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ABSTRACT 
 

Charge seepage in piezoelectric sensor often 
causes a zero-drift problem in measuring cutting 
force, which can influence the ability to get accurate 
cutting forces and cutting constants to monitor 
milling process with a long duration. To overcome 
this difficulty, a robust method for extracting cutting 
constants at any moment in milling by only using the 
measured first harmonic force components is 
presented. There are two steps in this method for 
estimating cutting constants. The first is to find the 
approximations of cutting constants from the ratio of 
the measured first harmonic force components, and 
the second utilizes the equations from the 
components of magnitude of first harmonic force as 
well as the approximations of cutting constants 
calculated in the first step to obtain the refined 
cutting constants by least square method. This paper 
also discusses the limitations of presented method. 
The validity of the proposed method is confirmed 
through milling experiments. 
 
 

INTRODUCTION 
 

Milling is a manufacturing process used in a 
wide range of applications, such as automotive parts, 
aerospace parts, textile machinery parts and electronic 
parts. The current trend of “Industry 4.0” requires that 
manufacturing technology is improved by the 
introduction of methods including self-optimization, 
self-configuration and the other intelligent supports in 

 
 
 
 
 
 
 

the milling process. Undoubtedly, the cutting force 

the milling process. Undoubtedly, the cutting force 
signal can be fundamental and important 
manufacturing information for the required intelligent 
milling technology of “Industry 4.0”. In the past 
research, many manufacturing technologies based on 
cutting force model such as detecting cutter runout, 
sensing cutting tool breakage and tool wear (Wang, 
2003; Altintas, 1989; Zhang, 2010) as well as the 
prediction of surface location errors and stability in 
the milling process (Schmitz, 2006; Zheng, 2013) 
have been developed. The successful operation of the 
manufacturing technology based on cutting force 
model depends on the timely feedback of cutting 
force signal. Therefore, in order to provide intelligent 
milling technology, the availability of online cutting 
coefficients or cutting constants in milling process is 
essential. The type of cutting coefficients or cutting 
constants depends on the selection of a local cutting 
force model. Wang and Zheng (2002) organized the 
local cutting force models into four categories: 
LVCC (lumped variable cutting coefficients), LGCC 
(lumped global cutting constants), DVCC 
(dual-mechanism variable cutting coefficients) and 
DGCC (dual-mechanism global cutting constants). 
The LVCC and DVCC differ from LGCC and DGCC 
in the shearing coefficients which vary with cutting 
parameters instead of being global constants. On the 
other hand, the DVCC and DGCC separate ploughing 
force from shearing force and have double number 
cutting coefficients/constants comparing with the 
LVCC and LGCC. In order to obtain the predictable 
cutting coefficients/constants, most cutting 
coefficients/constants are expressed as function of 
chip thickness or average chip thickness (Kline, 1982; 
Wang, 1994; Zhang, 2005). Some cutting 
coefficients/constants are established as functions of 
chip thickness, axial depth of cut and cutting 
geometry (Yang, 1991; Feng, 1994; Pan, 2017). 
However, the calibrated coefficients/constants cannot 
satisfy the requirements of self-optimization, 
self-configuration and self-diagnosis in intelligent 
milling technology such as the application of 
self-diagnosis of cutting tool wear. For the purpose of 
self-diagnosis of cutting tool wear, the cutting 
coefficients/constants need to be identified at any 
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instant in milling process. Once the threshold value 
of cutting coefficients/constants is detected, the worn 
cutting tool can be replaced automatically, and the 
chip thickness dependent coefficients/constants are 
no longer useful for a self-diagnosis of cutting tool 
wear. Earlier works on the online identification of the 
dual-mechanism global cutting constants have been 
presented by Wang et al. (2003, 2004). Based on the 
analytical nature of frequency milling force model, 
three methods were presented in their works. The 
first method makes use of the first harmonic milling 
force components, the second method uses average 
milling forces and the ratio of the first harmonic force 
components, and the third method utilizes the first 
harmonic milling force components and the ratios of 
first harmonic force components and second 
harmonic force components. Although 
dual-mechanism global cutting constants has 
advantages in independence of chip thickness and 
better accuracy in predicting cutting force, the model 
of lumped global cutting constants (LGCC) is still 
popular for the industry and academia due to its 
simplicity in developing cutting force model. 
Previous works have shown that LGCC can be 
identified from the measured average forces and 
estimated online from the average forces of a single 
cutting test (Wang, 2004; Zhang, 2005). However, 
charge leakage in piezoelectric sensor often causes 
the average forces to drift with time (Zhang, 2005). 
The identification of lumped global cutting constants 
based on average forces model is not suitable for 
applications wherein continuous monitoring of 
milling process is desirable. To overcome a zero drift 
problem due to the charge leakage in piezoelectric 
dynamometer, it is necessary to identify the lumped 
global cutting constants online without inclusion of 
the measured average force, which forms the 
crux/objective of the present research study. 

