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ABSTRACT 

In recent years, the booming artificial intelligence 
technology has been gradually introduced into the defect 
inspection system with optical images in various 
industrial production lines, which has improved the 
precision and yield of products. However, for test images 
with multiple defects, the fault detection rate is still very 
high. In addition, the need to identify the processing lack 
through defect classification is also increasing. In order to 
enhance the accuracy and intelligence of using optical 
images to detect and classify the compound defects on 
printed circuit board assembly (PCBA), this study 
compared the performance of several deep learning 
models in dealing with multi-defect images. Through the 
comparison of test performance, it is suggested to use 
YOLOv3 model to overcome the challenges of diversity 
and complexity of PCBA components. Based on YOLOv3, 
800 images randomly containing 10 kinds of PCBA 
defects were trained. Each sample contains an unequal 
number of defects. The training results show that the mean 
average precision (mAP) in defect classification is as high 
as 97.47%. In the test experiment, 60 sample images were 
inspected and compared with the results of manual 
inspection. Experimental results show that the error rates 
of PCBA defect detection and classification are as low as 
0% and 2.42% respectively, which indicates that the 
optimized YOLOv3 model can be applied to industrial 
production lines to achieve the goal of high-precision 
detection and classification of composite defects. 

INTRODUCTION 

Automatic equipment integrating machine vision 
and motion control has been widely used in the production 
process for real-time inspection and quality control 
(Celaschi et al., 2019; Hung et al., 2018; Liao et al., 2018). 
Neural networks have also been introduced into 
automation systems, which has promoted the 
development of industry to a high-speed, efficient and 
high-quality production mode (Chang et al., 2008; Lim et 
al., 2019; Liu et al., 2019; Sun et al., 2019). Although the 
introduction of artificial intelligence has improved the 
speed and accuracy of product defect detection, high 
misjudgment rate is still a major problem in many 
complex manufacturing processes. 

Recently, deep learning technology has been 
gradually introduced into various industrial applications, 
with excellent performance in image, audio and text 
information (Chen et al., 2019; der Mauer and Behrens, 
2019; Zhong et al., 2019). By learning from a large 
amount of existing data and constantly updating the data 
and revising the prediction results through the 
backpropagation algorithm, the goal of various defect 
characteristics can be accurately quantified through the 
continuous learning process. However, when there are 
several different types of defects in an inspection image, 
reducing erroneous judgment of defects is still a big 
challenge. The most typical case is the defect detection of 
PCBA on the production line. 

A PCBA is a circuit board in which all components 
and parts, including resistors, capacitors, inductors, IC, 
etc., are soldered and mounted on a printed circuit board. 
In order to reduce the cost and achieve the goal of high 
efficiency and high quality production, automated optical 
inspection (AOI) technology has been widely used in 
PCBA production line. However, due to the diversity and 
complexity of components on PCBA, there are still not a 
few non-defective boards that are judged by AOI as 
defective products, and vice versa. Therefore, it is 
necessary to improve the intelligence of AOI instrument 
applied to PCBA defect inspection. 
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In this study, deep learning technology is applied to 
PCBA defect detection to overcome the diversity and 
complexity of composite defects. Here, four kinds of 
currently recognized most powerful deep learning models 
with object detection characteristics are selected to 
compare the performance of these four frameworks in 
detecting PCBA composite defects. 800 images randomly 
containing 10 kinds of PCBA defects collected by a 
commercial AOI system for training. Then, another 50 
defect images containing 124 defects collected by the AOI 
instrument were used for a preliminary test experiment. 
All images were checked with manual inspection and the 
experimental results show that YOLOv3 has the best 
effect in PCBA defect classification. Therefore, further 
discussions were carried out to improve the performance 
of YOLOv3 in detecting and classifying PCBA defects. 
The final training results for defect classification of the 10 
types of defect show that the mAP (Oksuz et al., 2018) at 
the Intersection over Union (IoU) (Kosub, 2019) of 0.5 is 
improved to 97.47%, showing its ability to accurately 
detect and classify complex and compound defects on 
PCBA. Finally, a test was carried out on the 50 defective 
images and another 10 defect-free images. Experimental 
results show that all 124 defects were detected, of which 
only 3 were incorrectly classified and no defect-free 
image was misjudged as defective. This indicates that the 
adoption of deep learning technology can greatly improve 
the yield of defect detection and reduce the manufacturing 
cost. 

It is worth mentioning that one of the major 
challenges in this work is the means to process large 
amounts of data, so it is more practical to use parallel 
computing architecture and graphics processing unit 
(GPU) for fast data calculation (Ye et al., 2018). In this 
study, a dual GTX1080 GPU card was applied. 
Experimental results showed that it took only 14 ms on 
average to recognize each image. This shows that 
although deep learning technology needs a long time to 
train, the actual inspection speed on product line is 
acceptable. 

