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ABSTRACT 
 

Pocket-orifice compensated air bearing (PCAB) 
systems have been potential for use in high-rotational 
speed, and high-precision machine tool extensively 
and applied for a variety of mechanical engineering 
application. However, under certain operating 
conditions, PCAB systems exhibit non-periodic or 
chaotic motion as the result of a nonlinear pressure 
distribution within the gas film, gas supplied 
imbalances, an inappropriate design, and so forth. So, 
in order to understand and suppress as the bearing 
system occurs non-periodic motions and under what 
kind of operating conditions, the dynamic response of 
the PCAB system has been analyzed by using two 
different methods, namely a perturbation method and 
a hybrid numerical scheme combining the finite 
difference method and the differential transformation 
method. The key performances and solutions under 
different physical models obtained by these two 
methods are compared and verified. The dynamic 
behavior of rotor center has been examined under 
different operating conditions by bifurcation diagram, 
Poincaré maps, power spectra and Lyapunov 
exponents etc. The results reveals that the bearing 
number affects the orbits of the rotor which show 
chaotic behaviour in the interval of 16.41≦Λ<18.2. 
The results obtained in this study can be used as a 
basis for future PCAB system design and the 
prevention of instability. 
 

INTRODUCTION 
 

PCABs have two major advantages including 
the air supply externally and pocket-orifice 

compensated design It also provides higher stiffness 
to increase the greater rotational stability. However, 
under specific operating conditions, PCAB systems 
exhibit non-periodic or chaotic motion as the result of 
a nonlinear pressure distribution within the gas film, 
gas supplied imbalances, an inappropriate design, and 
so forth. The mathematical theory of gas lubrication 
was first derived by Reynolds (1886) with partial 
differential equations related to pressure, density, 
relative motion and velocity. This equation is the 
famous Reynolds equation, and since then established 
the basis of fluid lubrication theory. In 1961, 
Malanoski et al. (1961) used capillary and orifice 
throttling to control the pressure distribution of 
hydrostatic bearings and improve the problem of 
insufficient oil film stiffness. This was the pioneer of 
passive throttles. However, Mayer et al. (1963) used a 
variable throttling device to bring better rigidity to the 
bearing system and achieved the same or even better 
results than other throttling methods such as 
membrane (1966). In 1970, Rowe et al. (1969) mainly 
invested considerable effort in the development of 
feedback throttles and also played a pivotal role. They 
were applied to thrust bearing systems in the form of 
thin film throttles and obtained relevant patent rights. 
Later, related scholars (1973) discussed the 
advantages and applications of this type of throttling 
method. Until 2000, Robert (2002) published an 
innovative active throttling device to improve the lack 
of thin film throttling in structure and overcome the 
shortcomings in manufacturing. And it can greatly 
improve the rigidity and bearing capacity of the 
system. It can be seen from the above-mentioned 
literature that the use of appropriate throttles in 
precision mechanical applications can indeed improve 
the performance of the bearing system, and active 
throttles had a better effect than passive ones.  

Charki et al. (2013) provided a numerical 
simulation and an experimental study to assess 
stiffness and damping characteristics of thrust air 
bearings with multiple orifices. They applied finite 
element modeling to solve the non-linear Reynolds 
equation while taking into account the movement 
equation for the bearing. However, the 
above-mentioned documents still focus on oil film 
bearing systems instead of air film bearings, and they 
have not analyzed the vibration and dynamic 
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performance of the bearing rotors. 
In the literature of rotor dynamic behavior, 

Bently (1974) found through experiments that the 
rotor oil film bearing system has 2nd and 3rd 
subharmonic vibrations. Child et al. (1982) used 
analytical methods to prove the existence of 
sub-harmonic vibration in the rotor bearing system. 
While the above documents are all aimed at oil film 
bearings, the rotor behavior of air film bearing 
systems is quite rare. Wang et al. (2017, 2018) solved 
the air film pressure and dynamic performance of a 
variety of air pressure bearing systems, and analyzed 
the rotor with trajectory diagrams, spectral analysis 
and bifurcation diagrams. The dynamic behavior of 
the shaft and journal centers and the flexibility effect 
of rotor were discussed. Their results found that the 
rotor and journal center have periodic, quasi-periodic 
or sub-harmonic motion under different operating 
conditions. It is also found that the system also 
caused chaotic motion (2019). 

