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ABSTRACT 
 

As the primary moving part of a wind turbine, the 
gearbox has a high failure rate and is particularly 
detrimental to the device. The diagnosis of early 
gearbox problem signals is less effective using the 
typical vibration detection techniques now in use. 
Considering this, Based on the KPCA-VMD approach, 
this research offers a wind turbine gearbox early fault 
monitoring and multidimensional feature assessment 
method for analyzing wind turbine gearbox 
inconspicuous early failure signals. Firstly, the pre-
processed dataset is subjected to feature extraction, the 
gearbox feature data is downscaled and reconstructed 
by the KPCA method, the gearbox status is monitored 
using two statistics, T2 and SPE, and the monitored 
abnormal signals are analysed by VMD. The 
experimental data show that the method can 
effectively diagnose the gear early failure 
characteristic frequency. 
 

INTRODUCTION 
 

Gearboxes, as the core connecting and driving 
mechanical equipment of wind turbines, are 
characterized by precise and complex mechanical 
structures (Salameh et al., 2018). Due to the long-term 

work at high altitude on 100 meters, it is constantly 
subjected to changing wind speed loads and 
mechanical loads (Guo and Sheng et al., 2020) and 
when cracks or even damage behaviors occur in the 
variable speed gearbox, the crew often cannot detect 
them earlier, which leads to a decrease in equipment 
reliability and safety. (Yang et al., 2023; Shanbr et al., 
2018) Therefore, for how to gearbox early fault 
monitoring and diagnosis, health evaluation, effective 
extraction of early fault characteristics and accurate 
condition monitoring is an important direction of 
research. 

Wind turbine component damage monitoring, 
generally based on monitoring data in the SCADA 
system, such as main bearing temperature, gearbox 
temperature, oil temperature, etc., has the defects of 
constant data, small availability and many missing 
values. (Zhu et al., 2019; Igba et al., 2015) The other 
is a wind turbine condition monitoring system system 
(CMS) that monitors sensor signals such as vibration 
or displacement, but is still primarily based on a single 
signal source for early warning analysis. (Entezami et 
al., 2012; Dao et al., 2022) This routine monitoring, 
operation, and maintenance fail to make full use of 
existing technical methods to accurately assess early 
failures of wind turbine gearboxes, so there is huge 
room for technical improvement.  

The signal time domain characteristics are 
generally periodic and smooth when the gear 
components are in normal operation, and the signal 
frequency characteristics will include the rotation 
frequency of each shaft and the meshing frequency of 
large and small gears. (Wang et al., 2023; Zhang et al., 
2022; Pan et al., 2019) When the damage failure of the 
component occurs, the fault signal will appear shock 
or modulation phenomenon, the fault signal 
characteristics are particularly significant when the 
broken tooth or tooth surface peeling. (Touti et al., 
2023; Tong et al., 2019) However, the early signal 
often has non-linear, non-smooth, low amplitude, low 
signal-to-noise ratio, and other characteristics, the 
fault characteristics are hidden, and feature extraction 
is difficult. (Yaghoubi et al., 2022) Vikas Sharma et al. 
(Sharma et al., 2016) reviewed various time-domain 
state indicators for wind turbine gear fault diagnosis. 
Jong et al. (Jong et al., 2012) analyzed wind turbine 
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planetary gearbox condition monitoring using time-
synchronous mean autocorrelation. Abboud et al. 
(Abboud et al., 2017) implemented fault diagnosis for 
wind turbines under various operating conditions 
using envelope spectra, etc. However, the above 
methods suffer from problems such as modal 
confounding and endpoint effects when applied to the 
actual complex signal analysis.  

Variational Mode Decomposition (VMD) is an 
adaptive signal processing method based on Wiener 
filtering, which decomposes the original signal into a 
finite number of IMFs in different frequency bands, 
overcoming endpoint effects and modal aliasing 
problems. (Chen et al., 2019; Yan et al., 2019; Ren et 
al., 2019) The core of the VMD algorithm is the 
construction and solution of the variational problem. 

