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ABSTRACT 
 

The application of friction mechanisms is found 

in many areas such as automobile disc brakes. The 

study of these systems presents some complexity due to 

the large number of components and parameters 

included. In this paper a mathematical mechanical 

modeling of disc brake squeal with multi friction 

contacts points is developed. Besides, an analysis of 

squeal is presented through the study of stability of the 

equilibrium by calculating the complex Eigen modes. 

Then, the influence of angular velocity of the disc, 

phase shift angle between two contacts points in the 

same side of disc, coefficient of friction and the linear 

stiffness and damping is investigated. In the second part 

of this paper, the disc brake model will be coupled with 

a helical geared system. This mechanical model has 

eight degrees of freedom. The dynamic response of the 

non-linear system is computed using Runge Kutta 

method. Dynamic responses come to confirm a 

significant influence of disc brake on the dynamic 

behavior of gear.   

 

INTRODUCTION 
 

Whatever the scope, the friction mechanisms 

coupled with gearbox have an important dynamic 

wealth, due to the number of components that constitute 

them, and a proven mechanical complexity. Reducing 

vibrations of a coupled system requires a better 

understanding of the behavior of any subsystem. 

 

 

 

 

 

 

 

 

 

 

 

The disc brake system has a certain mechanical 

complexity including many parts resulting in point or 

surface contact and friction. This can be a good reason 

for generating noise. An experimental test shows that 

the brake noise is most often the result of self-excited 

vibrations arising from friction contact between the pad 

and the disc. The squeal is the best known example. 

However, many researchers and design engineers 

worldwide have studied squeal generation mechanisms 

but so far there is not a full explanation by the 

complexity of the problem. Wagner et al. (2007), 

Oberst and Lai (2011), Kinkaid et al. (2002) and Shin 

et al. (2002) give a great insight into the modeling of 

disc brake squeal phenomenon. An analytical model of 

the wobbling dynamics of friction disks and an 

investigation about the limit cycle of the wobbling disc 

is studied by Alexendar et al. (2011). The observations 

Fosberry and Holubecki (1961) showed that the 

vibrations of the disc are much larger than those of the 

caliper of about 20 µm. It has a dominant role in the 

modeling of squeal, hence the importance of studying 

the vibration effect disk especially when it is coupled 

by another system as a gearbox. To reduce brake squeal, 

it is possible to increase the rigidity of the disc, use a 

viscoelastic material for trim or change the form of 

brake pads (Liu et al., 2007). Generally, the rotor of a 

disc brake is driven in rotation by a gear mechanism. In 

this context, M.T. Khabou et al. (2014) studied the 

influence of the friction phenomenon generated by a 

disc brake on the dynamic behavior of a single gear 

stage. This investigation is not sufficient to determine 

the influence of brake parameters on the dynamic 

behavior of the system since it uses a simple brake 

model. 

To determine the vibration in helical gears, a 

dynamic model was developed by Andersson and 

Vedmar (2003). Furthermore, Walha et al. (2009) 

treated a model of helical gear system with two floors. 

Therefore, it is necessary to develop a model with 

which the effect of helical geared system in dynamic 

behavior of the disc brake can be analyses. 

The main goal of this paper is to develop an 

analytical mathematical modeling of brake squeal with 

four contact points. The influence of kinematic and 

physical parameters on the analyses of Lyapunov 

stability of the braking system will be investigated. 
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After that, the model of disc brake is coupled with 

helical gear reducer is presented and the objective of 

this study is to determine the influence of disk brake on 

the dynamic behavior of the coupled system. 

 

DYNAMIC MODEL OF A DISC BRAKE 

COUPLED WITH HELICAL GEARED 

SYSTEM 
 

Fig. 1 shows the model of the studied system, it 

consists of two main blocks: The first presents the 

gearbox with helical gear and the second characterize 

the model of disc brake with multi friction contacts. 

This system has eight degrees of freedom of rotation. 