This paper focuses mainly on the analysis of 
the properties of PCAB systems and the range of 
dynamic behavior such a system exhibits under 
different operating conditions was also studied. In 
addition, the bifurcation properties of non-linear 
behavior produced by the system rotor are discussed, 
and are actually the means used to judge if the system 
displays chaos and to predict dynamic system 
trajectories accurately. 
 

Design and Analysis of Pocket-Orifice 
Compensated Air Bearing System 

 
The pocket-orifice compensated air bearing 

(PCAB) system is the integration of the hole-type air 
supply and the chamber (gas pocket) for secondary 
throttling. The special throttling method formed by 
the small hole throat (or ring) combined with the 
surface of the chamber is dynamic and static. The 
design of PCAB system is shown in Fig. 1. The main 
feature is that there are several (usually 4~8) shallow 
chambers evenly distributed along the circumferential 
direction on the bearing surface, and 1~2 air supply 
holes are set at a specific position in each chamber, 
and then small by external pressurized air orifice 
supply, through the small hole throat (or annulus) and 
the stepped surface of the shallow chamber, the 
hydrostatic effect of two throttling is produced. Due 
to the rotation of the rotor, the stepped surface of the 
chamber will produce a stepped dynamic pressure 
effect, which further strengthens the wedge dynamic 
pressure effect caused by the bearing eccentricity. 
Therefore, the cavity throttle air pressure bearing 
system is an ideal dynamic and static pressure mixed 
gas bearing system. 
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Fig. 1. Diagram of pocket-orifice compensated air 

bearing system. 
 
At present, the difficulty faced by the industry 

is the problem of reduced life due to instantaneous 
contact friction, because the rotor is prone to collision 
during the start, stop or operation of the rotor, and if 
the bearing surface collides, the surface will be 
damaged and cause cyclones. The blockage prevents 
the gas from effectively exerting its supporting force, 
so unstable situations are more likely to occur, and 
the bearing and the rotor collide more frequently. The 
bearing system studied in this paper can overcome the 
above-mentioned problems, and has better stability 
and greater air film support. 

The design of the orifice can be further divided 
into two types: small hole-shallow chamber throttle 
type and annular throttle type. These two bearings 
perform that the external pressure gas enters the 
bearing through the air supply holes distributed on the 
working surface of the bearing, and the throttling 
effect existed. It is related to the air supply hole and 
the difference is that the throttling properties of the 
two are different. The orifice throttling occurs at the 
smallest section of the orifice throat, and the 
throttling area is πdo

2/4, which is a fixed throttling 
type. Annular throttling is produced on the cylindrical 
surface formed by the height of the clearance between 
the periphery of the small hole and the bearing. The 
throttling area is πdoho, which is a variable throttling 
type. The detail of these two types are introduced as 
follows: 
 
Small Hole-Shallow Chamber Throttle Air 
Bearing 

The first type of PCAB is small hole-shallow 
chamber throttle air bearing and shown in Fig. 1. For 
the dynamic and static pressure of this bearing with 
shallow chambers, the pressure function must satisfy 
the dimensionless Reynolds Equation shown in Eq. 
(1), and the clearance function is calculated by Eqs. 
(2) and (3): 

        (1) 
δθε jcos1h~ +−=      (2) 
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  (3) 

where ε is the eccentricity,  is the gas film 
thickness,  is the gas film pressure, μ is the 
viscosity coefficient, and  is the coordinate 
system. If the bearing working area is D, its boundary 
is S 
S= S1+ S2                               (4) 
where S1 is the outer boundary (atmospheric 
boundary), and S2 is the inner boundary (intake 
boundary). 
The boundary conditions are as follows: 
S1(z = L/D): =1                         (5) 

S2(z = 0):            (6) 

Where 

 
                                        
 
Annular Throttle Air Bearing 

The second type mainly focuses on the analysis 
of double annular ring throttling air bearings. The 
double-ring air supply gap divides the bearing surface 
into three zones, A, B, and C, as shown in Fig. 2, 
namely zone A: ϕ1~ϕs1, zone B: ϕs1~ϕs2, C Area: 
ϕs2~ϕ2. Because the radius of the bowl is slightly 
larger than the radius of the sphere, the difference 
between them is the initial design clearance ho of the 
bearing; the displacement of the ball in the axial 
direction (z) is ez, if the upward displacement is 
positive, the gap gas film is convergent; if the 
downward formation is negative displacement, the 
interstitial air film is divergent. 
 

