
process has been developed with the finite element 
method to compute the mechanical fields necessary to 
calculate wear. Thus, the Archard formulation for 
abrasive wear has been programmed to compute the 
wear depth and the resulting punch geometry. Finally, 
the simulation results of wear prediction have been 
compared to experimental ones. Byung-Min Kim et al. 
(2015) evaluated the wear and fatigue characteristics 
of a new die material that has been developed for 
stamping ultra-high-strength steel. Through pin-on-
disk wear testing and rotating bending fatigue testing, 
it is found that both the wear and fatigue 
characteristics of the die are improved by using this 
new material. And die wear is evaluated by FE 
analysis and experiment for ultra-high-strength steel 
stamping. A. Ghodke et al. (2016) researched work 
involved in the prediction of life of deep drawing die 
using artificial neural network (ANN) is described. 
The parameters affecting the life of deep drawing die 
were investigated through finite element (FE) analysis 
based on FE analysis results, stress amplitude (S) vs 
cycles to failure (N) approach is used for prediction of 
a number of cycles of deep drawing die. The number 
of cycles gives the number of sheet metal parts that can 
be produced with the deep drawing die before its 
failure. Cheng et al. (2018) established a new die wear 
prediction method by studying the wear characteristics 
of automotive panel stamping dies. The method 
considers the variation of contact pressure, wear 
coefficient and material hardness along the thickness 
direction of the treated layer and designs a new 
frictional wear device that can simulate the wear 
environment of the blank die interface in actual 
stamping. The prediction results of the new method 
and the traditional Archard method are compared with 
the actual wear conditions, and the results show that 
the die life prediction method used in this study is 
closer to the actual situation. Bernard F. Rolfe et al. 
(2016) examined the effect of sliding speed and 
surface temperature on the wear behavior of an 
unlubricated mild steel–tool steel contact pair using 
the pin-on-disc test. It will be shown that, while 
adhesive wear is dominant at the tool steel surface for 
all sliding speeds examined, the adhesive wear rate is 
very sensitive to sliding speed during slow speed 
conditions but relatively insensitive to sliding speed 
during higher speed conditions. Lemu H G et al. (2019) 
had an investigation that focused on the finite element-
based analysis of wear of stamping tool for forming an 
axisymmetric drawpiece has been reported. The 
analyses were carried out for deep-drawing quality 
steel sheet with a sheet thickness of 2 mm. The 
implementation of an Archard’s wear model in the 
numerical simulation proved the possibility of tool 
wear simulation in sheet metal forming. As a result of 

the conducted tests, the places of the stamping die 
potentially exposed to quick wear were determined. It 
was found that the most exposed region on accelerated 
wear is the upper part of the die radius. 

In this paper, a three-dimensional model of an 
automobile rear wheel cover outer plate drawing die 
was designed by using UG, the die stamping process 
was simulated by using Deform-3D, the four process 
parameters of die clearance, friction coefficient, 
stamping speed and die hardness were utilized as test 
factors, the amount of die wear was used as evaluation 
index to design and complete an orthogonal test, and 
the SPSS software was used to conduct multiple linear 
regression analysis on the test data to establish an 
empirical formula for surface wear of drawing dies, 
and to verify the accuracy of the empirical formula. 
Then MATLAB is used to build a BP neural network 
model between the process parameters and the wear 
amount. The weights and thresholds of each node in 
the BP neural network model are optimized using the 
whale algorithm. The optimization results are 
reassigned to the BP neural network model. The 
minimum die wear value is predicted using the 
optimized neural network model to complete the 
design of the automotive rear wheel cover outer plate 
drawing die and optimize its surface wear process 
parameters. 

REAR WHEEL COVER OUTER 
PLATE DRAWING DIE STRUCTURE 

DESIGN 

As an outer covering part, the forming process 
of the rear wheel cover outer plate is not a one-step 
process but often requires multiple processes before it 
can be formed successfully. In the stamping process of 
outer covering parts, the drawing process is generally 
the first step after the drop process. The sheet blank 
material used in this paper is DC05 low strength steel, 
with a thickness of 0.7mm,and its basic mechanical 
parameters are shown in Table 1. The flat sheet can be 
made into box-shaped, stepped, cylindrical, and other 
irregularly shaped thin-walled parts through the 
drawing process, and the complex surface shape 
features of the parts can be obtained in the process and 
only when the shape features of the parts are 
successfully obtained in the drawing process can 
subsequent operations such as punching and trimming 
be performed. Therefore, the design of the drawing 
tool will affect the part's overall processing and 
forming quality, so the design of the drawing tool is 
particularly important. 
Table 1 DC05 Sheet metal performance parameters 
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269 149 0.226 472 33.9 

The drawing die is mainly composed of upper 
and lower die base, convex and concave die, blank 
holder, insert and guide pillar and guide bush. Figure 
1 shows the assembly diagram of the drawing of the 
rear wheel cover outer plate designed by UG software. 
Combined with the actual application scenario of 
engineering and the design standard of the drawing die, 
the set of drawing die was designed with the following 
specific requirements: 

(1) The rear wheel cover outer plate drawing die 
consists of upper and lower die base and blank holder, 
the convex die kernel is positioned by the positioning 
key, and then mounted on the lower die base by screws; 
the concave die adopts the block structure, which is 
made of 13 blocks, using pins for block positioning, 
and is mounted on the upper die base by screws; the 
blank holder also adopts the same block structure, 
using 13 blocks together, using pins for block 
positioning, and installed by screws. The design 
dimensions of the die are: 
L×W×H=2290mm×1550mm×900mm, where 900mm 
is the die closing height. 