The gear is composed of a motor whose moment of 

inertia is IM, a flexible bearing , a gear base radius Rp 

whose moment of inertia IP, and a wheel whose base 

radius is Rr with a moment of inertia  IR. The second 

block is the disc brake model that will be detailed in the 

section 3.1. The two shafts are modeled by torsional 

stiffness Ksi and dampers Csi and the two blocks are 

supported by flexible bearing with Kyi and Cyi which 

present respectively the traction-compression stiffness 

and damping. 

𝜃𝑀,  𝜃𝑝 and 𝜃𝑅  are respectively the angular 

displacement of the motor, the pinion and the toothed 

wheel. are the angular rotation of brake 

disc. The vertical displacements of the two shafts of 

transmission are defined by . 

Dynamic model of a disc brake coupled with a 

single-stage gearbox is described in this section. The 

motion transmission mechanism is made by helical 

geared system. The gears are treated as rigid cylinders 

linked by a meshing stiffness that is, relatively accurate, 

the contributions of all the deformable parts (deformed 

contact, teeth bending ...). The torsional models rely on 

traditional springs and concentrated masses approaches 

types. The gears have only one degree of freedom of 

twist and are linked together by gear mesh stiffness.

 

             

Fig. 1. Model of a disc brake with gearbox 

 

 

MATHEMATICAL DEVELOPMENT 

OF DISC BRAKE MODEL 
 

General description of the disc brake model 

Despite the large number of studies concerned 

with modeling automotive disc brakes in the literature, 

there is a lacks an analytical model which takes into 

account the geometry of the brake pad and the location 

of the contact forces. A literature review of analytical 

models for disc brake modeling proves that researchers 

are working with a single point of frictional contact for 

every face of the disc. 

Therefore, a new minimal model with two 

degrees of freedom is introduced to analyze the 

influence of positional variation between two contact 

points in the same face of the disc, taking into account 

the vibration of the disc as it plays an important role in 

the squeal. 
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Fig. 2. Disc brake model 

 

In order to study the phenomenon of disc brakes 

squeal, a model with two degrees of freedom has been 

published in (Wagner et al., 2007) that represents a 

rigid oscillating disc in frictional contact with two 

plates. Spelsberg-Korspeter et al. (2009), takes disc of 

the brake as a Kirchhoff plates. Based on the 

publications (Wagner et al., 2007; Hochlenert et al., 

2007; Spelsberg-Korspeter et al., 2009), the author in 

(Hochlenert et al., 2010) modeled the disc as a rigid 

disc of thickness h. The assumption of a constant speed 

of the disk is presented in all these investigations. 

In order to improve disc brakes models, a new 

minimum model with two degrees of freedom is shown 

in Fig 2. This model has a rigid wobbling disc 

(thickness h, rotational stiffness kr, rotational damping 

coefficient dr and the inertia tensor ID ) and brake pads 

which are modeled by the four mass into frictional 

contact with the disc (friction coefficient μ). A 

coordinate system d1, d2 and d3 is fixed to the disc 

which oscillates relative to another coordinate system 

n1, n2 and n3, and the orientation of the disk is described 

by three cardan angles qi (i = 1, 2, 3) and two 

intermediate coordinate systems ai and bi (i = 1, 2, 3) . 

See Fig. 3 and Fig. 4. 

 

 

 

Fig. 3. New disk brake model 

 
Fig. 4. Coordinate systems 

The resulting angular velocity of the disc is given by 

the following equation: 

 

1 2 3N D q q q    1 2 3n a d  (1) 

In the first part, we take a constant angular velocity 

along n3  

 
3

. ( )q  3 3n n  (2) 

Kinematic analysis
 

Determination of the contact points 
 

Since platelets are fixed with respect to the base (n1, n2, 

n3), the vectors of contact points coordinates presented 

in Fig. 3 can be written in the next form: 

1. ( )
2

h
r h   1 2 3P n n                  (3) 

2. ( )
2

h
r h   2 2 3P n n                  (4) 

1 3( cos( ) sin( ) ) ( )
2

h
r h     3 2 3P n n n     (5) 

1 4( cos( ) sin( ) ) ( )
2

h
r h     4 2 3P n n n     (6) 

Every disk brake pad is modeled by two masses 

in a same face dephased an angle α relative to each 

other with the same radius r relative to the disc center, 

and each mass is supported by a spring k and damper d 

which are preloaded with preload N0. 