Kernel Principal Component Analysis (KPCA) is 
a nonlinear feature extraction method, (Shen et al., 
2022) which can well eliminate redundant correlations 
between data and extract nonlinear features that retain 
the main information. Based on this multivariate 
statistical method of KPCA, the frequent detection 
method is able to improve the computing rate of the 
computer, and at the same time, it is also able to 
identify and judge the early faults of the gearbox 
system. (Liu et al., 2023; Navi et al., 2015; Pacheco-
Chérrez.et.al., 2022) 

However, the use of "cliff" metrics alone to filter 
critical IMFs can easily result in missing early feature 
information or misdiagnosis of faults. (Li et al., 2020) 
The study of VMD for noise reduction of signals and 
screening of key IMFs will be of great importance for 
the fine diagnosis of gearbox faults and for early fault 
diagnosis. (Zheng et al., 2023) Currently, there is no 
mature method for monitoring the early fault signals 
of gearboxes, this paper proposes a wind power 
gearbox early fault monitoring and multidimensional 
feature evaluation method based on the KPCA-VMD 
method, which can effectively identify and diagnose 
the early fault signals of gearboxes, so as to realise the 
on-line monitoring of the early faults of the gearboxes, 
to prevent further deterioration of the gearboxes, and 
to safeguard the safety of the operation of wind 
turbines. 
 

METHODOLOGY 
 

Wind turbine operating conditions are complex 
and fault-prone, and monitoring methods based on a 
single signal are often insufficient for accurate fault 
diagnosis. By monitoring multi-source information 
points, fusing data features in multiple dimensions, 
and then downscaling for diagnosis, the accuracy of 
mechanical fault diagnosis will be further improved, 
providing a stronger guarantee for the safe operation 
of wind turbines. 

As shown in Fig.1, this paper will collect multi-
source sensor information, using the gearbox of a wind 
turbine in a wind farm as a signal source. Vibration, 

acoustic emission, displacement, and speed sensors 
are installed to monitor the real-time changing 
vibration and speed signals to effectively monitor and 
analyze the gear meshing frequency and impact energy. 
The collector aggregates these data and transmits them 
from the fiber optic switch to the server's database for 
later processing and research of the data. 

 
Fig. 1. Framework diagram of wind turbine gearbox 

early fault abnormal monitoring and diagnosis 
system 

Besides, the KPCA method is used to achieve 
multi-dimensional data fusion at the feature layer to 
achieve the purpose of abnormal state monitoring of 
wind turbine gearboxes. Compared with the traditional 
PCA method, KPCA can better handle complex 
nonlinear data and improve the accuracy and 
effectiveness of feature extraction. VMD is an 
adaptive signal processing method that can decompose 
different modal components in a signal, which is 
suitable for the analysis of non-stationary signals. 
Compared with the traditional Empirical Mode 
Decomposition (EMD), VMD realizes the adaptive 
optimization of modal decomposition through the 
variational model, which reduces the modal aliasing 
phenomenon and improves the accuracy of 
decomposition. The KPCA-VMD method is then used 
to de-noising, reconstruct, and diagnose faults in the 
abnormal data, laying the foundation for intelligent 
safe operation and health evaluation of wind turbines.  

Feature fusion of multi-source data 

Data pre-processing  

The fusion of multi-source data firstly requires 
pre-processing the original information, cleaning 
some missing values, and standard and continuous 
data to provide for data mining and training later. The 
quality of the data will directly affect the results of 
signal monitoring. We will perform singularity 
removal based on the 3σ criterion. The standard 
deviation σ is first obtained according to the Bessel 
formula, a threshold of 3σ is set, and then the mean 
value of a certain set of data is calculated. The value 
of each data's deviation from the mean is compared by 
executing a judgment statement, and if the result is 
greater than 3σ, the outlier is removed and vice versa. 

Secondly, the signal data needs to be de-noised. 
The excitation force is applied to the gearbox and the 
gears produce vibration, which is transmitted to the 
gear train, shaft, bearing housing, and box, mechanical 
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vibration in the air produces noise, so the signal data 
often contains the characteristic frequency, the 
intrinsic frequency, noise coexistence of complex 
signal information. The noise signal frequency is high 
and the signal feature peak frequency is generally 
dominated by the low-frequency component. 
Therefore, before realizing the signal feature 
extraction, the high-frequency part should be 
processed with noise reduction using methods such as 
KPCA, VMD, etc, so as to eliminate or reduce the 
modulation effect of the high-frequency signal on the 
low-frequency signal caused by noise, or the failure to 
produce the modulation phenomenon of the low-
frequency signal on the high-frequency signal. 