(2) The die is positioned when the die is closed 
through the guide pillar and guide bush on both sides 
and the guide plate. There are four guide pillars 
installed on both sides of the blank holder, and the 
corresponding guide bush is installed on both sides of 
the upper die; the guide plate is installed on the outer 
edge of the blank holder at the four corners and on the 
inner wall of the guide pillar slot to complete the 
positioning work when the die is closed together with 
the guide pillar and guide bush, there is a top bar at the 
bottom to provide the ejecting force when the blank 
holder moves, and the stamping stroke of the blank 
holder is 190mm. 

(3) The positioning plate is installed around the 
blank holder to ensure the correct feeding of the sheet 
and to ensure that the sheet is in the correct position in 
the die during the drawing process, to position the 
sheet so that it does not move during the drawing 
process and to ensure the correct flow of material. 

 
1-blank holder   2-convex die kernel   3-

guide plate   4-lower die holder 
5-guide pillar   6-upper die guide plate 7-limit 

block   8-limit screw 
9-upper die holder 

Fig. 1 Three-dimensional drawing of the rear wheel 
cover outer plate drawing die 

SIMULATION OF WEAR PROCESS OF 
REAR WHEEL COVER OUTER PLATE 

DRAWING DIE 
At present, there are few studies on the wear 

analysis and its life prediction of the drawing dies for 
the outer plate of the rear wheel cover, and the wear 
equations for this type of dies are not uniform, and it 
is difficult to predict the minimum wear of the dies. In 
this section, orthogonal tests will be used to complete 
the analysis of the process parameters of the drawing 
die for the rear wheel cover outer plate and get the best 
combination of parameters. The experimental data 
combined with the multiple linear regression 
equations were used to derive the empirical equation 
for die wear, and the derived empirical equation was 
used for die life prediction. 

Establishment of the drawing die model 

In the working process of the drawing die, the 
main wear position of the die is in the cutting edge part 
because of the violent friction between the sheet and 
the die, and the most complicated load situation in the 
fillet forming part during the stamping process. Due to 
the large size of the rear wheel cover drawing die itself 
and the significant features of the part shape, in order 
to simplify the analysis process and highlight the main 
wear situation, the stamping analysis is carried out 
locally to analyze the working condition of the main 
wear location. 

 
Fig. 2 Major wear locations 

As shown in Figure 2, the analysis diagram of 
the main wear position of the convex die shows that 
the die wear is less at the smooth surface, while the die 
wear is more severe at the edge of the convex die. The 
main reason is that the material flow at the edge is 
more intense, and the load is more complex, leading to 
the most severe wear. In order to simplify the analysis 
process, this paper takes the location with more serious 
wear as the analysis object and takes the die shape in 
pieces. The area with severe wear was used for 
simulation analysis, and the wear condition was 
observed. 

Figure 3 shows the 3D model of the die designed 
by using UG. The blue part of the figure is the convex 
die, the green part is the blank holder, the yellow part 
is the sheet material, and the red part is the concave 
die. The size of the rounded corner of the convex die 
is the same as the size of the rounded corner of the 
main wear position of the actual rear wheel cover outer 
plate drawing die. The original die is a flip-fitting die, 
but in Deform-3D, the front-loading die is generally 
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used for analysis, so the assembly relationship of the 
front-loading die is also used in the 3D model. 

 
Fig. 3 Schematic diagram of the 3D model of the die 

Mesh partitioning and irrelevance analysis 

The stamping stroke of the die model in this 
study is set to 19mm, which makes the analysis more 
accurate on the premise of ensuring reasonable 
analysis time, so the number of steps is set to 100 in 
this paper, and the data is stored every 10 steps, so the 
step increment is defined as the displacement of the 
upper die, and the displacement is 0.19mm/step. 

The quality of mesh delineation is an important 
factor that affects the wear simulation results of the 
rear wheel cover outer plate drawing die. Poor mesh 
quality and a small number of meshes will make the 
analysis results inaccurate, but too many meshes will 
cause the analysis time to be too long. In Deform-3D, 
the setting value of the step is generally one-third of 
the minimum mesh size. According to the 
displacement setting of 0.19mm/step, we know that 
the part's minimum mesh size should be no more than 
0.57mm, and the absolute method is used to qualify the 
mesh size and set the minimum element size to 0.5mm. 
The grid size ratio is set to 2, and the maximum 
element size is set to 1mm. The system can calculate 
the number of grids for each tool body according to the 
set element size, and the specific division parameters 
are shown in Table 2. 
Table 2 Grid division result table of each tool body 

Tool 
body 
name 

Types of 
grids 

Minimum 
Element 

Size 

Maximum 
element 

size 

Number 
of grids 

Convex 
die 

Tetrahedr
al Mesh 0.5mm 1mm 265516 

Concave 
die 

Tetrahedr
al Mesh 0.5mm 1mm 350564 

Sheet 
material 

Tetrahedr
al Mesh 0.5mm 1mm 210600 

blank 
holder 

Tetrahedr
al Mesh 0.5mm 1mm 177868 

In Deform-3D, the mesh size has an important 
influence on the analysis results and analysis time. If 
the number of meshes is small, the analysis time is less, 
but the accuracy of the analysis results decreases; if the 
number of meshes is large, the analysis time is longer, 
but the analysis results are more accurate. In order to 

save calculation time on the premise of ensuring the 
accuracy of calculation results, it is necessary to set a 
more appropriate number of meshes in advance. The 
data in Table 1 are the number of grids derived from 
the step size, and the method is used for most 
engineering calculations. In order to verify the 
reasonableness of the grid, comparison experiments 
were conducted using 0.8 times, 1.5 times, and 2 times 
of the grid parameters to ensure that the other set 
conditions are consistent, and the results are shown in 
Table 3. 
Table 3 Simulation results under different grid 

numbers 

Groups 
die wear 
amount
（mm） 

Calculation time 

Control group 0.00000231 / 
0.8 times the 

number of grids 0.00000215 the shorter 

1.5 times the 
number of grids 0.00000231 the longer 

2 times the number 
of grids 0.00000231 the longest 

As can be seen from Table 2, when the number 
of grids is small, the maximum and minimum element 
sizes will change accordingly, where the minimum 
element size will be larger than three times the step 
size, resulting in inaccurate analysis results, so the 
number of grids cannot be smaller than the original set 
number; when the number of grids reaches 1.5 times 
and above, the analysis results do not change. 
Therefore, it can be concluded that the analysis result 
of the original set number of meshes is close to the real 
value, but due to the dense grid number, it will cause 
the software analysis time to be longer. 