DEFECT TYPE AND DEFINITION 

The sample images with PCBA defects were 
captured by a commercial AOI instrument (TR7500 SII, 
Test Research Inc., Taipei, Taiwan). In this study, ten 
kinds of defects were selected for inspection, as shown in 
Figure 1. Among them, “excessive parts” means there are 
redundant parts or foreign bodies on the board, “parts 
missing” refers to parts that should be installed on the 
board but are missing, “parts shift” means that the part 
deviates from the expected orientation or position, 
“tombstone” is a defect caused in the welding process in 
which one end of an element is welded to a solder joint 
while the other end is erected up like a tombstone due to 

uneven stress on both ends, “billboard” means that the part 
is rotated 90 degrees so that it is welded to the pad laterally, 
“upside down” means that the front and back of the 
element is reversely welded on the pad, “pin unseated” 
means that the foots of the part is bent or not flat on the 
tin plate, “solder bridge” refers to the short circuit caused 
by the connection of two independent solder joints due to 
soldering, “solder insufficient” means insufficient amount 
of tin thereon and may affect the welding strength, 
“missing solder” refers to that tin does not stick to the 
preset position on the pad. 

 
(a) excessive parts 

 
(b) parts missing 

 
(c) parts shift 

 
(d) tombstone 

 
(e) billboard 

 
(f) upside down 

 
(g) pin unseated 

 
(h) solder bridge 

 
(i) solder insufficient 

 
(j) missing solder 

Figure 1. Images of 10 kinds of PCBA defects. 
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PEFFORMANCE COMPARISON OF DEEP 
LEARNING MODELS 

Defect Detection Using Image Classification Models 
Based on the images obtained from AOI, the 

performance of defect detection using four image 
classification learning models, including Inception-
Resnet-V2 (Szegedy et al., 2017), Resnet_50 (He et al., 
2016), Inception V3 (Szegedy et al., 2016), and VGG19 
(Simonyan and Zisserman, 2015), is first studied. The size 
of each 2D PCBA image extracted by the commercial AOI 
system is 640*480 pixels. In these models, each sample 
can only contain one type of defect, so each type of defect 
must be trained and tested individually. Five kinds of 
defect images including parts missing, shifting, upside 
down, billboard and tombstone were adopted for testing, 
to compare the defect detection accuracy of the four 
models. The training sample consists of 5000 defective 
images and 5000 flawless images, which are obtained by 
expanding 30 pixels around the tested assembly and then 
adjusting the size of each image to 200*200 pixels. The 
epoch and learning rate are 30 and 0.0001 in training, 
respectively. After training, 1507 flawed images and 249 
flawless images were randomly selected from AOI 
pictures for testing. The test results are shown in Table 1. 
Where, "TP" means that the flawless image is judged to 
be flawless, "TN" means that the defective image is 
judged to be defective, "FN" means that the flawless 
image is judged to be defective and there will be trouble 
in lowering the yield rate, and "FP" means that the 
defective image is judged to be flawless and is directly 
related to the reduction in product quality. The test 
accuracy is obtained by dividing the number of correctly 
judged samples with total samples, which is about 80%. 
The false rate is determined by FP/(TN+FP), which 
represents the probability of the defective board passing 
through. Since defect detection is performed on images 
with 640*480 pixels obtained from the commercial AOI 
system, one image may contain a plurality of defects. 
Therefore, the four deep learning models that can only 
deal with single defect detection are not competent, 
resulting in a high false rate. It is necessary to look for 
other models with higher performance. 

Table 1. Comparison of defect detection performance of 
four image classification models. 

 

Defect Classification Using Object Detection Models 
In order to meet the needs of detecting and 

classifying composite defects in images, deep learning 
models with object detection features are then considered. 
At present, deep learning models based on object 
detection are mainly divided into two categories. In the 
first, a series of candidate boxes are generated, and then 
the samples are classified into appropriate boxes using 
convolutional neural networks. The other one does not 
generate candidate boxes, but directly converts the object 
positioning into a regression process. The former excels 
in detecting and positioning accuracy, while the latter is 
good at calculating speed. In this paper, four models are 
adopted and compared, among which Faster R-CNN (Ren 
et al., 2015) and R-FCN (Dai et al., 2016) belong to the 
former, SSD (Liu et al., 2016) and YOLOv3 (Redmon and 
Farhadi, 2018) belong to the latter. 800 images with 1354 
defects were selected from AOI for training. Each image 
randomly contains 1 to 5 different defect, including 10 
defect categories shown in Figure 1. The quantity of 
various defect features in the training samples is shown in 
Table 2.  

Table 2. Quantity of PCBA defects used for training. 