Feature extraction and fusion 

Feature extraction and fusion means transforming 
data signals from different types of sensors of the same 
measurement point into a uniformly structured data 
expression, rowing them into feature vectors for 
identification, and then analyzing the normalized data 
to complete the analysis and evaluation of the object 
being measured. As shown in the Table.1 below, the 
maximum, minimum, and peak values of the 
displacement signal; the average signal level (ASL) 
and root mean square (RMS) of the AE signal; and the 
stiffness, peak indicator, pulse indicator, and margin 
indicator of the vibration signal are extracted. 

Table 1. Expressions for characteristic parameters 
Sensor Signal 

type 
Characteristic 

indicators function expression 

Displacement 
signal 

maximum xmax=max{xi} 
minimum xmin=min{xi} 

peak xp-p=Xmax-Xmax 

Acoustic 
emission signal 

Average signal 
level 𝑥𝑥′=1

N
∑ |xi|N-1

i=0  

Root mean 
square xr=(

1
N
�|xi|

1
2

n-1

i=0

)

2

 

Vibration signal 

stiffness 𝑥𝑥𝑞𝑞=(1
N
∑ xi

4

xa
2� )N-1

i=0 −3 

peak index C= xp

xrms
 

pulse index I = xp

x'  

margin index L = xp

xr
 

Z-score standardization: converts the original 
data into a standard normal distribution, 𝑥𝑥𝑗𝑗  a 
distribution with a mean of �̅�𝑥  and a standard 
deviation of 𝛿𝛿. The expression is shown below: 

                 𝑥𝑥𝑗𝑗∗= 
𝑥𝑥𝑗𝑗−�̅�𝑥

𝛿𝛿
               (1) 

Data feature dimensionality reduction and 
anomaly monitoring based on the KPCA method 

The KPCA model for data feature dimensionality 
reduction 

Assume that the training sample for the gearbox 
multi-source data model is shown below: 

T=�

x1(1) x1(2) x1(3) … x1(𝑚𝑚)
x2(1) x2(2) x2(3) … x2(𝑚𝑚)
⋯ ⋯ ⋯ ⋯ ⋯

xn(1) xn(2) xn(3) ⋯ xn(𝑚𝑚)

�

𝑚𝑚×𝑛𝑛

  (2) 

The m evaluation samples, with n parameter 
indicators, are mapped to a high-dimensional feature 
space via a non-linear mapping( ɸ：R𝑛𝑛 → F) , 
followed by the mapped dataset ( ɸ(x) =
{ɸ(𝑥𝑥1),ɸ(𝑥𝑥2), … ,ɸ(𝑥𝑥𝑛𝑛)})  being centered so that it 
satisfies the following equation: 

             1
𝑁𝑁
∑ ɸ(𝑥𝑥𝑖𝑖) = 0𝑛𝑛
𝑖𝑖=1            (3) 

The covariance matrix of the sample 𝐶𝐶𝐹𝐹  is as 
follows: 

         𝐶𝐶𝐹𝐹 = 1
𝑁𝑁
∑ ɸ(xi)ɸ(xi)𝑇𝑇n
i=1         (4) 

The covariance characteristics are decomposed as: 

           λω=𝐶𝐶𝐹𝐹𝜔𝜔              (5) 

where λ is the eigenvalue of the covariance matrix, ω 
is its eigenvector, ω = ∑ 𝛼𝛼𝑖𝑖ɸ�xj�n

j=1  , and 𝛼𝛼𝑖𝑖  is the 
correlation coefficient. 

To solve the nonlinear map ɸ(x), we introduce 
the kernel function K so that each element in the ɸ(x) 
satisfies the following equation: 

      [𝐾𝐾]𝑖𝑖𝑗𝑗 =( ɸ(𝑥𝑥𝑖𝑖),ɸ�𝑥𝑥𝑗𝑗�)         (6) 

After the data is centralized and simplified in 
high-dimensional feature space, the sample data 
principal 𝑡𝑡𝑘𝑘 can be calculated: 

  𝑡𝑡𝑘𝑘 =(𝜔𝜔𝑘𝑘 ,ɸ(x))= ∑ 𝛼𝛼𝑖𝑖𝑘𝑘 ∙ 𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥)n
i=1    (7) 

The kernel function uses the commonly used 
Gaussian radial kernel function, as shown below: 

         𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝑒𝑒−
‖𝑥𝑥−𝑦𝑦‖

𝑐𝑐          (8) 

where c is the kernel parameter. The method of 𝑝𝑝0 the 
number of principal elements is obtained from the 
cumulative variance. 