In summary, the mesh size and number 
calculated from the step size are sufficient to meet the 
required accuracy of the analysis, and the software 
analysis time is moderate. Under the same conditions, 
a more detailed mesh does not significantly impact the 
analysis results. Therefore, the number of divided 
meshes is irrelevant to the final analysis results, 
provided that a certain accuracy is achieved. 

Simulation of wear process of drawing die 

As shown in Figure 4, the symmetry surface 
boundary is set for the concave die. The red surface is 
selected as the symmetry surface, the blue part is set 
as the heat exchange surface, and the remaining three 
tool bodies are aligned with the concave die. 
According to the movement of the drawing die, the 
convex die will contact the sheet downward and press 
the sheet into the concave die for forming under the 
action of the press. The edge of the sheet will be 
controlled by the blank holder during the forming 
process to ensure the forming process. Therefore, 
according to the above motion process, it can be seen 
that the plate material makes contact with the convex 
die, concave die, and blank holder respectively during 
the drawing process, and the above three sets of 
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relations need to be set when defining the contact 
boundary conditions. 

 
Fig. 4 Setting of symmetry surface of concave die 

The boundary contact relationship is shown in 
Figure 5. According to the theoretical analysis of the 
sheet forming process of the drawing die, the main 
friction between the sheet and the convex and concave 
die during the forming process is shear friction, so the 
shear friction model is chosen, and the friction 
coefficient is set to 0.12. Since heat is generated by 
friction between the sheet and the die during the 
forming process, heat exchange surfaces are added to 
the surface of the convex and concave die and the front 
and back of the sheet, so the heat transfer coefficient 
in the contact relationship is set to 0.004. 

 
Fig. 5 die wear model contact condition setting 

Finally, the wear model is defined. According to 
the commonly used wear model as the classical 
Archard wear model, so the wear model is 
equivalently replaced and integrally deformed in 
Deform-3D. 

The Archard wear model is the most commonly 
used model in the metal plastic forming process. Its 
expression is shown in Equation ( 1 ). The model 
considers that the wear volume V of the die is 
proportional to the normal pressure P of the contact 
surface and the slip distance L between the workpiece 
and the die. H is the hardness of the contact surface die, 
and K is the wear coefficient of the corresponding 
material. 

dV = K dPdL
H

          （1） 
In formula ( 1 ), dV, dP, dL can be converted to 

into formula ( 2 ). 

�
dV = dWdA
dP = σ

n
dA

dL = vdt
         （2） 

In the formula : W is the wear dept; A is the 
corresponding contact surface area ; σ

n
  is the 

normal pressure of the corresponding contact surface ; 
v is the sliding speed between the die and the contact 
surface in stamping forming ; t is time. The formula 
( 2 ) is substituted into the formula ( 1 ), the simplified 

formula ( 3 ) is obtained, and the formula ( 3 ) is 
integrated to obtain the wear amount calculation 
formula ( 4 ). Among them, a, b, c are constants, steel 
takes a = 1, b = 1, c = 2, wear coefficient K is different 
according to the different working conditions and the 
general value range is10−3 ∼ 10−7 , steel takes K = 
0.000002. 

 

dW = K
σnvdt

H
         （3） 

W = ∫K PaVb

Hc
dt       （4） 

In the formula : W — wear depth (m). 
P —  the normal stress between the contact 

surface of the sheet and the tool body (MPa). 
v — relative slip velocity (m/s). 
H — die hardness (HRC). 
dt — time increment (s). 
It can be seen by equation (1), the theory that the 

wear amount is positively related to the stress load on 
the die and the sliding speed of the plate material, and 
negatively related to the die hardness. 

After setting the boundary conditions, it is 
necessary to add the corresponding process parameters 
and characteristics to the convex die. Firstly, the 
stamping direction is selected as -Z direction, the 
stamping speed is set to 10mm/sec, and the hardness 
of the die is set to 55HRC. 

Analysis of simulation results of the wear process of 
drawing dies 

As shown in Fig. 6, the load curve of the cam die 
stroke during the drawing process is shown, and its 
ordinate is the load on punch along the Z direction, that 
is, the punching direction. As the figure shows, the 
sheet metal is formed along the die fillet within 
0~0.968 seconds, and the flow resistance of sheet 
metal is the largest at this stage. Therefore, with the 
advance of the drawing process, the Z-direction load 
on the punch also increases and reaches the peak value 
at 0.968 seconds. At this stage, the punch surface also 
produces intense friction with the sheet metal surface. 
The punching pressure is used to complete the sheet 
metal forming in the concave die. At the end of the 
forming process, the main forming parts of the sheet 
metal are formed, and the force on the edge part is 
small, so its force decreases until the end of the 
forming process, the punch force is reduced to 0. 
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Fig. 6 Load curve of convex die stroke 
FIG. 7 shows the sheet metal forming results of 

the drawing die model. The sheet metal has good 
formability under the drawing die, and its bottom is 
smooth and well-extended. Because the boundary 
condition of the symmetric surface is set, the sheet can 
be formed completely within the boundary range to fit 
the set boundary perfectly. The size of the lower 
surface is almost the same as that of the inner surface 
of the concave die. The sheet metal can be fitted to the 
surface of the die at the rounded corner transition, and 
there is no wrinkling or thinning cracking caused by 
uneven material flow at this position, which has a 
better forming effect and material flow process. 
Because the flange is provided with a blank holder, the 
excess unformed sheet material can flow to the 
forming area under the action of the blank holder, and 
in the forming process of the flange did not cause the 
phenomenon of edge warping due to local pressure, 
sheet forming successfully. 