On the other side, to have contact between the 

disc and the pads, it is necessary that the vectors of the 

positions of contact points for the pads and the rotor are 

equal. After linearization for small angles, the 

displacement vectors in the base (b1, b2, b3) can be 

expressed 

 

(7) 

 

(8) 

 

(9) 

 

(10) 

where h1, h2, h3 and h4 represents the corresponding 
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equilibrium, and therefore the displacement of the 

springs. 

1 2 1

3 4 1 2

.

.cos( ). .sin( ).

h h r q

h h r q r q 

  

   
 

(11) 
 

 (12) 

The direction of the frictional force is given by the 

vector of relative speed between the two bodies in 

contact. 

𝒓𝑖 =
𝑣𝑖−𝑣𝑖

′

|𝑣𝑖−𝑣𝑖
′ |

 with  𝑖 = 1,2,3 𝑎𝑛𝑑 4          (13) 

where and  are respectively the velocity of the 

material points on the surface of the disc in contact with 

the pad and the velocity of the contact points of the 

pads. 

 

Determination of the contacts forces 
 

In this section, the contacts forces acting between the 

disc and the pads are studied. 

 
Fig. 5. Schematic representation for the contact forces 

The tangential frictional forces are proportional 

with the normal forces by the friction coefficient μ 

depending on the nature of the materials and surface 

condition of the two bodies in contact (Fig. 5). 

Concerning the contact law in the literature (Ouyang et 

al., 2000; Tuchinda et al., 2001; Tuchinda et al., 2002; 

Denou et al., 2001), many authors use a constant 

friction coefficient and the assumption of no stick-slip 

behavior. The effect of stick-slip between the disc and 

the brake pads can be neglected because the relative 

speed at the macroscopic level may disappear during 

squeal, this estimate is verified experimentally by 

Hochlenert et al. (2014), So, Coulomb friction model is 

chosen as a model of which is largely sufficient to 

model the disc brake squeal. 

𝑇1 = 𝜇. 𝑁1 
𝑇2 = 𝜇. 𝑁2 
𝑇3 = 𝜇. 𝑁3 
𝑇4 = 𝜇. 𝑁4 

 

(14) 

The resulting contact forces on the disc is written in 

the following form 

 

𝑭𝟏 = −𝑇1. 𝒓𝟏 + 𝑁1. 𝒅𝟑 
𝑭𝟐 = −𝑇2. 𝒓𝟐 − 𝑁2. 𝒅𝟑 
𝑭𝟑 = −𝑇3. 𝒓𝟑 + 𝑁3. 𝒅𝟑 
𝑭𝟒 = −𝑇4. 𝒓𝟒 − 𝑁4. 𝒅𝟑 

 

 

   (15) 

 

Break disc is presented as a rotating Kirchhoff 

plate with constant speed of rotation Ω. In this 

mathematical modeling, the fluctuation of angular 

velocity in the input of the disc brake is neglected. 

Therefore, it can be written as follows: 

              
(16) 

In the formalism of analytical mechanics, the theorem 

of kinetic moment for a material point is used. Hence 

the angular momentum 

 

 

(17) 

 
where  
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(20) 

 

Governing equations of motion 

The motion equations resulting balance of 

angular momentum of the disk and the moments of the 

external forces acting can be expressed in equation (21). 
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The resisting torque on the disc M (see equation 

22) is given by the sum of the torque of the contact 

forces from the center of the disc, the torque due to the 

viscoelastic suspension and MA torque constraint. 

𝑀 = −(𝑘𝑡 . 𝑞1 + 𝑑𝑡 . 𝑞1

•
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(22) 
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                                      (24) 

 

 

 

(25) 

 

(26) 

 

The forces applied by each contact point of the disc 

surface are equal because it undergoes the same 

pressure as the piston and have the same rigidity (same 

pad). The dynamic forces of friction obtained are 

complex in nature. This complexity is due to the large 

number of influencing factors. 