The KPCA-SPE/T2 value for data anomaly monitoring 

The Squared prediction error (SPE) statistic is a 
measure of the degree of deviation from the kernel 
principal model, reflecting the process by which the 
data deviate from the normal correlation. After 
nonlinearly mapping to high-dimensional space can be 
expressed in the following expression: 

   SPE=∑ (𝑡𝑡𝑘𝑘
𝑗𝑗2𝑝𝑝

𝑘𝑘=1 )- ∑ (𝑡𝑡𝑘𝑘
𝑗𝑗2𝛾𝛾

𝑘𝑘=1 )      (9) 

The control limit solution formula is as follows: 

         SPE𝑙𝑙𝑖𝑖𝑚𝑚 = gχℎ,𝛼𝛼
2           (10) 

where g= 𝑏𝑏
2𝑎𝑎

 is the weighted parameter, χℎ,𝑎𝑎
2  is the χ2 

distribution with the confidence of α and degrees of 
freedom h, and a,b is the mean and variance under 
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normal working conditions. 
The Hotelling statistic (T2) characterizes the trend 

in the sample and test data in the primary metric space 
and the degree of deviation in the model and is a 
reflection of the variation within the KPCA model. Its 
equation is shown below: 

   𝑇𝑇2 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑝𝑝�Λ−1[𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛]𝑇𝑇   (11) 

Where 𝑡𝑡𝑝𝑝  is the principal element of the high-
dimensional feature space; p is the number of principal 
elements; and Λ is the diagonal matrix formed by the 
eigenvalues corresponding to the components of the 
kernel principal element. 

The control limit for the T2   threshold can be 
obtained from the F distribution： 

        𝑇𝑇𝑙𝑙𝑖𝑖𝑚𝑚2 = 𝑙𝑙�𝑛𝑛2−1�
𝑛𝑛(𝑛𝑛−1)

𝐹𝐹𝛼𝛼(𝑙𝑙,𝑛𝑛 − 𝑙𝑙)       (12) 

Where 𝐹𝐹𝛼𝛼(𝑙𝑙,𝑛𝑛 − 𝑙𝑙)  corresponds to the critical 
value of the F distribution at a test level of α and 
degrees of freedom of l, n-l. 

Diagnosis of gearbox damage behavior based on 
the KPCA-VMD method 

The principles of the VMD method  

The objective of the VMD method is to 
decompose the signal into eigenmode components 
(IMF) of different frequency bands, each IMF mode 
being closely distributed around the central frequency 
ωk. The number of IMFs is optimally chosen to set the 
number of IMFs K. A suitable value of K can avoid 
frequency aliasing during the decomposition of the 
variational modes.  

The variational problem is constructed as follows: 

� min
{𝑢𝑢𝑘𝑘},{𝜔𝜔𝑘𝑘}

�∑ �𝜕𝜕𝑡𝑡 �(𝛿𝛿𝑡𝑡(𝑡𝑡) + 𝑗𝑗
𝜋𝜋𝑡𝑡

) ∗ 𝑢𝑢𝑘𝑘(𝑡𝑡)� 𝑒𝑒−𝑗𝑗𝜔𝜔𝑘𝑘𝑡𝑡�
2

2
𝑘𝑘 �

𝑠𝑠. 𝑡𝑡.∑ 𝑢𝑢𝑘𝑘 = 𝑓𝑓(𝑡𝑡)𝑘𝑘 .
; 

(13) 

where k denotes the number of intrinsic mode 
components; {uk }, {ωk } denote the kth component 
and its center frequency, respectively; 𝜕𝜕𝑡𝑡 denotes the 
gradient of the demodulated signal; 𝛿𝛿𝑡𝑡(𝑡𝑡) denotes the 
Dirac function; ∗  denotes the convolution operator; 
f(t) denotes the original signal.  