 
Fig. 7 Model sheet forming effect 

As shown in Fig. 8, the distribution of the wear 
amount of the convex die after a single drawing, the 
highest wear amount of the convex die is 2.31 × 10−6 
mm after a complete drawing and stamping process, 
and the main wear location appears at the rounded 
corner transition. It can be seen from the comparative 
analysis that the simulation results of the two software 
show that the wear occurs at almost the same location, 
so it can be assumed that the main wear location of the 
drawing die for the outer plate of the rear wheel cover 
is the location shown in the figure. The model follows 
the dimensions of the shape and rounded corners of the 
drawing die, so the wear amount here can be 
approximated as the wear amount of the drawing die 
during the processing and production process. 

 
Fig. 8 Distribution of convex die wear amount 

Study and analysis of wear factors of drawing dies 

(1) Determination of the evaluation index of 

drawing die wear 
Through the aforementioned contents, it is 

determined that the rounded corner of the convex die 
is the most severely worn area during the production 
process of the part processing. This location is the 
location where the die is most likely to be scrapped, so 
the wear amount of a single press at this location is 
chosen as the evaluation index of the wear condition 
of the drawing dies. 

(2) Selection of test factors and orthogonal test 
design 

Analysis of the influence of die clearance on die 
wear: 

The size of the die gap not only affects the 
quality of the part being stamped and formed, but also 
the life of the die. If the gap is too small, the resistance 
to the flow of the sheet in the stamping process 
increases and the friction between the sheet and the 
convex and concave die increases, resulting in 
increased die wear and affecting die life. When the gap 
is large, although it can effectively reduce the wear of 
the die and prolong the service life, the forming defects 
such as stacking and wrinkling will occur in the local 
position. 

Analysis of the influence of friction coefficient 
on die wear: 

In the stamping process of the die, the 
lubrication condition is not good enough to lead to the 
friction coefficient is too large, so the flow of the sheet 
metal will be hindered, which will lead to the process 
of the sheet metal extending to the inside to be 
hindered, which is easy to cause the cracking 
phenomenon in the middle or round corner of the sheet 
metal. Secondly, insufficient lubrication conditions 
will lead to severe friction between the sheet metal and 
the the convex and concave die, which not only affects 
the forming quality of the parts, but also reduces the 
service life of the die due to friction heat generation. 

Analysis of the influence of stamping speed on 
die wear: 

With the increase of stamping speed, the wear of 
the die increases, but when the stamping speed 
exceeds a certain limit value, the increase of stamping 
speed makes the wear of the die decrease.  However,  
in the actual  blanking process, it is found that with 
the increase of stamping speed, the wear of the die is 
significantly increased. 

Analysis of the influence of die hardness on die 
wear: 

For stamping die, hardness is a very important 
parameter, which not only affects the quality of 
stamping products, but also affects the life of the die. 
The higher the hardness, the better the wear resistance 
and the longer the die life. Usually, the mold material, 
heat treatment and coating conditions will affect the 
hardness. 

According to the research analysis, the factors 
affecting the amount of die wear mainly include die 
clearance, the friction coefficient between the plate 
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material and the tool body, stamping speed, and die 
hardness, so these four process parameters were 
selected as the analysis factors for the orthogonal test. 
In order to comprehensively study the influence of 
each test factor on the test results, the range of 
parameters for the test analysis was expanded, and 
four levels were selected for each factor to be explored. 
The levels were chosen as shown in Table 4. 
Table 4 Table of test factors and level settings 

Factors Level 1 Level 2 Level 3 Level 4 

Friction 

coefficient 
0.12 0.13 0.14 0.15 

Stamping speed/ 10 20 30 40 

（𝑚𝑚𝑚𝑚 ∙ 𝑠𝑠−1） 

die 

hardness/HRC 
55 58 61 64 

die clearance/mm 0.7 0.77 0.84 0.91 

The orthogonal test table of L16(44)  was 
established, and the wear simulation experiments were 
conducted against the parameter combinations in the 
table respectively. The wear results of each group were 
obtained, as shown in Table 5. To simplify the table, 
the friction coefficient is set as factor A, the stamping 
speed as factor B, the die hardness as factor C, and the 
die clearance as factor D. The amount of die wear is 
used as the evaluation index. 

Table 5 Statistical table of simulation results of orthogonal test 
Serial number A B（𝑚𝑚𝑚𝑚 ∙ 𝑠𝑠−1） C（HRC） D（mm） Wear amount （× 10−6𝑚𝑚𝑚𝑚） 