Section 2 of this paper first presents a method 
to find the approximations of LGCC from the 
analytical expressions for the first harmonic force 
components based on the assumption that cutting 
constants are real numbers. Section 3 deals with the 
method of obtaining optimal LGCC by truncated 
Taylor’s series that utilizes expressions of magnitudes 
of first harmonic force components as well as the 
approximation of cutting constants. Numerical and 
experimental verifications are presented in Section 4 
followed by conclusions. 
 
 

EXTRACTING LGCC WITH RATIO 
OF THE FIRST HARMONIC FORCE 

COMPONENTS 
 

Based on the work by Wang et al. (1994), a 
frequency milling force model with LGCC was 
developed, and the vector of total milling forces can 

be expressed as a function of cutter angular 
displacement by 

( )ϕf =
( )
( )

x

y
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f

φ
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are the coefficients  of  the Fourier series 
expansion  of total milling forces in X and Y 
directions. It is shown that the spectra magnitude of 
total milling forces at normalized harmonic 
frequencies Nk can be expressed explicitly as the 
algebraic functions of cutting parameters. kt and kr 
denote as LGCC in tangential and radial directions. 
They can be shown from Equation (2) that 
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where N and tx denote as flute number of cutter and 
feed per tooth. Cutting parameter functions CP1 and 
CP2 are expressed in terms of flute number of cutter 
N, helix angle α, radius of cutter R, axial depth of cut 
da, entry cutting angle 1θ  and exit cutting angle 2θ   
by 
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Equation (3) shows that LGCC may be 
determined from the measured force at different 
harmonic frequencies in a single cutting test. When 
the normalized harmonic frequency Nk=0 is selected, 
it means that measured average forces are used to 
estimate the LGCC. When it is desirous to extract 
LGCC without the knowledge of average forces, 
force measurements at harmonic frequencies may aid 
the operator/user to identify LGCC through online. 
For the acquisition of highest signal to noise ratio, the 
measured first harmonic force components ( N or -N) 
seems to be more suitable to use in extracting the 
cutting constants rather than other harmonic force 
components. Comparing with usefulness of measured 
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average forces, it is worth noticing that Eq. (3) may 
not be applied directly for extracting cutting constants 
by using the measured first harmonic force 
components due to the lack of knowledge of starting 
angular position of the measurement with respect to 
the force model coordinate system. This implies that 
in order to use kth ( 0k ≠ ) harmonic force component 
to identify cutting constants via Eq. (3), the Fourier 
coefficients [ ]NkA  in Eq. (3) should be transformed 
from the measured harmonic force components 

[ ]Nk′A  through following transformation: 
[ ] [ ] jNkNk Nk e φ− ∆′=A A  

or
[ ] [ ]
[ ] [ ]

x x jNk

y y

A Nk A Nk
e

A Nk A Nk
φ− ∆

 ′   =   ′   
, (7) 

where φ∆  denote as the phase angle difference 
between the starting angular position of the force 
measurement and the origin of cutting position 
defined by the force model as shown in Figure 1. 
 

φ

y

x

xtfeed/tooth:

Starting angular position 

of the force measurement
Origin of cutting position

φ∆

Phase angle difference 

 
 
Fig. 1 Phase angle difference between the starting 
angular position of the force measurement and the 
origin of cutting position. 
 