The penalty factor α1  and the Lagrange 
multiplier 𝜆𝜆1  are introduced to turn it into an 
unconstrained variational problem. The augmented 
Lagrange expression is given by: 

L({uk}, {ωk}, λc)=α1 ∑ �𝜕𝜕𝑡𝑡 �(𝛿𝛿𝑡𝑡(𝑡𝑡) + 𝑗𝑗
𝜋𝜋𝑡𝑡

) ∗k

𝑢𝑢𝑘𝑘(𝑡𝑡)� 𝑒𝑒−𝑗𝑗𝜔𝜔𝑘𝑘𝑡𝑡�
2

2
+ �𝑥𝑥𝑐𝑐(𝑡𝑡) − ∑ 𝑢𝑢𝑘𝑘,𝑐𝑐(𝑡𝑡)𝑘𝑘 �

2
2 +

〈𝜆𝜆1(𝑡𝑡), 𝑓𝑓(𝑡𝑡) − ∑ 𝑢𝑢𝑘𝑘(𝑡𝑡)𝑘𝑘 〉  (14) 

The optimal solution is obtained by iteratively 
updating the values of uk , ωk , and λ by the 
alternating direction multiplier method to solve for the 

minimum value. The optimal solution is the intrinsic 
mode component { ui } and the respective central 
frequency {ωi}. 

Noise reduction, Characterization, and comprehensive 
evaluation guidelines 

A joint noise reduction strategy is proposed to 
extract weak fault features from the early fault signals 
of wind turbine gearboxes, which are non-linear, non-
smooth, low amplitude, and low signal-to-noise ratio. 
Firstly, the KPCA method is used to de-noise and 
reconstruct the signals, and the signal-to-noise ratio 
(SNR) and root mean square error (RMSE) is used to 
quantify the noise reduction effects of different 
methods. Secondly, the IMFs of different frequency 
bands are obtained by VMD decomposition of the 
noise reduction data. Then, a "kernel principal" 
evaluation model based on multidimensional feature 
fusion is constructed. The larger the kernel principal 
component, the better the IMF can characterize the 
original signal, thus screening out the key IMFs that 
characterize the early faults. The reconstructed 
secondary noise reduction signal can further highlight 
the fault characteristics and is suitable for early fault 
diagnosis, as shown in Fig.2. 

 
Fig. 2. Flow chart of early fault monitoring and 

diagnosis methods for wind turbines 

 
CASE APPLICATION AND ANALYSIS 
 

Data from the gearbox of a grid-connected wind 
farm were used to verify the validity of the proposed 
method. The gearbox has a primary parallel wheel 
with 29 teeth and a large gear with 100 teeth, a 
secondary pinion with 36 teeth and a large gear with 
90 teeth, a sun wheel with 28 teeth, four planetary 
wheels with 36 teeth, and a ring with 100 teeth. Table 
2 lists the details. The signal sampling frequency is 
8000 Hz. The data collected was initially labeled by 
the wind farm technicians. Based on years of fault 
records from the wind farm, the operating conditions 
of the wind turbine gearboxes were classified into 4 
categories according to the severity of the fault, i.e. 
normal, cracked, uniformly worn, and broken gears, 
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with 65 samples for each of the 4 operating conditions 
and a single sample length of 1024. 
 

Table 2. Gearbox gear information parameters 
Gear type Teeth Quantity 

primary parallel 
wheel 29 1 

large gear 100 1 
secondary pinion 36 1 

large gear 90 1 
sun wheel 28 1 

planetary wheel 36 4 
ring 100 1 

 

Fig. 3. Vibration signals in four operating states 

As shown in Fig.3, the time domain signal 
amplitude of normal gears and tooth root cracks is 
relatively smooth and periodic in nature. Due to the 
weakness of the fault signal as well as noise 
interference, it is difficult to detect a periodic shock 
characteristic from the time domain amplitude even if 
an early gear fault occurs. In contrast to a serious fault 
phenomenon such as a broken tooth, it can be found in 
the time domain as a regular shock-type vibration with 
a sudden increase in amplitude, the frequency of the 
shock being equal to the rotational frequency of the 
shaft where the broken tooth is located. 