1 0.12 10 55 0.7 2.13 

2 0.12 20 58 0.77 1.49 

3 0.12 30 61 0.84 1.39 

4 0.12 40 64 0.91 1.97 

5 0.13 10 58 0.84 1.86 

6 0.13 20 55 0.91 1.13 

7 0.13 30 64 0.7 1.60 

8 0.13 40 61 0.77 2.84 

9 0.14 10 61 0.91 1.74 

10 0.14 20 64 0.84 1.55 

11 0.14 30 55 0.77 2.99 

12 0.14 40 58 0.7 2.30 

13 0.15 10 64 0.77 1.83 

14 0.15 20 61 0.7 2.25 

15 0.15 30 58 0.91 2.40 

16 0.15 40 55 0.84 2.82 

(3) Analysis of test results 
Combining the 16 sets of test data obtained in 

Table 5, the effect of process parameters on the amount 
of die wear was investigated using the extreme 
difference analysis method. The analysis results are 
shown in Table 6. 
Table 6 Table of extreme difference analysis of each 

parameter on the amount of die wear 
 

Serial 
number 

A B C D 

K1 6.98 7.56 9.07 8.28 

K2 7.43 6.42 8.05 9.15 

K3 8.58 8.38 8.22 7.62 

K4 9.30 9.93 6.95 7.24 

k1 1.745 1.89 2.2675 2.07 

k2 1.8575 1.605 2.0125 2.2875 

k3 2.145 2.095 2.055 1.905 

k4 2.325 2.4825 1.7375 1.81 

R 0.58 0.8775 0.53 0.4775 

The extreme difference can reflect the degree of 
influence of each process parameter on the amount of 
die wear, and it can be seen through Table 5 that, 
RB > RA > RC > RD, that is, the degree of influence 
of each process parameter on the maximum thinning 
rate is: stamping speed > friction coefficient > die 
hardness > die clearance. In order to reflect more 
intuitively the trend of each process parameter's 
influence on the part's maximum thinning rate at 
different levels, a graph of the influence of each 
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process parameter on the maximum thinning rate is 
produced in Figure 9. 

 

Fig. 9 Trend of the influence of each process parameter 
on the amount of die wear 

Through Figure 9, orthogonal test and extreme 
difference analysis table, it can be seen that within a 
certain range, with the increase of friction coefficient, 
the die wear amount has been increasing; with the 
increase of stamping speed, the die wear amount 
decreases first and then increases, when the stamping 
speed is 20mm / s, the die wear amount is the smallest; 
with the increase of die hardness, the die wear amount 
first decreases, then fluctuates slightly, and then 
decreases continuously; with the increase of die 
clearance, the die wear amount increases first and then 
decreases, when the die clearance is 0.77 mm, the die 
wear amount is the largest. 

It can be clearly seen through Figure 9 that if you 
want to minimize die wear, the combination of process 
parameters that should be selected as A1B2C4D4, that 
is, the friction coefficient is 0.12, the stamping speed 
is 20 mm/s, the die hardness is 64 HRC, the and die 
clearance is 0.91 mm. The simulation results using this 
combination of parameters are shown in Fig. 10. 

 
Fig. 10 Distribution of die wear under A1B2C4D4 

combination 
With this combination of process parameters, 

the wear of the convex die is reduced to 1.09 × 10−6 
mm, and the main location of wear is still at the die 
edge. Therefore, this analysis's results align with the 
theoretical analysis and the processing reality. 
According to the general wear limit formulated by the 
factory, the surface wear of the drawing die should be 
less than 0.5mm, within which the die needs to be 
regularly maintained or repaired, etc. If the wear 
amount exceeds the limit, it will cause the production 
of parts with low dimensional accuracy, substandard 
surface roughness, or even inferior products, and will 

cause major accidents such as die failure. Using this 
wear limit, the life of the die can be found to be about 
458,715 cycles under the A1B2C4D4 combination. 

Wear empirical equation based on multiple linear 
regression 

From section 3.5, it can be seen that the 
dependent variable die wear is jointly determined by 
the four independent variables, and it is known 
through the extreme difference analysis that the 
influence weight of each variable on the dependent 
variable is different. In order to determine the 
mathematical relationship between the independent 
variable and the dependent variable, and establish the 
corresponding mathematical formula to guide the 
subsequent processing production, so the multiple 
linear regression model is proposed to be used to 
derive the mathematical model between the 
independent variable and the dependent variable. 

The multivariate linear model is simple in form 
and easy to model, and is generally a function that 
makes predictions through linear combinations of 
multiple attribute elements, as shown in equation (5). 

f(x) = β1x1 + β2x2 + ⋯+ βnxn + b   (5) 
Where:βi — The weight coefficient of the ith 

attribute element, i = 1,2,3⋯，n ;. 
xi  — The value of the ith attribute element. 

i = 1,2,3⋯，n . 
b — Free regression coefficient. 
The data in Table 5 were entered into SPSS with 

the amount of wear as the dependent variable and the 
four process parameters as independent variables for 
regression analysis. The data entry method was 
selected as the forced entry. The results of the data 
analysis are shown in Table 7. 
Table 7 Table of model complex correlation coefficient 

test 

Models R 𝑅𝑅2 
Adjusted 

𝑅𝑅2 

Error in 

standard 

estimation 

1 0.756 0.571 0.415 0.42116 

It can be seen from the data in Table 7, R 
represents the degree of correlation between the 
independent and dependent variables in the regression 
model, and its value ranges from 0 to 1. The closer the 
R-value is to 1, the higher the correlation of the 
regression model. The R-value of 0.756 in this table 
indicates that the model has an excellent correlation. 
The standard estimation error represents the degree of 
deviation between the actual value and the calculated 
value of the model, and the smaller the value, the 
higher the prediction accuracy. The error in this table 
is 0.42116, indicating that the regression model has a 
high computational prediction accuracy. 
Table 8 Variance analysis table of regression model 
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Models 
quadratic 

sum 

Degree 

of 

freedom 

Mean 

Square 
F Significance 

Regression 2.600 4 0.650 3.664 0.039 

Residuals 1.951 11 0.117   

Total 4.551 15    

Table 8 is the variance analysis table of the 
regression model, in which the main judgment is the F 
value and the final significant Sig value, F is the value 
of the constructed statistic, and the Sig value 
represents the significance level, which should 
generally be less than 0.05. It means that the regression 
model is significant and useful, the Sig value in this 
table is 0.039, so the regression model is constructed 
successfully. 
Table 9 Table of regression coefficients for each 