 

The training parameters and obtained classification 
precision in the training process are shown in Table 3. For 
the frameworks of Faster R-CNN and R-FCN, the short 
side of the input image should be greater than 600 pixels 
for feature extraction. Therefore, the input images are first 
enlarged from the original size of 640 × 480 pixels to 800 
× 600 pixels. Due to the characteristics of the network 
structure, the training batch can only be 1. When the 
learning rate is 0.0001 and the Intersection over Union 
(IoU) threshold is 0.5, the obtained optimal mAP for 
defect classification by using Faster R-CNN is 53.71% 
after 160,000 iterations, and the optimal mAP of R-FCN 
is 60.43% after 120,000 iterations. For the learning 
models of SSD and YOLOv3, the images are scaled to 300 
× 300 pixels and 416 × 416 pixels respectively before 
being input into the neural network. Their batch is set at 8. 
Under the same learning rate and IoU threshold, after 300 
epochs of training, the optimal mAP for defect 
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classification using SSD is 57.96%, while that of 
YOLOv3 is 71.09% after 200 training epochs. 

Table 3. Comparison of training parameters and accuracy 
of four object detection models. 

 

After the training, another 50 PCBA images with 
124 defects were taken as test samples, and the amounts 
of various defects in images are shown in Table 4. The test 
results show that the number of defects correctly classified 
by Faster R-CNN, R-FCN, SSD and YOLOv3 is 65, 73, 
67 and 85 respectively. As shown, YOLOv3 learning 
model has achieved the highest accuracy both in training 
and testing, indicating that it can be used as a priority 
object detection framework for PCBA defect diagnosis. In 
addition, the average processing time of each image in the 
four models is 85 ms, 43 ms, 12 ms and 14 ms respectively. 
This show that YOLOv3 is also very effective in image 
inspection speed. 

Table 4. Quantities of PCBA defects used for testing. 

 

DETECTION AND CLASSIFICATION OF 
PCBA DEFECTS UTILIZING YOLOv3 

The above results show that YOLOv3 model can 
achieve fast and high-precision inspection results for the 
detection and classification of complex defects such as 
PCBA. Therefore, this study will further optimize the 
training parameters of YOLOv3 framework to improve 
the detection accuracy. In order to improve the accuracy 
of detection and classification, we must first increase the 
number of training samples. The original 800 defect 
images were rotated four times continuously at 90 degrees 
and combined with their mirror images to obtain a total of 
6,400 training samples and 10832 defects. At a fixed 

learning rate of 0.0001, it took about 83 hours for 125 
epochs to complete the deep learning training via the 
accelerating operation of two GTX1080 GPU cards. The 
training result is shown in Figure 2, where the accuracy 
mAP0.5 at IoU of 0.5 is significantly improved from 
71.09% to 91.25%, showing that more data can 
undoubtedly bring better and more accurate training 
performance.  

 

Figure 2. Preliminary training precision of PCBA defect 
classification using YOLOv3. 

YOLOv3 model can also use multi-scale training 
process to detect targets of different sizes. With the change 
of the quantity, scale and data set of detected feature 
images, the size of anchor box needs to be adjusted 
accordingly. In this study, 9 prior anchor boxes with sizes 
of (17 × 18), (28 × 24), (36 × 34), (42 × 44), (56 × 51), 
(72 × 66), (90 × 95), (92 × 154) and (139 × 281) were 
obtained based on K-means cluster (Oksuz et al., 2018). 
Then the multi-scale training was conducted under the 
randomly scaled input images of 288~448 (multiples of 
32) pixels. After 116 hours of 105 epochs training, the 
optimal training performance of mAP0.5 reaches 95.50%, 
as shown in Figure 3. 

 

Figure 3. Average precision of PCBA defect classification 
using multi-scale method. 

Another important parameter that can improve the 
accuracy of deep learning is the learning rate, which will 
greatly affect the weight of the network through adjusting 
the loss gradient (Bottou, 2012). Generally speaking, the 
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smaller the learning rate, the higher the accuracy, which 
ensure that the local minimum value will not be missed. 
However, this also means that it will take longer for the 
network to converge. In this study, a training process with 
dynamic learning rate scheme instead of the previous 
fixed rate was suggested. At the beginning of the training, 
a large learning rate of 0.001 was set to converge rapidly. 
As the training process progressed, once the total loss 
value did not decrease for 5 consecutive epochs, the rate 
was multiplied by the decay argument of 0.1. Therefore, 
the learning rate was gradually reduced until the value 
dropped to 0.000001 and there was no more improvement 
for the loss, then the training was completed. Figure 4 
shows the change between loss and training epoch under 
the learning rate decay scheme. The whole training 
process is completed after 70 epochs take about 78 hours, 
showing that the dynamic learning rate scheme shortened 
the training time. In addition, the average classification 
accuracy mAP0.5 of the training model is also increased to 
97.47%, as shown in Figure 5. 