Feature analysis 

Due to the complexity of the signals, a single 
sensor feature cannot fully monitor the health status of 
the gearbox. The multi-source data sets of gears in four 
different states are pre-processed to extract the key 
features of different source signals separately to 
constitute multi-dimensional evaluation indexes, as 
shown in Table 1, to obtain a feature matrix of 9*132 
for each group. Three features that are more sensitive 
to the gearbox fault state, namely, the margin indicator 
of the vibration signal, the peak indicator of the 
displacement signal, and the RMS indicator of the AE 
signal, are selected for visualization and analysis. 

As shown in Fig.4a), the three indicators are more 
obvious for the distinction between the normal state 
and serious gear failure state. However, the three states 
of normal teeth, cracked teeth, and uniformly worn 
teeth have the phenomenon of indicator amplitude 

overlap, which is not ideal for the early fault 
identification of gearboxes. This is because the 
occurrence of damage failure of gearbox system 
components generally starts from crack sprouting and 
then extends to fatigue, pitting, oxidation 
intensification, wear-off, etc. This process of crack 
expansion often goes through a series of stages. 

 
Fig. 4. Multi-source data feature visualization. 
a) Before feature fusion dimensionality reduction;  
b) After feature fusion dimensionality reduction. 

The 9 multidimensional features are normalized 
to construct a unified judgment matrix, then subjected 
to KPCA dimensionality reduction. The Gaussian 
function is selected as the kernel function, and the 
different parameter gamma values of the kernel 
function will make the spatial distribution of the data 
separate. When the gamma value is too small, the 
model will be under-fitting; when the gamma value is 
too large, the model will be over-fitting. Therefore, the 
gamma values were tested in steps of 0.01 from the 
interval (0, 15), and the explained variance was used 
as a measure. The optimal gamma value of the model 
was found to be 0.13, and the explained variance was 
0.55629. As shown in Fig.4b), after the KPCA 
dimensionality reduction process, the data sets 
between the gear states achieve obvious clustering and 
state separability. Whether it is mapped in the PC1-
PC2 plane or PC2-PC3 plane, the early root fault state 
characteristics are obviously distributed in different 
spaces from other state features, and there is no 
aliasing of the monitoring values. Thus, this model can 
successfully monitor gear outliers. 

Abnormal monitoring of damage behavior of 
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gearbox components 

The PC2 principal element value with better state 
classification is substituted into Eq. (11) to obtain the 
T2 statistic as shown below. Fig.5b) shows the 
threshold limit of the T2 statistic obtained by training 
the master metadata set of normal gears, and the limit 
is 7.97. Because the confidence limit of the threshold 
calculation is set to 0.95, it is reasonable for some test 
points to exceed the threshold limit, which is not 
contrary to the state of normal gears. 

 
Fig. 5. Abnormal condition monitoring based on 

KPCA-T2 values. 
a) Gearbox T2 threshold limit and each state test set;  
b) Gearbox T2 training set with threshold limit. 

As shown in Fig. 5a), when the gear state fails, 
the T2 statistics of each of its data sets, exceed the red 
threshold line. At the same time, the T2 magnitudes of 
the early fault data belong to different spaces 
compared with the severe fault occurrence data, and 
their distribution patterns are also consistent with the 
mapping pattern in Fig. 4b). Therefore, it indicates that 
the reduced T2 statistics can distinguish the early fault 
data exactly and effectively. 

 
Fig. 6. Abnormal condition monitoring based on 

KPCA-SPE values. 
a) Gearbox SPE threshold limit and each state test set;  
b) Gearbox SPE training set with threshold limit. 

The results of the SPE statistic as shown in Fig. 
6. Compared with the T2 statistic, the SPE statistic has 
fewer points above the threshold limit, and the value 
of the SPE statistic for normal gears tends to be 

smoother. For the three types of faulty gears, namely, 
cracked root gears, uniformly worn gears, and broken 
gears, the values of SPE statistics are also above the 
threshold limits, and both T2 and SPE statistics are able 
to alarm the three types of faulty gears, and there are 
no missed and false alarms. By combining the T2 and 
SPE statistics to monitor the gears, the status of the 
gears can be monitored more accurately. 