The phase angle difference can be calibrated by 
an angular position sensor. However, even if the 
milling machine is equipped with an angular position 
sensor; the starting angular position of the force 
measurement is still difficult to align with the origin 
of force model coordinate system.  An extracting 
LGCC method using the measured first harmonic 
force component without the knowledge of phase 
angle difference is presented here. By setting k=1 in 
Equation (7), the ratio of first harmonic forces can be 
expressed as 

[ ] [ ] [ ]
[ ] [ ] [ ]

jN
x x x

jN
y y y
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φ
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Equation (8) shows that the phase angle difference 
between the first harmonic force components in X 
and Y directions remain the same regardless of the 
starting angular position of the force measurement, 
and the values of b and c can be obtained from the 
force measurement. According to the expression of 
Eq. (2), left hand side of Eq. (8) can be written as 
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Equating both right hand sides of the Eq. (8) 
and Eq. (9) results in the following equation: 
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where 1 2 1 2, , ,R R I IP P P P  are the real and imaginary 
parts of 1( )P N  and 2 ( )P N , respectively. Based on 
the assumption in which cutting constants are real 
numbers and splitting both sides of Equation (10) into 
their real and imaginary parts, two possible values of 
kr can be solved with 

2 2 1 2 2 1
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r r
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Substituting kr1 into Eq. (2) and using the magnitude 
components of first harmonic forces in X and Y 
directions, two possible values of kt can be also 
determined by the following formula: 

1 2
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It is noteworthy to observe that the magnitude 
components of first harmonic forces will remain 
unchanged regardless of the phase angle difference. 
Therefore, Equation (12) can be rewritten as 

1 2
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Similarly, substituting kr2 into Eq. (2) and using the 
magnitude of first harmonic forces in X and Y 
directions, there also exists two possible values of kt. 
In that case, they become: 

3 4
1 2 2 2 1 2

2 [ ] 2 [ ]
,

[ ] [ ] [ ] [ ]
x y

t t
x r x r

A N A N
k k

Nt CP N k CP N Nt k CP N CP N
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+ − +
. (14) 

According to the above analysis, four sets of possible 
cutting constants can be obtained from the first 
harmonic forces. They are 1 1( , )r tk k , 1 2( , )r tk k , 

2 3( , )r tk k  and 2 4( , )r tk k . In theory, if the measured 
first harmonic forces do not include ploughing force 
components, it can be found that 1 1( , )r tk k = 

1 2( , )r tk k = 2 3( , )r tk k  = 2 4( , )r tk k . However, in most 
cutting conditions, shearing and ploughing forces are 
all associated with the first harmonic forces. Thus, 
the four sets of possible solutions are different in 
practical milling operations. From the four sets of 
possible cutting constants, the best set of the possible 
cutting constants can be determined by finding the set 
of cutting constants with minimum error of predicting 
forces by following equations: 
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In Equation (15), the best set of the possible 
cutting constants would be taken up by finding the 
cutting constants ( , )ri tjk k  corresponding to the 
minimum value of the sum of squared residuals, Amin. 

The cutting constants ( , )ri tjk k  corresponding 
to Amin are referred to quasi-available cutting 
constants, ( , )rq tqk k  in this paper. It is noted that the 
quasi-available cutting constants may be unable to 
predict the cutting force optimally. To improve the 
quasi-available cutting constants, a refining procedure 
is presented in next section. 
 
 

REFINING QUASI-AVAILABLE 
CUTTING CONSTANTS 

 
A non-linear least square method is used here 

to refine the quasi-available cutting constants by 
successive iterations. From Eq. (2), the first harmonic 
force components can be written as 
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It is desired to find the vector k of cutting constants 
such that the values of 22( [ ] , [ ] )x yA N A N  fit well 

into the force measurements, 
2 2

( [ ] , [ ] )x yA N A N′ ′  

in the least square sense. The detailed process for 
finding the optimal cutting constants can be found in 
the appendix. 

A flowchart is presented in Figure 2 for finding 
the optimal cutting constants krd and ktd. The 
procedure starts with finding the four sets of possible 
cutting constants from the ratio of first harmonic 
forces as shown in Eqs. (11) to (14).  The 
quasi-available cutting constants can serve as the 
initial values of (0)k  vector to find the optimal 
cutting constants krd and ktd through an iteration 
analysis based on a non-linear least square method. It 
is noted that the initial values of (0)k  vector are 
close enough to the desired k  vector in most cutting 
conditions, and thus the iteration procedure requires 
only a small number of iterations to be expected. 
 
 

MODEL VERIFICATION AND 
DISCUSSIONS 

 
Identifying LGCC from Lumped Shearing Force  

The verification starts by specifying the lumped 
global cutting constants (LGCC) as shown in Table 1 
to simulate the total milling forces.  