        (27) 

Using equations from (1) to (27), the governing 

motion equation in matrix form for a model of the disk 

brake is obtained in following form (Eq. 28): 
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STABILITY ANALYSIS OF DISC 

BRAKE MODEL 
 

The purpose is to find a contribution between the 

system's speed and brake settings is presented in Fig. 3, 

to work in the stable area to study the dynamic behavior 

of the global system in Fig. 1. 

The numerical study of the stability leads to solve 

a problem for generalized eigenvalues, and among the 

aims of this work is to assess the sensitivity of the 

eigenvalues relative to the geometry of the brake pad. 

Another aim is to avoid the destabilization of a chosen 

way by finding an approach between the rotation speed 

of the disk and the orientation angle of contact points. 

Good dynamic and stability study requires 

careful selection of the disc brake parameters. The 

parameters chosen in this work corresponds to the 

result of detailed experimental studies on a test bench 

at the TU Darmstadt, and these results have been 

presented in several models for modeling of the disc 

brake. U von Wagner et al. (2007), identified these 

parameters to investigate the stability of a disc brake 

squeal model. Also, the authors in Ref (Wagner et al., 

2004) used a model with four degrees of freedom to 

eliminate the squeal with the parameters in Table 1. On 

the other work (Jearsiripongkul, 2005), author has 

taken for their model with two degrees of freedom. 

Some parameters are varied to mount their effect on 

system stability. 

The stability of solution is studied on the basis of 

the linearized equation of motion, i.e. the indirect 

method of Lyapunov. Replacing 𝑞(𝑡) = �̃�𝑒𝜆𝑡  in the 

equation of motion, where an unstable solution 

corresponds to a positive real part of λ. The two 

essential parameters to be investigated are the angular 

velocity Ω and the phase shift angle α. 

For the new disc brake model developed in this 

paper, the Fig. 6-a represents the location of the 

eigenvalues to a variable rotation speed and a phase 

shift between two contact points. This figure shows the 

eigenvalues of positive real part, so the solution 

becomes unstable and self-excited vibrations are 

interpreted, hence squeal is the cause of the low brake 

pressure and high disk rotation speed. The number of 

unstable poles increases to increasing the phase shift α. 

We can verify these results by comparing them with the 

model proposed by von Wagner et al. (2007). Fig. 6-b 

shows root locus of the eigenvalues for a simple model 

with only two contact points. 

The critical speed is the speed at the limit of 
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stability, for values to real part near zero. 

Manufacturers of disc brakes will cause some changes 

to solve the instability problems. Therefore, others 

parameters can be investigated in this section, such as 

stiffness k, damping of the pad d, rotational damping of 

the disc dt and friction coefficient µ. 

Fig. 7 indicates the variation of the critical speed 

Ωcrit to vary the stiffness k to four phase shift values α. 

The dependence of the critical speed of the stiffness 

value is drawing a line. In that which follows, this line 

characterizes linear stability boundary of the system 

and it can be considered as the speed of rotation limit 

of the brake shaft above which 

Eigenvalues positive real part occurs and below which 

all the eigenvalues of the linearized system. It may be 

noted that the critical speed increases for low rigidity 

plate and the zone of stability increases to a low phase 

shift between the points of contact. 

 

 

 

 

 

Table 1. Nominal values of disc brake parameters 

 
 

 

 

Fig.6-a. Root locus of the eigenvalues for varying Ω 
for each α(Upper half-plane shown only) 

 

 

 

 

 

 

 

 

 

 

Fig.6-b. Root locus of the eigenvalues for varying Ω 
(Upper half-plane shown only) (Wagner et al., 2007) 

 

 

 

Parameter Symbol Value 

Distance of the pads from the center of the disk r 0.13 m 

Thickness of disk  h 0.02 m 

Moment of inertia, with respect to d1 and d2 ID1, ID2 0.16 kg/m2 

Moment of inertia, with respect to d3 ID3 0.32 kg/m2 

Rotational stiffness kt 1.88 e7  Nm 

Rotational dampers dt 0.1 N m s 

Nominal contact stiffness k 6 e6  N m 

Nominal contact dampers d 5  Ns /m 

Preload N0 3000 N 

friction coefficient µ 0.3 

Angle between two contact points α [π/6  π/2] 
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      Fig. 7.  Critical speed for varying k (a) α=π/6,  

            (b) α=π/4, (c) α=π/3 and (d) α=π/2. 