 
Fig. 2. Diagram of annular throttle air bearing. 
 

The boundary condition of annular ring 
throttling air bearing is shown as Eq. (7) 

 

 

                                         
(7) 

 
Where  dimensionless bearing number;  

is dimensionless squeeze number; ϕ are the 
coordinates in the circumferential and axial directions; 
μ is the gas viscosity coefficient; ez is the axial 
eccentricity; eR is the radial eccentricity; α is the 
meridian position angle of maximum air film 
thickness; Cr is the axial clearance; Rb is the radius of 
bearing (ball radius); ωi is the angular velocity. 

Through the steady-state numerical solution, 
the pressure distribution of the bearing in the areas A, 
B, and C can be obtained as follows: 

For A area: 

  (8) 
For B area: 

  (9) 
For C area: 

         (10) 
 

Where ，

， ， ，

，  (i=1,2,3) ，

， ，

. 
 

The above Eq. (1) and the corresponding 
boundary conditions can be determined the relevant 
performance parameters of the small hole-shallow 
chamber bearing and annular throttling air bearing 
system during operation, including pressure 
distribution, bearing capacity, air film stiffness and 
damping coefficient. This paper also monitors and 
analyzes the dynamic behavior of the rotor, including 
dynamic trajectory, spectrum response, bifurcation 
behavior, Poincaré map, and Lyapunov exponents, 
which can further analyze under which operating 
parameters the system will cause instability for 
obtaining a stable PCAB system. 
 

Results and Discussion of Numerical 
Simulation  

 
This paper uses two different numerical 

methods to solve the PCAB system. The results show 
that the hybrid method by Wang et. al. (2017) 
combining the differential transformation method 
(DTM) and the finite difference method (FDM) has 
good agreement with the traditional perturbation 
method, and the results obtained by the perturbation 
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method caused the instability phenomenon under 
some conditions and also showed that the hybrid 
method (DTM&FDM) has better accuracy than 
perturbation method for PCAB system. The 
comparison of the trajectory of the rotor center (X2, 
Y2) is shown in Table 1. 

 
Table 1. Comparison of various numerical 

calculation results for rotor center displacement (For 
small hole-shallow chamber throttle bearing) 

Methods 
Operation 
condition 
/(X2,Y2) 

Δτ 

0.001 0.01 

Perturbation 
mr =3.2 kg 
Λ=4.5 

X2 -0.1710583521 -0.1716278329 
Y2 0.1674424205 0.1673665742 

Hybrid 
X2 -0.1710556262 -0.1710558301 
Y2 0.1674877970 0.1674876574 

Perturbation 
mr =4.85 kg 
Λ=4.5 

X2 -0.2046182573 -0.2043519594 
Y2 0.2697106185 0.2698716188 

Hybrid 
X2 -0.2048917501 -0.2048919604 
Y2 0.2691034071 0.2691039593 

Perturbation 
mr =2.61 kg 
Λ=9.38 

X2 0.1121572809 0.1139494365 
Y2 -0.1086283727 -0.1088915074 

Hybrid 
X2 0.1128407276 0.1128409513 
Y2 -0.1086521957 -0.1086526408 

 
For the stability of numerical analysis by 

hybrid method, the influence of different time 
intervals on the numerical value is completed, and the 
rotor center displacements of Poincaré cross section 
under different Δτ are compared. The numerical 
values are shown in Table 2. 
 