Start

Read the measured 
harmonic force 
components  [ ]Nk′A

Calculate ( , )i jA
based on Eq. (15)

Find Amin and
( , )rq tqk k

( 1)m−∆kCalculate from Eq. (A5)

(              )1m ≥

( ) ( 1) ( 1)m m m− −= + ∆k k k

Find 1 1( , )r tk k , 1 2( , )r tk k
2 3( , )r tk k and 2 4( , )r tk k

from Eqs. (11)-(14)

,

( 1)m specified error−∆ ≤k

Calculate from Eq. (A7)( , )rd tdk k

End 

No 

Yes 

(0)kCalculate from Eq. (18)

 
 

Fig. 2  Flow chart for finding optimal cutting 
constants. 

 
Table 1. The cutting conditions for the 

identification of cutting constants in the numerical 
simulation. R = 5 mm, 30oα = , tx=0.025mm/tooth. 

No.  1θ (deg) 2θ  (deg) 
ad (mm) N 

1 150 180 4 4 

2 90 180 6 4 

3 0 90 5 4 

4 0 30 3 3 

5 0 179.99 5.5 3 

6 45 135 7.5 3 

7 0 179.99 4.2 4 

8 0 90 6.8 8 
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Using the numerical integration method 
presented by Kline et al. (1982) to emulate the cutting 
force, then the cutting constants 1 1( , )r tk k , 1 2( , )r tk k , 

2 3( , )r tk k  and 2 4( , )r tk k  are identified from the 
simulated first harmonic forces through Eqs. (11) to 
(14). In addition, by letting k=0, Eq. (3) can be 
rewritten as: 

1
0 1 2

0 0 2 1

[0][0] [0] 2
[0][0] [0]

xt

yt r x

Ak CP CP
Ak k CP CP Nt

π
−

    
=     −    

, (19a) 

or 
1

0 1 2

0 0 2 1

[0][0] [0] 2
[0] [0] [0]

xt

t r xy

Ak CP CP
k k CP CP NtA

π
−  ′     =     − ′    

. (19b) 

Equations (19a) and (19b) presented here are similar 
to the works of Wang et al. (1994). Therefore, the 
identified cutting constants from Eq. (19b) agree with 
the works of Wang et al. (1994).The two equations 
show that if zero-drift problem do not exist in 
measuring milling forces, the lumped global cutting 
constants can be simply identified from the measured 
average cutting forces. It should be emphasized that 
the average cutting forces can be measured directly 
regardless of the starting angular position of the force 
measure, i.e.,  ( [ ]0xA , [ ]0yA ) = ( [ ]0xA ′ , [ ]0yA ′ ) , 

which is the advantage of using measured average 
cutting forces to identify cutting constants , 
comparing with using measured harmonic forces to 
identify cutting constants. It is noted that the 
identification of cutting constants from average 
forces is independent of the use of harmonic forces to 
identify the cutting constants due to the independent 
nature at each Fourier coefficients of cutting force. 
As shown in Table 2, the cutting constants identified 
from the first harmonic forces (k=1) are nearly equal 
to the specified cutting constants as well as the 
cutting constants identified from average forces (k=0), 
except the identified cutting constants in last two sets 
of cutting conditions. In the case No. 7 of cutting 
conditions, the inaccurate cutting constants identified 
from first harmonic forces can be explained by that 
the harmonic force components of X and Y forces do 
not exist for an end mill with four flutes in slot 
milling, since 1[ ]P Nk  and 2[ ]P Nk  in Eq. (6) are 
zeros in that case. Further, for an end mill with flute 
number N=4, 6, 8…, Eq. (6) shows that only average 
force components exist in slot milling. The cutting 
condition listed in No. 7 of Table 1 is close to slot 
milling ( 1 20, 180oθ θ= = ), and thus the cutting 
constants identified from first harmonic forces are 
sensitive with calculation error to be expected. 
Similarly, the harmonic force components of X and Y 
forces also nearly vanish under cutting conditions No. 
8, since the value of aη  is close to 1. As shown in 
Eq. (5), [ ]CWD Nk  becomes zero when aη  is a 
natural number, resulting in the disappearance of 

harmonic force components. This condition implies 
that axial depth of cut ad  can be written as 

2 ,
tana
m Rd

N
π

α
=  m=1, 2, 3…, (20) 

where m is a nature number. As shown in Table 2, 
except for the above mentioned limitations of cutting 
conditions, the four sets of possible cutting constants 
identified from simulated first harmonic forces are 
identical due to the representation of cutting force by 
lumped shearing mechanism only. This means that 
the refining procedure of the cutting constant does 
not need to be performed. However, in practical 
milling, the ploughing mechanism have influence on 
cutting forces and thus the four sets of possible 
cutting constants identified from Eqs. (11) to (14) 
would be different. 
 