Other significant parameters can affect system 

stability zone are the damping of brake pads. Fig. 8 

presents the critical speed for the variable damping pad 

d for four angles α and it may be concluded that 

increasing damping and low offset angle seems to 

stabilize friction-induced vibrations. The dependence 

of the critical speed on the damping coefficient dt is 

presented in Fig. 9 and that indicates an increase of 

rotation damping and phase shift α always has a 

stabilizing characteristic. These results are confirmed 

by the research work in reference (Hagedom et al., 

2014). In these two parametric studies, it has been 

concluded that increasing damping of the system, and 

phase shift angle have a worse effect and cannot be 

considered as an effective solution to avoid instability 

for the brake system. 

Choosing a static friction model is the Coulomb 

model is largely sufficient to model the instability of 

self-existed of a disc brake vibrations but the value of 

this coefficient can affect system stability Fig.10 

shows the critical speed variation as a function of 

friction coefficient, and it demonstrates the sensibility 

of a brake system friction coefficient and the position 

of the contact points. 

 
Fig.8. Critical speed for varying d 

 
Fig.9. Critical speed for varying dt 
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Fig.10. Critical speed for varying µ 
Fig. 11 confirms that to increase the zone of stability, 

it is necessary that the phase shift angle α should be as 

low as possible but when the value α is lower, braking 

performance declines taking the example of the disc 

brake of a train or TGV. The squeal phenomenon can 

be more important, although this type of brake with a 

large number of contact points performs well. Hence 

manufacturers of automobile disc brakes must find a 

contribution between the acoustic phenomenon due to 

the self-vibration existed, and braking performance. 

 
Fig.11. Critical speed for varying α 

All the results demonstrate that the zone of 

stability depends on the selected physical and 

geometrical parameters and the correct choice of these 

parameters allows us to reduce the appearance of self-

vibrations existed.  

 

GLOBAL DYNAMIC BEHAVIOR OF A 

DISC BRAKE COUPLED WITH 

HELICAL GEARED SYSTEM 
 

As a next step, the disc brake is coupled with a 

single helical gear stage. The powertrain system makes 

vibrations along y due to the flexible bearing. This 

oscillation is transmitted to the brake disc (Fig. 12). A 

guiding system used to constrain the oscillations of the 

disc in the horizontal plane and in the perpendicular 

direction to the axis of the stifness k and damping d. 

The mathematical modeling of this relation is 

expressed as follows: 

The pads have the same spring constant k, the 

same initial length l0 and the guide system causes the 

same elongation l . Hooke's law gives: 

1 2. . . .sin( ).F y F y k l y     
 

(29) 

0l l l    with  

2 2

2l z y   and 2sin( )
y

l
   

 

        

(30) 

 

 

Fig.12. Diagram of the device in the plane (y, z): 

        (a) t=0, (b) t > 0 

A small oscillation 2y z , we can write 
2 1

y

z
. 

Applying development limited to the first order 

to simplify the equation of the forces due to the linear 

stiffness k. 

 𝐹𝑖 = −𝑘. 𝛥𝑙. 𝑠𝑖𝑛( 𝛼) 

     = − 𝑘. 𝑦2. (1 −
𝑙0

𝑧
) 

𝐹𝑖 = −𝑐𝑠𝑡. 𝑘. 𝑦2  with i=1,2,3 and 4. 