Fault diagnosis and analysis of gearbox 
components 

When the abnormal signal of the gearbox is 
monitored, the following is to further do fault 
diagnosis analysis for the gearbox components. Firstly, 
we need to determine the penalty function in the VMD 
method and set the appropriate number of IMFs K. The 
appropriate K value decomposition can effectively 
avoid the endpoint effect and modal confounding. The 
VMD parameters are determined by using the method 
proposed in the literature, and the average value of 
each state is sought 10 times to obtain the modal 
number K of normal gears as 6 and the penalty factor 
α as 2983; the modal number K of tooth root cracks as 
6 and the penalty factor α as 3465. The judgment 
accuracy ε and noise tolerance τ have little influence 
on the decomposition results and are taken as default 
values. Fig. 7 shows the time domain diagram of each 
IMF of the gear signal after VMD, and Fig. 8 shows 
the frequency domain diagram of each IMF. From the 
figure, it can be seen that the frequency range of each 
IMF does not overlap, and there is no frequency 
mixing phenomenon. 

 
Fig. 7. IMF component time domain plot. 
a) Normal gear; 
b) Root cracked teeth. 
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Fig. 8. IMF component frequency domain diagram. 

In comparison with Fig. 7a), and Fig. 7b) 
although the increase in amplitude due to the increase 
in impact energy can also be found in the time domain, 
it is relatively not very obvious and the IMF variation 
pattern is not uniform. As shown in Fig.8, although the 
frequency diagram of the early fault also reads the 
engagement frequency characteristic (363.8 HZ), the 
marginal spectrum frequency is not obvious enough to 
diagnose that a fault has occurred at this moment. 
Therefore, it cannot be used as a definite conclusion to 
diagnose the cause of the early failure. 

There are two key characteristics of wind turbine 
gearbox fault signals: impulsivity and cyclic 
smoothness. Existing studies usually consider only the 
impulsivity of the fault, and assessing the impulsivity 
of the fault by the stiffness alone can ignore some 
characteristic information of the IMF. The margin 
factor is more sensitive to the weak change of signal 
because it can well identify the early damage behavior 
of the component, and the envelope spectrum stiffness 
can comprehensively evaluate the cyclic smoothness 
of each IMF. As shown in Table 3, the 
multidimensional feature evaluation matrix of the 
"steepness-envelope spectral steepness-margin factor" 
of each IMF is calculated to screen for obvious early 
fault features. 

Table 3. IMF components margin factor, steepness 
and envelope spectral steepness 

Modal 
component 

Margin 
factor Steepness 

Envelope 
spectral 

steepness 
IMF1 0.3902 2.635 3.246 
IMF2 0.4123 3.075 2.603 
IMF3 0.3900 4.331 3.973 
IMF4 0.5163 3.264 4.132 
IMF5 0.6826 3.753 5.949 
IMF6 0.6833 5.832 6.977 
From Table 3, we can see that IMF5 and IMF6 

contain rich fault information, and the reconstructed 
signals are shown in Fig. 9b) by using IMF5 and IMF6 
as the key components. If the traditional 
unidimensional index "stiffness" is used as the 
selection principle of key components, IMF3 and 
IMF6 are reconstructed, and the reconstructed signal 
is shown in Fig.9a). It is found that the reconstructed 
signal in Fig.9b) shows a higher amplitude, and more 
periodic shock pulses, and the fault characteristics are 
more obvious. 

 
Fig. 9. Comparison chart of the filtered IMF 

reconstruction signal. 
a) Traditional screening;  
b) Multidimensional feature evaluation screening. 

The gear meshing frequency component 
(363.8Hz) of the reconstructed signal in Fig.9b) is 
extracted with the fault frequency characteristics. The 
characteristic frequency formula can be calculated to 
obtain the planetary shaft rotation frequency of 
10.15Hz and the medium speed shaft rotation 
frequency of about 4.06Hz, etc. Compared with Fig.8, 
it is clearly observed from Fig.10 that not only the low-
speed shaft (4Hz) rotational frequency modulation 
side band is obviously present on both sides of the 
faulty gear meshing frequency, but also the medium-
speed shaft rotational frequency modulation (10Hz) 
sideband is well revealed, i.e. 351.6 and 373.4Hz. The 
results show that the KPCA-VMD-based method can 
effectively diagnose and analyze the early fault 
characteristic frequency of gears, and diagnose the 
signal modulation phenomenon due to the early fault 
of gears in both low-speed and medium-speed shafts. 

 
Fig. 10. Spectrogram of the reconstructed signal. 