factor 
Regression 

coefficient 
b 𝛽𝛽𝐴𝐴 𝛽𝛽𝐵𝐵 𝛽𝛽𝐶𝐶 𝛽𝛽𝐷𝐷 

standardization 

coefficient 
0 0.425 0.475 

-

0.324 

-

0.244 

Non-

standardized 

coefficient 

3.120 20.275 0.025 
-

0.052 

-

1.661 

Table 9 shows the regression model coefficients 
of the four independent variables, using the 
standardized coefficients to analyze the elements. The 
magnitude of their absolute values represents the 
degree of influence of the elements on the regression 
model results. The coefficients can be obtained that the 
degree of influence in this regression model is: 
stamping speed > friction coefficient > die hardness > 
die clearance, which is consistent with the results of 
the orthogonal test analysis. And the positive and 
negative coefficients are also consistent with the 
influence relationship, where the friction coefficient 
and stamping speed are positively correlated with the 
wear amount, and the die clearance and die hardness 
are negatively correlated with the wear amount, which 
is consistent with the results of the extreme difference 
analysis. The model is built by using non-standardized 
coefficients. The linear regression model of die wear 
is shown in equation (6), where the calculated results 
are in units of (× 10−6mm). 

𝑓𝑓(𝑥𝑥) = 3.120 + 20.275𝑥𝑥𝐴𝐴 + 0.023𝑥𝑥𝐵𝐵 −
0.052𝑥𝑥𝐶𝐶 − 1.661𝑥𝑥𝐷𝐷     (6) 

The experimental values of the statistical 
orthogonal test and the calculated value based on the 
mathematical model of Equation (6) were counted. In 
order to unify the two results, the significant digit of 
the calculated value was reserved to two decimal 
places, and the results are shown in Table 10. 

Table 10 Error statistics table of the test value and 
calculated value 

Serial 

number 

Test 

value/×

10−6𝑚𝑚𝑚𝑚 

Calculated 

value/×

10−6𝑚𝑚𝑚𝑚 

Error/×

10−6𝑚𝑚𝑚𝑚 

1 2.13 1.76 -0.37 

2 1.49 1.72 0.23 

3 1.39 1.68 0.29 

4 1.97 1.63 -0.34 

5 1.86 1.57 -0.29 

6 1.13 1.84 0.71 

7 1.60 1.95 0.35 

8 2.84 2.22 -0.62 

9 1.74 1.50 -0.24 

10 1.55 1.70 0.15 

11 2.99 2.51 -0.48 

12 2.30 2.70 0.4 

13 1.83 1.78 -0.05 

14 2.25 2.29 0.04 

15 2.40 2.32 -0.08 

16 2.82 2.83 0.01 

In order to more visually express the accuracy of 
the prediction calculated by the regression model and 
to show the error relationship between the 
experimental and calculated values, a line graph was 
created using the data in the table above. The 
comparison graph between the experimental and 
calculated values is shown in Figure 11, and the error 
graph is in Figure 12. 

 
Fig. 11 Comparison diagram of test value and 

calculated value 
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Fig. 12 Error diagram 

PROCESS PARAMETER 
OPTIMIZATION BASED ON BP 

NEURAL NETWORK AND WHALE 
ALGORITHM 

The friction between the sheet and the die 
surface during the drawing process varies nonlinearly, 
so it is difficult to find the exact function to express the 
linear relationship between the four process 
parameters and the amount of die wear. The function 
model obtained in the previous section using multiple 
linear regression can only obtain local minima and 
does not ensure that the solution found is a global 
minimum. In this section, we build a BP neural 
network model with process parameters as input and 
die wear as output, and optimize the weights and 
thresholds of the implicit layer of the neural network 
model using the whale algorithm to obtain the global 
minimum die wear and its corresponding combination 
of process parameters. 

Processing of experimental data  

The construction of the BP neural network 
requires certain experimental data as the learning 
object. Its prediction accuracy will increase with the 
increase of experimental data, so it is necessary to 
select the better three levels from the four levels of 
four process parameters in section 3.5 for a full-scale 
test. From section 3.5, it is known that the better 
combination of process parameters is friction factor 
0.12, stamping speed 20mm/s, die hardness 64HRC, 
and die clearance 0.91mm, so the levels were selected 
as shown in Table 10, and the factors and levels in 
Table 11 were used to conduct the full-scale test. 
Table 11 Table of test factors and level settings 

Factors Level 1 Level 2 Level 3 

Friction coefficient 0.12 0.13 0.14 

Stamping speed/

（mm ∙ s−1） 
10 20 30 

die hardness/HRC 58 61 64 

die clearance/mm 0.77 0.84 0.91 

Construction of BP neural network model 

The linear regression model between test factors 
and evaluation indexes obtained from section 3.6 is the 
result of statistical analysis using a small amount of 
test data, and its available range has certain limitations, 
and the prediction accuracy is not very high. In order 
to further find the combination of process parameters 
for minimum wear, the BP neural network model with 
four inputs and one output is established in this section. 

BP neural network is a multilayer feed-forward 
neural network trained according to the error 
backpropagation algorithm, which generally consists 
of three or more neuron levels, a single input and 
output layer, and multiple hidden layers. A three-layer 
BP neural network is built to describe the relationship 
between process parameters and die wear based on the 
content of Section 3. The model input layer is the four 
process parameters of friction coefficient, stamping 
speed, die hardness, and die clearance, and the output 
layer is the die wear, and the model results are shown 
in Figure 13. 
 