Table 2. Numerical comparison of the Poincaré 
section of the rotor center at different time intervals τ 
(calculated by hybrid method; mr = 3.47 kg, Λ = 3.8) 

Δτ X 2( n T ) Y 2( n T ) 

π/300 0.0401841682 0.3643430301 

π/400 0.0401867451 0.3643436712 

π/500 0.0401884132 0.3643409123 

π/600 0.0401848794 0.3643432969 

 
It can be seen from the above numerical results 

that the hybrid method studied in this paper has good 
convergence and applicability for PCAB system, and 
the change in the rotor mass or the increase of bearing 
number can effectively be calculated for the trajectory 
of the system. At the same time, in order to shorten 
the time of subsequent calculation of the bifurcation 
characteristics of the system, the selection of the time 
interval is shown by the test results in Table 2 to 
obtain sufficient precision numerical results without 
being too samll. Therefore, in the subsequent 
dynamic analysis part, π/300 is used as the time 
interval calculation. 
 

Dynamic behavior analysis - rotor mass as a 
bifurcation parameter 
 

Take the small hole-shallow chamber throttle 
air bearing as an example, because the rotor mass and 
the bearing cause air flotation effect, and the rotor 
mass influences the strength of the air flotation effect, 
and then affect the stability of the overall system. 
Therefore, this section mainly analyzes the influence 
of the rotor mass on the gas bearing system. The 
bearing number is assumed as Λ=3.8, and the rotor 
mass is used as the bifurcation parameter: 

From Fig. 3.1(a), 3.2(a),..., 3.8(a), it can be 
seen that the center of rotor (X2, Y2) behaves 
periodic situation (mr=3.2 kg), and the trajectory is in 
a regular pattern. When the mass increases to 4.54 kg, 
the non-periodic phenomenon replaces the regular 
motion, and when the mass further increases to 4.85 
kg, the periodic phenomenon is again appear. 
However, this stable phenomenon did not last long. 
When the rotor mass began to increase to 4.91 kg, the 
unstable behavior reappeared. It can be seen that the 
rotor mass is controlled below 3.2kg and the system 
can be relatively stable. As the rotor mass reaches 
5.43, 5.48, 5.85, 5.93, the system all presents a 
non-periodic phenomenon. 

Figure 3.1(b), 3.2(b),..., 3.8(b) shows the 
spectral response of the rotor center in the horizontal 
direction. Research shows that when the rotor mass is 
3.2kg, The center of rotor presents a single-period 
movement, and when mr=4.54kg, the spectrum 
response diagram (Figure 3.2(b)) shows that the rotor 
changes into a non-periodic state in the horizontal 
directions. When the rotor mass is increased to 
4.85kg, the system reveals T-periodic motion; when 
the mass is changed to 4.91 and 5.48kg, the system 
switches to aperiodic motion. In addition, when the 
rotor mass is increased to 5.43, 5.85, 5.93kg, the 
system state shows sub-harmonic motion. 

As shown in Fig. 4, the rotor mass is used as an 
analysis parameter to discuss the influence of 
different rotor masses on the system, and the mass 
range is set to be between 0.1 and 6.0 kg for actual 
operating conditions. It can be seen from Fig. 4(a) 
and (b) that when mr <4.54 kg, the rotor center of the 
system exhibits T periodic motion in both the 
horizontal and vertical directions. This phenomenon 
can be proved by the Poincaré map shown in Fig. 5(a). 
However, when the mass increases to 4.54kg, this T 
periodic motion of the rotor is replaced by chaotic 
motion, and the chaos state can be formed by multiple 
discrete points shown in Fig. 5(b). The aperiodic 
motion proved that the system state is maintained 
within the range of 4.54≦mr<4.85kg. As the mass 
continues to increase to 4.85kg, the system will 
switch back to T-periodic motion (as shown in Figure 
5(c)), and this motion is maintained within the range 
of 4.85 ≦ mr<4.91kg. As the mass continues to 
increase to 4.91kg, the T-periodic of the PCAB 
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system diverges into chaotic motion (as shown in 
Figure 5(d)). This type of motion is distributed in 
4.91≦mr<5.43kg. This behavior is again converted to 
a subharmonic motion when the mass increases to 
5.43kg, as shown in Fig. 5(e), this motion is 
distributed in 5.43 ≦ mr<5.48kg. When the rotor 
increased to 5.48kg, chaotic motion appeared again, 
as shown in Fig. 5(f), this motion was distributed in 
5.48≦mr <5.85kg. 