In order to further verify the effectiveness of the 
KPCA-VMD method for early gear fault analysis, the 
noise reduction effects of different methods were 
compared, as shown in Fig.11. The signal was first de-
noised and reconstructed using the KPCA method, 
followed by noise reduction and reconstruction using 
the VMD method, followed by joint noise reduction 
using the KPCA-VMD method, and the noise 
reduction effect was analyzed by comparing the 
wavelet threshold noise reduction processing methods. 



 
J. CSME Vol.45, No.6 (2024) 

-602- 
 

 
Fig. 11. Comparison chart of noise reduction effect of 

different methods.  
a) KPCA;  
b) VMD;  
c) The Wavelet threshold noise reduction;  
d) The KPCA-VMD method. 

From the Fig.11, we can see that the green part is 
obviously reduced compared with the orange part, 
which indicates that the KPCA and VMD methods 
have some effect on the signal noise reduction, and the 
rising edge and falling edge of the reconstructed signal 
still retains a good part of the mutation, but the overall 
noise still exists, and the signal is not smooth enough. 
The wavelet threshold noise reduction was used, and 
the Daubechies wavelet basis function and 8-layer 
decomposition were selected. After several trials of 
setting the adjustment factor a=0.04, the noise 
reduction effect in the signal was improved, but 
compared with the joint KPCA-VMD noise reduction, 
the effect could not be directly judged from the graph. 

Therefore, SNR and RMSE were used as 
evaluation indexes to quantitatively analyze the noise 
reduction effect of different methods, and the results 
are shown in Table 4. The SNR of the reconstructed 
signal is improved by 56.42% after the proposed 
method, and the SNR of the reconstructed signal is 
higher and the RMSE is lower than that of the wavelet 
threshold noise reduction. 

Table 4. Comparison of indicators for different noise 
reduction strategies 

Noise reduction 
methods SNR RMSE 

KPCA 11.533 0.256 
VMD 12.437 0.168 

Wavelet de-noising 13.069 0.235 
KPCA-VMD 15.374 0.168 

 
CONCLUSION 

 
To scientifically evaluate the gearbox health 

status, diagnose early faults, and improve the problem 
of inaccurate monitoring accuracy of a single signal 
source, this paper proposes a method for early fault 
monitoring and multidimensional feature evaluation of 
wind turbine gearboxes based on the KPCA-VMD 
method, which provides a new idea for the whole life 

cycle health assessment of wind turbine gearboxes. 
The main contributions are: 

1) When multi-dimensional data sources are 
added to evaluate the early fault characteristics of 
different spatial segments, the KPCA method can be 
used to effectively reduce the data dimensionality, 
extract the key information of the data, and discover 
the hidden relationships between the data, to achieve 
the purpose of noise reduction, state classification 
visualization, and early fault monitoring. 

2) Combined with engineering practice, the joint 
KPCA and VMD methods analyze the early 
inconspicuous fault impact signals, evaluate the early 
fault signals jointly with the margin, impulsivity, and 
cyclic smoothness indexes, and strengthen the early 
fault characterization ability of the feature components. 

3) The KPCA-VMD method combines the 
advantages of KPCA's nonlinear feature extraction 
and VMD's modal decomposition, and shows stronger 
noise immunity and robustness in the face of noise 
data. KPCA effectively reduces dimensionality and 
removes noise, while VMD accurately separates the 
modal components of the signal. 

The research results show that the method is 
applicable and superior to early fault monitoring and 
diagnosis, and can be used for predictive maintenance 
of wind turbine gearboxes. 
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摘 要 

作為風力渦輪機的主要運動部件，齒輪箱的故

障率很高，對設備的危害特別大。目前使用的典型

振動檢測技術對早期齒輪箱問題信號的診斷效果

較差。考慮到這一點，本研究基於 KPCA-VMD方法，

提出了一種風力渦輪機齒輪箱早期故障監測和多

維特徵評估方法，用於分析風力渦輪機齒輪箱不明

顯的早期故障信號。首先，對預處理的數據集進行

特徵提取，通過 KPCA 方法對齒輪箱特徵數據進行

降維和重構，使用兩個統計量 T
2
和 SPE 監測齒輪

箱狀態，並通過 VMD分析監測到的異常信號。實驗

數據表明，該方法可以有效診斷齒輪的早期故障特

徵頻率。 
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