 
Fig. 13 BP neural network structure 

Validation of BP neural network model  

The process parameter item is set as X, and the 
die wear amount is set as Y. Use the BP neural network 
toolbox of MATLAB to build a neural network, set X 
as the input quantity and Y as the target quantity. The 
neural network includes an input layer, implicit layer, 
and output layer, in which the model determines the 
input layer and output layer. The input layer is the 
process parameters, 4, and the output layer is the 
evaluation index, 1. In order to achieve the 
predetermined mapping relationship to improve the 
network accuracy, the number of implicit layers is 
finally determined to be 20 for the best effect through 
several tests. The constructed model is shown in 
Figure 14. 

 
Fig. 14 Neural network model structure diagram 

The training curve of the BP neural network is 
shown in Figure 15. It can be seen from Figure 15 that 
the verification performance of this neural network 
reaches the best at the 18th iteration, and the mean 
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square error of the verification set is 0.066359. In the 
subsequent 19th to 24th iterations, the mean squared 
error of the training set gradually decreases until it 
becomes stable. In contrast, the mean squared error of 
the validation set and the test set becomes stable. At 
this time, it is considered that the BP neural network 
training is complete, and there is no precocious or 
overfitting phenomenon. 

 
Fig. 15 BP neural network training curve diagram 

As shown in Figure 16, the BP neural network 
training results fit curve can fully reflect the prediction 
accuracy of the built neural network model on the data, 
and the error between the predicted value and the test 
value can be visually displayed by the degree of line 
offset. The content of Figure 15 shows that the fitted 
regression R-value for the training set of this neural 
network is 0.92554, the fitted regression R-value of the 
validation set is 0.8294, the fitted regression R-value 
of the test set is 0.82295, and the integrated fitted 
regression R-value is 0.88396, which is a excellent 
fitting effect. 

 
Fig. 16 BP neural network fitting curve diagram 

The BP neural network error histogram is shown 
in Figure 17, whose error is calculated as the 
difference between the target value and the output 
value. It can be seen from the figure that the overall 

error of the neural network model is between 
[−0.09931~0.1181]. The multiple linear regression 
model was built in Section 3.6, its overall prediction 
error is between [−0.4~0.4], and the prediction error 
is significantly lower. Hence, this BP neural network's 
overall prediction error value is small. 

 
Fig. 17 BP neural network error histogram 

In summary, it can be seen through each curve 
analysis graph that the neural network training process 
is complete, the numerical fit is high, the numerical 
prediction is accurate and meets the prediction 
requirements, and the BP neural network model is 
successfully built. 

WOA Optimized BP Neural Network Model 

The Whale Optimization Algorithm (WOA) is a 
meta-heuristic optimization algorithm that simulates 
the hunting behavior of humpback whales. The code 
sets the number of populations and the maximum 
number of iterations to ensure the accuracy of the 
whale algorithm for finding the optimal value, which 
has the characteristics of few optimization parameters, 
simple operation, and fast convergence and is widely 
used in engineering. The whale algorithm is used to 
optimize the weight values and thresholds of the BP 
neural network to obtain the WOA-BP neural network 
model with accurate prediction and stable structure. 
The model predicts the minimum die wear value and 
derives the optimal combination of process parameters 
using back calculation. 

FIG. 18 shows the iterative evolution process 
curve of the whale algorithm optimization neural 
network. The optimization process has evolved for 50 
generations and becomes stable after iteration to 16 
generations, and the fitness value reaches the best, 
which verifies that the optimization model can 
converge quickly and complete the optimal search 
within the specified number of iterations. 
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Fig. 18 Iterative curve diagram of optimal fitness 

By optimizing the BP neural network using the 
WOA algorithm, the overall parameters of the model 
were significantly improved, the training of the neural 
network was completed after only 9 iterations, and the 
efficiency was significantly improved. The mean 
square error was reduced from the initial 4.33271 ×
10−2  to 1.60163 × 10−2 , and the integrated 
regression R-value was improved from 8.8396 ×
10−1 to 9.5588 × 10−1. The optimization effect was 
obvious, and the fit curve is shown in Figure 19. 

 
Fig. 19 WOA-BP neural network fitting curve diagram 

As can be seen by the graphical content, 
compared with the initial BP neural network, the 
optimized neural network has a significant 
improvement in the degree of fitting, and the 
comparison of the fitted regression coefficient values 
before and after optimization is shown in Table 12. 
Table 12 Comparison of R-values of neural network 

fitting regression before and after optimization 
 Training Validation Test All 

Initial 0.92554 0.8294 0.82295 0.88396 

BP 

Neural 

Network 

WOA-

BP 

Neural 

Network 

0.99979 0.85848 0.80413 0.95588 

Figure 20 shows the comparison diagram 
between the predicted value and the actual value of the 
BP neural network before and after WOA optimization. 
The test data of the test set is used for statistical 
analysis, and the distance between the test value and 
the actual value judges the accuracy of data prediction. 
The graph shows that the predicted values of the 
WOA-BP neural network have higher prediction 
accuracy than the initial BP neural network, the error 
floating range is smaller, and the prediction results are 
more stable. 

 
Fig. 20 Before and after comparison diagram of WOA 

optimized BP neural network 
In summary, the neural network optimized by 

the whale algorithm has faster convergence speed, 
minor fitting error and more stable prediction accuracy, 
which indicates that the whale optimization algorithm 
optimizes the BP neural network well and the WOA-
BP neural network is built successfully. 