Then, if the rotor mass continues to increase to 
5.85kg, the non-periodic trajectory of the system 
turns into a subharmonic motion. As shown in Figs. 
5(g) and 5(h), the cross-sectional view produces 
multiple irregular discrete points. This type of 
movement is distributed at 5.85~6.0kg. 

For the chaotic behavior part, the maximum 
Lyapunov exponents are used for interpretation and 
further verification in the implementation of this 
study. From Figs. 6(a)-6(h), we can see that when mr 
= 3.2, 4.54, 4.85, 4.91 , 5.43, 5.48, 5.85, 5.93 kg, the 
maximum Lyapunov exponent tends to zero or less 
than zero, the system is non-chaotic behavior. When 
mr = 4.54, 4.91, 5.48kg, as shown in Figures 6(b), 
6(d), and 6(f), the index is greater than zero, so the 
motion state of the system is indeed chaotic, which is 
consistent with the above results . 

 

 
3.1(a)                 3.1(b)                  

 
3.2(a)                 3.2(b)                  

 
3.3(a)                 3.3(b)                  

 
3.4(a)                  3.4(b)                  

 
3.5(a)                  3.5(b)                 

 
3.6(a)                3.6(b)                 

 
3.7(a)                3.7(b)                 

 
3.8(a)                3.8(b)                 

Fig. 3. The rotor center phase diagram of the small 
hole-shallow chamber throttle air pressure bearing 

system when the rotor mass mr = 3.2, 4.54, 4.85, 4.91, 
5.43, 5.48, 5.85, 5.93 kg (Fig. 3.1a-3.8a) ), and the 
spectral response diagram of the rotor center in the 
horizontal direction (Fig. 3.1b-3.8b) with Λ=3.8. 
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4(a) 

 
4(b)  

Fig. 4. Bifurcation diagram of the rotor center of the 
small hole-shallow chamber throttle air pressure 

bearing system to different rotor masses (a) X2(nT) 
(b) Y2(nT), with Λ=3.8. 

 

 
5(a)                5(b) 

 
5(c)                5(d) 

 
5(e)                5(f) 

   
5(g)                5(h) 

Fig. 5. Poincaré maps of the rotor center of the small 
hole-shallow chamber throttle air pressure bearing 

system at different rotor masses (a) mr = 3.2,, (b)4.54, 
(c)4.85, (d)4.91, (e )5.43, (f)5.48, (g)5.85, (h)5.93 kg 
 

 
6(a)                 6(b) 

 
6(c)                 6(d) 

 
6(e)                6(f) 

 
6(g)                 6(h) 

Fig. 6. The maximum Lyapunov exponents of the 
rotor center of the small hole-shallow chamber 

throttle air pressure bearing system at different rotor 
masses (a) mr = 3.2,, (b)4.54, (c)4.85, (d)4.91, (e) 

5.43, (f) 5.48, (g) 5.85, (h) 5.93 kg. 



 
C.-C. Wang et al.: Dynamic Study of Pocket-Orifice Compensated Air Bearing System. 

 -581- 

Dynamic behavior analysis – bearing number as a 
bifurcation parameter 

Take the annular throttle air bearing system as 
an example. For this bearing system, the bearing 
number (rotation speed) directly affects the pressure 
distribution in the bearing, as well as the relative 
performance and stability of the entire system. 
Therefore, in this section, the bearing number (Λ) is 
used as the bifurcation parameter, and the rotor mass 
is set as mr=3.47 kg. The relevant dynamic behavior 
of the bearing system is analyzed and discussed: 

From Fig. 7.1(a), 7.2(a), .., 7.9(a), it can be 
seen that when the bearing number is small (Λ=1.0, 
1.2), the rotor behavior presented irregular motion, 
and when Λ increases to 1.91 and 4.5, regular 
movement appears. Meanwhile, the behavior of the 
rotor center turns into a regular and symmetrical 
phenomenon. When Λ continues to increase to 9.03, 
9.38, 14.3, the dynamic trajectory maintains a 
relatively regular periodic motion, and at Λ=16.41, 
irregular motion appears again. When Λ increases to 
18.2, the rotor center becomes regular behavior. From 
the above results, it can be ascertained that the change 
in the bearing number does have significantly effects 
on the system, and the behavior of rotor is caused by 
the slight change of bearing number and performed 
the aperiodic and periodic motions. It can be seen that 
Λ is the sensitive and important factor to the bearing 
system. 