Table 2. The identified cutting constants form the 
average forces and the first harmonic forces for the 

cutting conditions in Table 1. Specified cutting 
constants ( ,t rk k ) = (1000MPa, 0.3). 

Case  
No. 

Identified LGCC 
form the average 

forces 
(k=0) 

0rk  

0 ( )tk MPa  

Identified LGCC 
 form the first harmonic forces 

(k=1) 

1rk  

1 2, ( )t tk k MPa  
2rk  

3 4, ( )t tk k MPa  

1 0.3 

999.7 

0.3 

999.9,999.7 

0.3 

999.9,999.9 

2      0.3 

    1000 

0.3 

1000.5,1000.2 

0.3 

1000,1000.1 

3 0.3 

1000 

0.299 

1001.2,1000.4 

0.3 

1000,1000 

4  0.3 

1000.2 

0.3 

1000.3,999.9 

0.3 

1000.3,1000.7 

5      0.3 

    1000 

0.3 

1000,1000 

0.3 

1000,1000 

6 0.3 

1000 

0.3 

999.9,999.9 

0.3 

1000,999.9 

7 0.3 

1000 

0.3 

940.7,940.7 

0.316 

940.7,893.7 

8  0.3 

1000 

0.636 

567.8, 905.3 

0.325 

946.3,913.7 

 
In that case, the quasi-available cutting 

constants need to be determined in order to find the 
optimal cutting constants. The validity of refining 
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procedure for estimating optimal cutting constant as 
presented in previous section will be verified through 
milling experiments. 
 
Experimental Verification 

Milling experiments were carried out to verify 
of the identification with first harmonic force 
components for the cutting constants. In the 
experiments, the cutting constants via first harmonic 
force components are identified from the measured 
cutting forces by using the flow chart as shown in Fig. 
2, which including the equations proposed by this 
paper. The cutter/work pair is used: a three-fluted end 
mill of 10mm diameter with Al2024-T4. Based on the 
cutting conditions listed in Table 3, the cutting forces 
were measured with the Kistler 9255B dynamometer. 
 
Table 3. The cutting conditions for the identification 
of cutting constants and the comparing milling forces 

of predicted and measured results. R = 5 mm, 
30oα = , N=3, dry cutting 

Case 
No. 

ad  

(mm) 

rd  

(mm) 

Spindle 
speed 

(rpm) 

Feed rate 

(mm/min) 

Type of 
milling 

1 3 1 900 70 down 

2 3 1 900 90 down 

3 3 1 900 110 down 

4 3 1 900 130 down 

5 3 1 500 80 down 

6 2.5 2 500 100 down 

7 2.5 2 500 120 down 

8 2.5 2 300 90 down 

9 2.5 2 200 100 up 

10 2.5 2 200 120 up 

11 2.5 10 400 100 slot 

12 3 2 300 120 down 

 
Firstly, the force measurements are operated 

with a short duration for the cutting conditions from 
No. 1 to No. 10. Therefore, the measured average 
forces are reliable in those cases. The cutting 
constants listed in Table 4 are identified by using the 
measured average forces (k=0) and first harmonic 
forces (k=1), respectively.  

As noted, there are some differences among the 
four sets of possible cutting constants, 1 1( , )r tk k , 

1 2( , )r tk k , 2 3( , )r tk k  and 2 4( , )r tk k  as shown in 
Table 4. 
 

Table 4. The identified cutting constants form the 
average forces and the first harmonic forces for the 

cutting conditions in Table 3. 
LGCC form 
the average 

forces 

(k=0) 

LGCC form the first harmonic forces 

(k=1) 

Case  

No. 