 

Figure 4. Changes of loss with training epoch under 
learning rate decay scheme. 

 

Figure 5. Average precision of PCBA defect classification 
based on multi-scale training and learning rate decay 
scheme. 

In addition to the original 50 images containing 
defects, another 10 images without defects were also 
added to the following test experiment. Table 5 is a 
confusion matrix of test results of the 60 images based on 

the above training results. The matrix shows that no 
defect-free image was misjudged as defective, and only 3 
of 124 defects were incorrectly classified. This means that 
the accuracy of defect detection is as high as 100%, and 
the accuracy of defect classification is 97.58%. The 
average processing time of each image is the same as the 
previous 14 ms. Figures 6 are illusions of some test images. 
Figure 6(a) shows no defect category is marked in the 
defect-free image, indicating that the model classifier is 
not over-detected. Figures 6(b) and 6(c) show that whether 
there is only one defect or a plurality of defects in an 
image, it can be correctly detected by the model classifier, 
which not only defines the position of each defect, but also 
indicates the probability of each defect category. Figure 
6(d) shows that even multiple defects are located at the 
same position, the model can also correctly frame the 
location and mark multiple tag categories. Figures 6(e) 
and 6(f) are 2 misclassified images. Figure 6(e) shows that 
there is a “pin unseated” defect in the image, but the model 
identified it as a “solder bridge” with a probability of 
77.62%. The main reason is that the two defects have 
similar characteristics, which leads to misjudgment. 
Figure 6(f) shows that three defects were detected in the 
image, and the positions of these defects were accurately 
framed. However, one of them was identified as “upside 
down” with a probability of 76.25%, which should be a 
misjudgment of the defect “billboard”. It can be seen from 
these examples that misclassification may occur when the 
recognition probability is lower than 80%. 

Table 5. Confusion matrix of PCBA defect classification 
results.  
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 Test Image Classification Result 

 
(a) 

  

(b) 

  

(c) 

  

(d) 

  

(e) 

  

(f) 

  
Figure 6. Illustration of some test images: (a) An image 
without defects; (b) An image has two defects; (c) An 
image has several defects; (d) An image has two defects 
at the same position; (e) Defect “pin unseated” is 
misjudged as “solder bridge”; (f) An image has three 
defects, one of which is that the “billboard” is misjudged 
as “upside down”. 

CONCLUSIONS 

This study developed a compound defect detection 
and classification system based on YOLOv3 deep learning 
model. Based on K-means clustering, multi-scale training 
is carried out to realize the initialization of 9 anchor boxes, 
and operation is carried out under random scaling input 
images of 288~448 pixels to match the detection of 

defects of different sizes. Learning rate decay strategy is 
adopted to reduce the training time and increase training 
precision. Experimental results show that the accuracy of 
PCBA multi-defect detection and classification is as high 
as 100% and 97.58% respectively. Through the parallel 
computing of a dual GPU card, the detection time of each 
image is 14 ms, which indicates that the developed system 
can achieve intelligent and fast inspection in the subject of 
composite defect detection. In the future, the defect 
classification catalogue may be integrated with the optical 
inspection results to propose the influencing factors in the 
manufacturing process. 
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摘 要 

    近年來，蓬勃發展的人工智慧技術逐漸被引入到
各種工業生產線的光學影像瑕疵檢測系統中，提高了
產品的精度和良率，但對於同時含多種瑕疵的測試影
像而言，其檢測錯誤率仍然很高；此外，通過瑕疵分
類來了解與處理加工缺失的需求也在增加。為了提高
以光學影像執行印刷電路板元件組裝複合瑕疵檢測和
分類的準確性和智慧性，本研究比較了多種深度學習
模型處理複合瑕疵圖像的性能，透過對各種模型檢測
效能的測試比對，建議使用 YOLOv3 模型來克服
PCBA 元件的多樣性和複雜性的挑戰。本研究採用了
包含 10 類 PCBA 瑕疵的 800 幅影像進行訓練，其合
計有 1354 個瑕疵，在 YOLOv3 的基礎上，基於 K-
means 聚類方法進行多尺度訓練，並以 288~448 像素
隨機縮放輸入影像之尺寸，以匹配不同尺度之瑕疵的
檢測；並採用學習率衰減策略，可同時縮短訓練時間
與提高訓練精度，最終訓練結果顯示此 10 類瑕疵分類
的平均精度均值高達 97.47%。實際測試時係以另外 10
幅無瑕疵影像與 50 幅含 124 個瑕疵的影像執行瑕疵
的檢測與分類，並與人工檢測結果進行了對比，顯示
PCBA 複合瑕疵檢測和分類的錯誤率分別為 0%和
2.42%，驗證了參數優化後的 YOLOv3 模型確實可以
應用於業界產線上，達到複合瑕疵高精度檢測和分類
目標。 
 