Figure 7.1(b), 7.2(b),..., 7.9(b) shows the 
frequency spectrum response of the rotor center in the 
horizontal direction when the bearing number is 
different. As Λ=1.0 and 1.2, the rotor center exhibits 
non-periodic motion, and when Λ=1.91 and 4.5, the 
spectral response shows that the rotor center has a T 
periodic motion. While Λ=9.03, the system is 
sub-periodic motion; and when Λ=9.38 and 14.3, the 
motion mode is changed to T-period motion. When 
Λ=16.41, the non-periodic motion reappears, until 
Λ=18.2, the system is stable again. 

The bearing number Λ is used as the main 
analysis parameter to discuss the influence of 
different bearing number Λ on the air bearing system 
as shown in Fig. 8. At the same time, the bearing 
number range is set between 1.0 and 19.0 for actual 
operating conditions. When bearing number is low as 
Λ=1.0 and 1.2, the rotor center of the system exhibits 
aperiodic chaotic motion in both the horizontal and 
vertical directions. This phenomenon can be verified 
by the Poincaré maps in Fig. 9(a) and (b). It is known 
that there are multiple discrete points on the Poincaré 
maps, and this type of motion occurs in the interval 
1.0≦Λ<1.91. When the bearing number increases to 
Λ=1.91, the system bifurcates and produces T- 
periodic motion. It can be clearly seen from Fig. 9(c) 
that the system produces a discrete point at this time, 
and this T-periodic motion continues in 1.91≦Λ 
<9.03 interval (where Λ=4.5, the system also moves 
in T-period, as shown in Fig. 9(d)). When the bearing 

number increases to the interval of 9.03≦Λ<9.38, 
the system turns to 4T periodic motions. As shown in 
Fig. 9(e), it can be verified that there are 4 discrete 
points. When Λ=9.38, this state of motion will 
change to T-period motion, as shown in Fig. 9(f). 
This behavior occurs in the interval 9.38≦Λ<16.41 
(where Λ=14.3, the system is also in T-period 
motion, such as Fig. 9(g) shows). In the interval of 
16.41≦Λ<18.2, the system once again produces 
chaotic motion, as shown in Fig. 9(h). However, 
when this unstable state is further changed to Λ
=18.2, the system becomes stable and exhibits T 
periodic motion, and this behavior continues to be 
Λ=19.0, as shown in Fig. 9(i). 

As to whether the chaotic behavior is caused by 
the change of the bearing number, the maximum 
Lyapunov exponents are also used to verify as shown 
in Fig. 10(a), 10(b) and 10(h). It can be seen that 
when Λ = 1.0, 1.2, 16.41, the index is all greater than 
zero meaning that the motion state of the system is 
chaotic behavior. Conversely, from Fig. 10(c), 10(d), 
10(e), 10(f), 10(g), 10(i), we can see that the index is 
equal to or less than zero when Λ=1.91, 4.5, 9.03, 
9.38, 14.3 and 18.2, so the non-chaotic behavior of 
the system is consistent with the above results. 
  

 
7.1(a)                7.1(b)                

 
7.2(a)                 7.2(b)    

 
7.3(a)                7.3(b)                     
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7.4(a)                7.4(b)                    

 
7.5(a)                 7.5(b)    

 
7.6(a)                 7.6(b)                   

 
7.7(a)                7.7(b)                 

 
7.8(a)                7.8(b)                    

 
7.9(a)                7.9(b)                    

Fig. 7. The phase diagram of the rotor center of the 
annular throttle air bearing at Λ = 1.0, 1.2, 1.91, 4.5, 

9.03, 9.38, 14.3, 16.41, 18.2 (Fig. 7.1a-7.9a), and the 
frequency spectrum response of the rotor center in the 
horizontal direction (Fig. 7.1b-7.9b) with rotor mass 

mr=3.47kg. 
 