0rk  

0tk  
(MPa) 

1rk  

1 2,t tk k  
(MPa) 

2rk  

1 2,t tk k  
(MPa) 

rqk  

tqk  
(MPa) 

rdk  

tdk  
(MPa) 

1 0.686 
2570 

0.686 
2470,2429 

0.674 
2449,2455 

0.674 
2455 

0.676 
2452 

2 0.651 
2213 

0.674 
2158,2055 

0.637 
2108,2122 

0.637 
2122 

0.642 
2114 

3 0.619 
1954 

0.658 
1928,1789 

0.603 
1862,1880 

0.603 
1880 

0.609 
1869 

4 0.594 
1799 

0.643 
1789,1632 

0.577 
1715,1735 

0.577 
1735 

0.585 
1723 

5 0.579 
1713 

0.633 
1710,1547 

0.561 
1635,1655 

0.561 
1655 

0.569 
1643 

6 0.473 
1372 

0.414 
1225,1319 

0.456 
1275,1274 

0.456 
1274 

0.455 
1274 

7 0.452 
1293 

0.384 
1150,1262 

0.436 
1209,1208 

0.436 
1208 

0.435 
1208 

8 0.427 
1212 

0.352 
1080,1201 

0.412 
1142,1140 

0.412 
1140 

0.411 
1141 

9 0.446 
1027 

0.61 
911,1076 

0.379 
1032,1066 

0.379 
1032 

0.367 
1039 

10 0.422 
1004 

0.59 
891,1640 

0.368 
1006,1037 

0.368 
1006 

0.356 
1013 

11 0.426 
1076 

0.282 
889,888 

0.283 
887,888 

0.283 
887 

0.282 
887 

12 0.545 
259 

0.323 
1017,1136 

0.386 
1077,1074 

0.386 
1074 

0.384 
1076 

 
It can be attributed by the existence of 

ploughing forces which are not clearly separated from 
the lumped shearing force model. The optimal cutting 
constants from first harmonic forces, ( , )rd tdk k , and 
the cutting constants identified from the measured 
average forces, 0 0( , )r tk k , are used to predict the 
cutting forces. Some predicted forces in the angle 
domain and frequency domain are shown in Figs. 3-4 
along with the measured forces. Strictly speaking, the 
simulation results both by using  0 0( , )r tk k  and 

( , )rd tdk k  were in agreement with those of predicted 
forces evaluated with the measured ones. Those 
identified cutting constants 0 0( , )r tk k  and ( , )rd tdk k  
for the cutting conditions as depicted in Table 4 are 
expressed as functions of average chip thicknesses by 

0.22
0

0.39
0

0.29

0.38

0.23( )
362.13( )

0.17( )
363.92( )

r c

t c

rd c

td c

k t
k t
k t

k t

−

−

−

−

 =
 =


=
 =

. (21) 
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A little prediction errors are found mainly from 
the existence of cutter runout which is not considered 
in the presented force model. Based on the work by 
Wang et al. (2003), the cutter runout related cutting 
forces are characterized by having harmonic force 
components at one spindle frequency above and 
below the nominal cutting force frequencies, Nk. For 
example, the measured harmonic forces components 
at f0, 2f0, 4f0, 5f0… (f0=spindle frequency=15 Hz) can 
be attributed to be caused by cutter runout as shown 
in Fig. 3. 

Two additional milling experiments using the 
same cutter/work pair are conducted with different 
cutting conditions from cases 11 and 12 of Table 3. 
According to the prediction results from case of No. 
11, the simulation results by using 

0 0( , )r tk k  seem to 
have better predictive accuracy than the simulation 
results by using  ( , )rd tdk k  in angular domain as 
shown in Fig. 5. In that case, the four sets of possible 
cutting constants are nearly identical. This result 
indicates that ploughing forces components 
practically vanish in the first harmonic forces. 
Therefore, the cutting constants identified from the 
first harmonic forces are pure shearing constants 
instead of lumped shearing constants.  

In addition, the cutting constants identified 
from average forces are obviously larger than the 
cutting constants identified from the first harmonic 
forces as shown in Table 4, which implies that the 
ploughing forces components are still associated with 
shearing forces components in the average forces 
contents.  

Due to the absence of ploughing forces 
components in first harmonic forces, the simulation 
results by using ( , )rd tdk k  fail to predict the average 
forces components in the case of No. 11. On the other 
hand, the simulation results seem to be acceptable in 
predicting the first harmonic forces by using 0 0( , )r tk k , 
although the predicted first harmonic forces based on 
( , )rd tdk k  are more accurate.  