Optimization of process parameters based on 
WOA-BP 

The parameter range set in Section 4.1 was 
converted to input X values into the WOA-BP neural 
network, and the output Y value was set to be the 
minimum. The prediction using the WOA-BP neural 
network yielded a convex die wear of 0.99× 10−7 
mm, a friction coefficient of 0.12, a stamping speed of 
22 mm/s, a die hardness of 62 HRC, and a die 
clearance of 0.88 mm. The wear distribution of the 
convex die obtained by inputting each process 
parameter into Deform for verification is shown in 
Figure 21. 
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Fig. 21 Distribution diagram of convex die wear under 
WOA-BP neural network prediction 

As verified by Deform, The minimum wear of 
the convex die for this combination of process 
parameters is 1.02× 10−6  mm, which is not much 
different from the predicted result. As shown in Table 
13, comparing the wear amount of the convex die 
before and after optimization and the analysis of the 
process parameter combination, the wear amount of 
the convex die was reduced from 2.31× 10−6mm to 
1.02× 10−6mm. The die life was increased to 490,196 
times, so the optimization effect was obvious. 

Table 13 Comparison table of results analysis before and after optimization 
Optimization 

methods 
Process Parameters Simulation results 

 
Friction 

coefficient 

Stamping speed/

（mm ∙ s−1） 
die hardness/HRC die clearance/mm 

Wear amount（×

10−6mm） 

No optimization 

method 
0.12 10 55 0.77 2.31 

Orthogonal test 0.12 20 64 0.91 1.09 

WOA-BP 0.12 22 62 0.88 1.02 

CONCLUSION 
In this paper, we completed the three-

dimensional design of the drawing die for the outer 
plate of the rear wheel cover of an automobile, selected 
four process parameters: friction coefficient, stamping 
speed, die hardness and die clearance as the test factors, 
and the amount of wear of the drawing die as the 
evaluation index, designed and completed an 
orthogonal test, and optimized the stamping process 
parameters of the outer plate of the rear wheel cover of 
an automobile using the method of BP neural network 
optimized by the whale algorithm, and the results 
showed that: 

(1) Deform was used to complete the 
simulation of the stamping process of the rear wheel 
cover outer plate drawing die, determine the main 
wear position of the die, and obtain the initial 
simulation result of a single wear amount of 2.31 ×
10−6 mm. With wear amount as the evaluation index, 
16 groups of test data were obtained by the orthogonal 
test with friction coefficient, stamping speed, die 
hardness and die clearance as influencing factors. The 
influence trend of each process parameter on the 
evaluation index was analyzed by using the extreme 
difference analysis method. The final optimized 
combination of process parameters was obtained as a 
friction coefficient of 0.12, stamping speed of 20 mm/s, 
die hardness of 64 HRC, and die clearance of 0.91 mm. 
The minimum wear of the convex die under this 
combination was 1.09× 10−6  mm, and the die life 
was about 458715 times. 

(2)Using SPSS combined with orthogonal test 
data, the empirical equation for die wear within the set 
process parameters was obtained using multiple linear 
regression equations. The accuracy of the calculated 
values of the empirical formula for wear was analyzed 
by comparing the test values with the calculated values. 
The accuracy of the prediction of the empirical 
formula was verified by graphical analysis. 

(3)The whale algorithm was used to optimize the 
BP neural network model and to optimize the wear 
amount of the convex die. The minimum wear amount 
of the convex die after optimization is 1.02× 10−6 
mm. The corresponding process parameters are 
friction coefficient 0.12, stamping speed 22mm/s, die 
hardness 62HRC, and die clearance 0.88mm, and the 
lifetime of the drawing die of the rear wheel cover 
outer plate of the car after optimization is increased to 
490,196 times, which effectively improves the service 
life of the die. 

(4)The optimal combination of process 
parameters based on the orthogonal test reduces the 
wear of the rear wheel cover outer plate drawing die 
by 1.22× 10−6  mm. The optimization based on the 
BP neural network and the whale algorithm, the wear 
of the rear wheel cover outer plate drawing die was 
reduced by 1.29 × 10−6  mm. Compared with the 
orthogonal test, the process parameters are optimized 
by the WOA-BP neural network algorithm, and the die 
life is improved by 31,481 times. Therefore, using the 
BP neural network and whale algorithm is conducive 
to reducing the amount of die wear and improving the 
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service life of dies, which can play a role in the 
development of stamping dies. 
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NOMENCLATURE 

W — wear depth (m). 
P — the normal stress between the contact surface of 
the sheet and the tool body (MPa). 
v — relative slip velocity (m/s). 
H — die hardness (HRC). 
dt — time increment (s). 
βi  —  The weight coefficient of the ith attribute 
element, i = 1,2,3⋯，n ;. 
xi  —  The value of the ith attribute element. i =
1,2,3⋯，n . 
b — Free regression coefficient. 

 

 

 

 

後輪罩外板拉延模具設計

及其磨損工藝參數優化 
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安徽工程大學機械工程學院 

 

摘要 

針對衝壓過程中模具凸模與板料之間相互運

動而造成的磨損，造成模具使用壽命降低的問題。

本文利用 UG 對後輪罩外板拉延模具進行三維設計，

利用 Deform-3D 進行模具衝壓過程模擬模擬，確定

了模具主要磨損位置，選取模具間隙、摩擦係數、

衝壓速度及模具硬度四個工藝參數作為試驗因素，

以模具磨損量作為評價指標建立正交試驗，運用

SPSS 軟體對試驗結果進行多元線性回歸分析，建

立了拉延模具表面磨損經驗公式。最後運用

MATLAB搭建工藝參數與磨損量之間的 BP神經網路

模型，利用鯨魚演算法優化模型隱含層節點的權重

和閾值，得到了基於優化後的 WOA-BP 神經網路模

型預測出的磨損量最小時的最優工藝參數組合，優

化後的凸模最小磨損量為 1.02× 10−6mm，最優的

工藝參數組合為摩擦係數 0.12、衝壓速度 22mm/s、

模具硬度 62HRC、模具間隙 0.88mm，完成了汽車後

輪罩外板拉延模具的設計並優化了其表面磨損工

藝參數。 
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