 
   8(a) 

   8(b) 
Fig. 8. Bifurcation diagram of the rotor center to 

different bearing numbers Λ of the annular throttle air 
bearing system: (a) X2(nT) (b) Y2(nT), the rotor 

mass mr = 3.47 kg. 
 

 
9(a)                 9(b) 

 
9(c)                 9(d) 
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9(e)      9(f) 

9(g)       9(h)

9(i) 
Fig. 9. Poincaré maps of the rotor center of the 

annular throttle air bearing system with different 
bearing numbers Λ = (a) 1.0, (b)1.2, (c)1.91, (d)4.5, 

(e)9.03, (f)9.38, (g)14.3, (h)16.41, (i)18.2. 

10(a)   10(b)

10(c)   10(d)

10(e)   10(f)

10(g)    10(h)

10(i)
Fig. 10. Maximum Lyapunov exponent of the rotor 
center of the annular throttle air bearing system at 
different bearing numbers Λ= (a) 1.0, (b)1.2, (c)1.91, 
(d)4.5, (e)9.03, (f) 9.38, (g)14.3, (h)16.41, (i)18.2. 

CONCLUSIONS 

The objective of this study was an analysis of 
the dynamic behaviour of a pocket-orifice 
compensated air bearing (PCAB) system. The design 
of the orifice is divided into two types including 
small hole-shallow chamber throttle type and annular 
throttle type. The flexible rotor supported by a 
pocket-orifice compensated air bearing system is 
analyzed. The perturbation method and a hybrid 
method were used to solve the pressure distribution at 
the highest nonlinearity in the system, after which 
dynamic equations of the flexible rotor center were 
used to obtain the orbits displacement. Analysis was 
then conducted on the orbit data to generate spectrum 
diagrams, Poincaré maps, bifurcation diagrams and 
maximum Lyapunov exponents. The simulation 
results showed that the hybrid method applied in this 
paper yields better accuracy and precision for the 
verification of values than perturbation method. 
Accurate solutions can be obtained without the need 
for using small mesh size and time step determination. 
The dynamic results of rotor center reveals that the 
rotor behavior changes along with the rotor mass and 
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the bearing number and synchronously generate 
complicated motion in the horizontal and vertical 
directions, include periodic and sub-harmonic 
vibration, as well as quasi-periodic and chaotic 
motions. Especially for the chaotic motion, this 
unstable can be detected efficiently by our proposed 
method and contributed to provide the chaotic 
intervals for various parameters of rotor mass and 
bearing number. The results obtained in this study 
can be used as a basis for future PCAB system design 
and the prevention of instability. 
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摘 要 

本文旨在探討腔孔節流氣壓軸承系統針對高

轉速、高剛性、高精度支承需求之精密儀器與機構

的氣膜潤滑問題。此軸承由於具有外部供氣及腔孔

節流兩種特性與優點，因此可提供較其他氣膜軸承

系統具有更優異的穩定性。研究此軸承系統時，由

於氣膜壓力函數具有強烈的非線性，且實際軸承系

統所具有的動態問題包含臨界速度、供氣失衡或軸

承設計不當等，都將導致轉子軸承系統在某些參數

條件下，其旋轉過程中產生非週期或混沌運動及不

穩定的現象。而這些不規則運動嚴重時甚至造成機

件損傷或破壞，因此為能瞭解系統在工作的過程中

何種狀況下會產生非週期的現象，以避免產生不規

則的振動效應，本文以微擾法及混合法等數值分析

的方式將軸承的相關特性做一詳盡的探討，並以相

關理論包括分岔圖、龐卡萊映射、頻譜響應及李奧

維指數針對轉子之非線性行為進行研究分析。結果

顯示，以軸承數Λ為例，軸承數會影響轉子的軌跡

與軸承系統性能，尤其轉子的動態軌跡在 16.41≤
Λ<18.2的區間內會產生非線性混沌行為，此種非

週期性行為會造成軸系損害。本研究所獲得的結果

可以用作將來腔孔節流氣壓軸承系統的穩定性設

計和防止轉子產生動態不穩定的設計基礎及重要

依據。 
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