For further verification of the identification 
method based on first harmonic forces, the force 
measurement is operated during a longer duration 
under the No. 12 cutting conditions. Obviously, the 
cutting constants identified from measured average 
forces are not reasonable for practical milling, since 
they fail to predict the measured harmonic cutting 
forces as shown in Fig. 6. On the other hand, the 
predicted forces from ( , )rd tdk k  succeed in 
predicting the milling forces at all nominal cutting 
frequencies, except for the average forces 
components. It is also noted that the identified cutting 
constants are very close to the calibrated cutting 
constants from Eq. (21). Through experimental 
results above, the presented identification method of 
LGCC From first harmonic force components in end 
milling has been validated. 
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Fig. 3 Comparison of measured and predicted forces, 

(a): in angle domain and (b): in frequency 
domain. Solid line: measured forces. O: 
predicted forces using cutting constants 
identified from average forces. Δ: predicted 
forces using cutting constants identified from 
first harmonic forces. Cutting conditions: case 
3 in Table 3. 
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Fig. 4 Comparison of measured and predicted forces, 

(a): in angle domain and (b): in frequency 
domain. Solid line: measured forces. O: 
predicted forces using cutting constants 
identified from average forces. Δ: predicted 
forces using cutting constants identified from 
first harmonic forces. Cutting conditions: case 
10 in Table 3. 
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Fig. 5 Comparison of measured and predicted forces, 

(a): in angle domain and (b): in frequency 
domain. Solid line: measured forces. O: 
predicted forces using cutting constants 
identified from average forces. Δ: predicted 
forces using cutting constants identified from 
first harmonic forces.Cutting conditions: case 
11 in Table 3. 
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Fig. 6 Comparison of measured and predicted forces, 

(a): in angle domain and (b): in frequency 
domain. Solid line: measured forces. O: 
predicted forces using cutting constants 
identified from average forces. Δ: predicted 
forces using cutting constants identified from 
first harmonic forces. Cutting conditions: case 
12 in Table 3. 

CONCLUSIONS 
 

Comparing with the existing methods to 
identify LGCC based on cutting force model, this 
paper presents a method for extracting cutting 
constants without the need of measured average 
cutting forces. Charge seepage in piezoelectric sensor 
often causes a zero-drift problem in using force 
dynamometer as shown in Fig. 7, and it will be 
difficult to get accurate average cutting forces to 
identify cutting constants for continuous monitoring 
of milling process with a long duration.  

The problem could be solved by the presented 
method. In this study, by using the ratio of first 
harmonic forces, four sets of possible cutting 
constants were found based on the assumption that 
cutting constants are real numbers. Subsequently, a 
set of cutting constants is selected from the four sets 
of possible cutting constants by fitting the measured 
first harmonic force in the least square sense. Finally, 
the quasi-available cutting constants can serve as the 
initial values to find the optimal cutting constants krd 
and ktd through an iteration analysis based on a 
non-linear least square method.  

The main conclusions extracted from present 
work are given as follows: 
1) Strictly speaking, in contrast with the measured 

cutting forces, the cutting constants as identified 
from both average forces and first harmonic 
forces have good prediction accuracy so far as 
online identification of cutting constants are 
concerned. 

2) In theory, if the four sets of possible cutting 
constants are found to be identical such as in slot 
milling for a cutter with three flutes, there are no 
ploughing forces components in the first 
harmonic forces contents but the ploughing forces 
components do not vanish in the average force 
components. In that case, the simulation results 
seem to be acceptable in predicting the cutting 
forces by using the cutting constants identified 
from average forces, although the predicted first 
harmonic forces based on the optimal cutting 
constants are more accurate. 

3) Cutting conditions at or close to some special 
cases will result in zero or very small values of 
first harmonic forces and are not allowed in the 
application of presented method. In addition, in 
slot milling, first harmonic forces will also vanish 
for an end mill with 4, 6, 8…cutting flutes and the 
presented identification method should be 
avoided to use under these conditions. 

4) Through the application of the presented 
identification method, a continuous monitoring of 
milling process is made possible where the 
piezoelectric dynamometer suffers from zero-drift 
problem. 
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APPENDIX 
 

The sum of squared residuals S is given by 
2 2 22 2 2( [ ] [ ] ) ( [ ] [ ] )x x y yS A N A N A N A N′ ′= − + −

2 2
1 1 2 2( ) ( )A A A A′ ′= − + − . (A1) 

Minimum S happens when the gradient 

j

S
k

∂
∂

(j=1, 2) is zero. Since S contains two parameters 

k1 and k2, when S is minimized, two gradient 
equations can be expressed by 

1 2
1 1 2 2

1 1

1 2
1 1 2 2

2 2

( ) ( ) 0

( ) ( ) 0

A AA A A A
k k
A AA A A A
k k

∂ ∂ ′ ′− + − = ∂ ∂
 ∂ ∂ ′ ′− + − =
 ∂ ∂

. (A2) 