 

 

(31) 

The Kinetic moment theorem is used to develop 

the mathematical model of the brake and Lagrange's 

method is used to formulate the differential equation 

governing of the gearbox system. The fluctuation of 

rotation speed of the disc brake should be taken into 

account in this section. It has to note the linearized 

system of disc brake and the helical gear transmission 

is coupled in angular velocity𝑞3̇. The global nonlinear 

motion equations of the two blocks assembly (brake 

system block and the gearbox block) give the 

following array writing: 
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Table 2. The coefficients of K(t) 

Notation Analytic expression 
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        (32) 

 

where the terms si are the coefficients of K(t) given in 

table 2 

The general differential motion equation of the 

system in matrix form can be expressed by: 

        ( ) 0M q C q K t q    
 

(33) 

where {q} is the vector of degrees of freedom: 

{𝑞} = {𝑦1 𝑦2   𝜃𝑀 𝜃𝑃 𝜃𝑅 𝑞1 𝑞2 𝑞3} 

[M] is a matrix composed of the terms of masses and 

inertias and is expressed by: 

[𝑴] = 𝒅𝒊𝒂𝒈(𝒎𝒃𝟏, 𝒎𝒃𝟐, 𝑰𝑴, 𝑰𝑷, 𝑰𝑹, 𝑰𝑫𝟏, 𝑰𝑫𝟐, 𝑰𝑫𝟑)
 with mb1 and mb2 is the mass of blocks 1 and 2

 

[C] is the damping matrix and is defined by: 
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(34) 

[K(t)] is the stiffness matrix and written as: 

     ( ) ( )e SK t K t K                 (35)
 

where [Ke(t)] is the linear time varying mesh stiffness 

matrix: 

 ( ) ( ) . . ( )T

eK t L L k t                 (36)
 

where Lδ  is defined by: 

 1 1 2 3  -  0  s     0  0  0L s s s          (37)
 

and Rr, Rr and ß  are defined in table 3.  

[K] is the stiffness matrix of the bearing and shafts and 

can be written by: 
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The gear mesh stiffness remains constant in the 

case of a deformable tooth, or the assumption cannot 

be maintained and the introduction of the tooth 

deflection under load leads to having a variable 

stiffness engagement. The gear mechanism generates 

a torsional stiffness that changes with the angle of 

rotation which over time to introduce a more realistic 

engagement functions. 

Indeed, as the number of pairs of teeth in contact 

is generally not constant during the engagement, the 

transmitted load is spread over these pairs of teeth. The 

variation of the stiffness of meshing can be 

approximated by a niche representation. 

Fig. 13 shows this approximation plotted against 

time for helical gear mesh stiffness. 

It is modeled by real profile (Walha et al., 2009), 

the maximum values of stiffness correspond to two 

pairs in contact and the minimum values correspond to 

one pair in contact. 

The characteristics of the gear and pinion used in the 

numerical calculate were listed in Table 2. Using the 

means values presented in Tables 1 and 3, the Eigen 

frequencies of the system are presented and computed 

in Table 4. 

 

 

Table3. The toothed wheels characteristics. 
 Pinion Toothed wheel 

Number of teeth 20 40 

Mass (kg) 0.6 2.5 

Moment of inertia (kg/m2) 2.6 10-4 4.510-4 

Radius of the base circle (m) 0.025 0.055 

Module (mm) 3 

Torsional damping bearings (N.m.s/rad) Cp1=0.005 Cp2 =0.005 

The average meshing damping (N.m.s/rad) cm=0.01 

Torsional stiffness of the shaft (N.m/rad) ks1= ks2 =105 

Torsional damping of the shaft (N.m.s/rad) Cs1= Cs2 =0.005 

Helix angle (degré) 

Pressure angle (degré) 

ß=20° 

αg=20 

Tooth width (mm) 23 

Contact ratio c=1.6 

 

Table 4. Eigen frequencies of the system. 

Eigen frequencies (Hz) f1 f2 f3 f4 f5 f6 f7 f8 

 0 94 545 580 598 729 846 2078 

 

Simulated angular velocity on motor in the input 

and disc brake in the output are represented by Fig.14. 

Fig. 15 exhibits the time signal to the pinion angular 

velocity and Fig. 16 shows the time signal and the 

frequency spectrum corresponding to the pinion.   