In addition, using the truncated Taylor series, Ai 
(i=1, 2) can be approximated by 

( )2
( ) ( )

1

( )( ) ( ) ( )
n

n ni
i i j j

j j

AA A k k
k=

∂
≈ + −

∂∑ kk k . (A3) 

Here, n is an iteration number, and the initial 
values of (0)k  vector can be chosen by substituting 
( , )rq tqk k  into Eq. (18) since ( , )rq tqk k  are close 

enough to the desired cutting constants ( , )rd tdk k in 
most cutting conditions as mentioned in section 2. 
After refining (0)k  iteratively for (m-1) times, if the 
difference of norm between the vectors ( )mk  and 

( 1)m−k  is less than the specified error, the desired 
k can be obtained by 

( ) ( 1) ( 1)

( 1) ( ) ( 1)
1 1 1
( 1) ( ) ( 1)
2 2 2

m m m

m m m

m m m

k k k
k k k

− −

− −

− −

= = + ∆

   −
= +   

−   

k k k k
. (A4) 

Substituting Eq. (A3) into Eq. (A2), the shift 
vector ( 1)m−∆k  can be found in following matrix 
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form: 

( 1) ( 1) ( 1)

( 1) 1 ( 1)( )
m m m

m T m
− − −

− − −∆ = ∆k J J J A , (A5) 

where 
( 1) ( 1)

1 1

1 2
( 1) ( 1) ( 1)

2 2

1 2

( 1)
( 1) 1 1

( 1)
2 2

( ) ( )

,
( ) ( )

( )
( )

m m

m m m

m
m

m

A A
k k

A A
k k

A A
A A

− −

− − −

−
−

−

 ∂ ∂
 ∂ ∂ =  ∂ ∂
 

∂ ∂  
 ′ −

∆Α =  ′ − 

k k

J
k k

k
k

 (A6) 

The subscript (m-1) of 
( 1)m−J  and ( 1)m−∆A  implies 

that 
( 1)m−J  and ( 1)m−∆A  change from one iteration 

to the next and are associated with ( 1)m−k  vector. 
Once the ( )mk  (

1

( ) ( )
2,m mk k ) is determined through 

the iteration analysis, the optimal cutting constants ktd 
and krd are given by 

1

2

1

( )

( )

( )

2 m

xtd
m

rd
m

k
Ntk

k k
k

π 
 

   =      
 
 

. (A7) 

 
 

NOMENCLATURE 
 
α, N, R helix angle, number of cutter flutes and 

radius of end mill 
 
A Fourier series coefficients of the total forces 
 

′A , xA′ , yA′  measured Fourier series coefficients 
vector of the total forces and its 
components 

 
CWD chip density function 
 
da, dr axial and radial cutting depths 
 
φ cutter angular displacement 
 

φ∆  phase angle difference between the starting 
angular position of the force measurement and 
the origin of cutting position 

 
k , ∆k  vector of cutting constants and its shift vector 
 
kr, kt cutting constants in radial and tangential  
    directions 
 
krq, ktq quasi-available cutting constants 
 
krd, ktd optimal cutting constants 

 
P1, P2 elementary cutting functions of local tangential 
     force 
 
θ 1, θ 2 entry cutting angle and exit cutting angle 
 
tx feed per tooth 
 
 
 

在傳統銑削過程中利用第

一諧波分力來估算比切削

常數 
 

鄭嘉敏       巴布 
福建工程學院機械與汽車工程學院 

司禮文卡特史瓦拉大學工程學院機械工程系 

 
 

摘 要 
 

壓電感測器中的電流滲漏經常導致使用動力

計的力量信號漂移問題，這問題將導致難以獲得準

確的切削力來識別用於連續監測長時間銑削過程

的切削常數。為了克服這個困難，本文提出了一種

在銑削中的任何時刻僅使用第一諧波分力來辯識

切削常數的穩健方法。該方法利用兩個步驟來估算

切削常數。第一步是利用測量所得的第一諧波分力

的比值中找出切削常數的近似值，第二步是利用最

小平方法根據第一諧波力分力的大小以及步驟一

所得的切削常數近似值得來獲得更精確的切削常

數。本文還討論了所提方法的局限性並通過銑削實

驗證實了該方法的有效性。 