 
Fig.13. Helical Gear mesh stiffness modeling 

The nonlinear motion equations are solved 

using an appropriate Runge Kutta algorithm in order 

to determine their dynamic behavior. 

Simulated angular velocity on motor in the 

input and disc brake in the output are represented by 

Fig.14. Fig. 15 exhibits the time signal to the pinion 

angular velocity and Fig. 16 shows the time signal 

and the frequency spectrum corresponding to the 

pinion angular velocity. 

The complexity of the dynamic study thanks to 

the large number of influencing parameters makes the 

analysis of a coupled system difficult. The gear mesh 

stiffness and the self-exited vibrations of the disc 
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6

8

10

12
x 10

8 Raideur d"engrennement en fct de temps

t(s)

K
e



 

Ahmed et al.: Dynamic Behavior and Stability of a disk brake coupled with a helical geared system. 

 -249- 

brake model are two excitation sources. The main 

result is the increase of vibrations and this increase 

can be damage the transmission and in particular at 

the level of teeth. 

 

 

 
Fig.14. Time signal corresponding to the motor and brake disc angular velocity 

 

 
Fig. 15. Time signal corresponding to the two gear angular velocity 

 

 
Fig. 16. Time signal corresponding to the two bearing angular velocity 
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CONCLUSIONS 
 

In this present study, we have developed a new 

mathematical model with multi friction contacts, and 

to give a contribution on identifying the physical and 

geometrical parameters that can affect the Lyapunov 

stability of a disc brake system. This model takes 

account the self-excited vibrations; the main causes of 

squeal. The variations of input rotational speed, phase 

shift angle, coefficient of friction and the linear 

stiffness and damping is studied as well. Simulation 

results show the importance of playing on the 

characteristics of the components and form of brake 

pads. 

In the second part, a nonlinear mechanical 

model with eight degrees of freedom is detailed in this 

paper to study the dynamic behavior of the disc brake 

coupled with helical gear. Amplification of the 

vibration is the most interesting results where we can 

see the influence of a braking system in the dynamic 

behavior of a single stage gear. The governing 

nonlinear time varying motion equation formulated is 

resolved by the analytic fifth-order Runge-Kutta 

method. 
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NOMENCLATURE 
 

,   M p Rand   : The angular displacement of the 

motor, the pinion and the toothed wheel respectively; 
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1 2 3,   q q and q : Three cardan angles; 

y1 and y2: The vertical displacement of the two shafts 

of transmission 

h : Thickness;  

kr : Rotational stiffness;  

dr : Rotational damping coefficient; 

ID : The inertia tensor; 

ID1, ID2 : Moment of inertia, with respect to d1 and d2; 

ID3: Moment of inertia, with respect to d3; 

μ: friction coefficient  

di, ni, ai and bi (i = 1, 2, 3): Coordinate systems; 

α : Angle of phase shift; 

r: Radius of the disc; 

k: Nominal contact stiffness; 

d: Nominal contact damper; 

N0 : Preload; 

N D 
: The resulting angular velocity; 

Ω: Constant speed of rotation;  

P1, P2, P3 and P4: The vectors of contact points; 

h1, h2, h3 and h4: The corresponding movements of the 

pads; 

F1, F2, F3 and F4: The resulting contact forces on the 

disc; 

M : The resisting torque on the disc; 

MA: The constraint torque; 

Ωcrit : Critical speed; 

[M]: Mass matrix; 

[C]: Damping matrix; 

[K(t)]: Stiffness matrix; 

1 2 3,   s s and s : The coefficients of K(t); 

[Ke(t)] : The linear time varying mesh stiffness matrix; 

Cp1, Cp2: Torsional damping bearings;  

cm: the average meshing damping;  

ks1, ks2 : Torsional stiffness of the shaft; 

ky1, ky2: Stiffness of the bearing; 

Cs1, Cs2: Torsional damping of the shaft; 

ß: Helix angle;  

αg: Pressure angle ; 

f(i=1..8): Eigen frequencies. 

 


