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ABSTRACT 
 

The calculation of the flow parameters at the 
center of a throat expansion of a supersonic nozzle 
design in the real gas model is of practical interest in 
aerospace construction. The expansion center is 
characterized by the end of an infinite Mach lines 
which will be discretized by a finite number with 
continuous increase of Mach number and the PM 
value with a decrease of the temperature, density and 
the pressure. The flow parameters must be calculated 
by determining the inverse of the PM. This function 
depends on two variables which are the temperature 
and the density. The aim of this work is to develop a 
fast algorithm allowing to do the inverse of the PM in 
the context of real gas model by the determination of 
the temperature and the density corresponding to the 
given PM deviation which is itself depends on the 
flow deviation according to the shape of the 
supersonic nozzle. The Bernoulli equation must be 
added to construct two nonlinear algebraic equations 
with two coupled unknowns. The corresponding 
Mach number and pressure will be determined by 
analytic equations. The two equations are presented 
as integral of four complex functions, where the 
integration is made by the Gauss Legendre's 
quadrature. The numerical solving of system of 
equations is done by combining the successive 
approximation algorithm and the bipartition 
algorithm. The initial solution is chosen as the 
parameters corresponding to the previous Mach line 
to ensure the convergence and accelerate the 
numerical process. The comparison is made with 
previous algorithm. 

 
 

. 

 
 

 
INTRODUCTION 

 
In the aerospace industry, the problem of the 

supersonic nozzles design is a very important phase 
before moving on to construction. This phase requires 
a fairly large computation time by computer to obtain 
the results given the poor choice of the developed 
numerical algorithms. In some cases it is impossible 
to start to solve some problems because the 
development of algorithms is impossible because of 
difficulties of intermediate calculation or bad vision 
on the development or improvements of the 
algorithms or bad initial conditioning.  

In (Salhi and Zebbiche, 2015), (Salhi, Zebbiche, 
2016b), and (Salhi, 2017), a model based on the RG 
approach to determine the P0 effect on the 
thermophysical parameters of a supersonic flow in an 
unidirectional nozzle is developed, and in (Salhi, 
2017), (Salhi, Zebbiche and Mehalem, 2016a), (Salhi, 
Zebbiche and Roudane, 2016b), an approach to the 
PM based always on the RG model to determine the 
P0 effect on this function is presented. In these 
references, the approach is made by the RG 
Berthelot's state equation.  

In (Salhi, 2017), a model of calculation based on 
the MOC taking into account the approach of RG to 
make the effect of P0 on the design of the supersonic 
2D MLN giving a uniform and parallel flow at the 
exit section is presented. To reach the goal, the 
studies presented in (Salhi and Zebbiche, 2015), 
(Salhi, Zebbiche and Mehalem, 2016a, 2016b), (Salhi, 
2017) and (Salhi, Zebbiche and Roudane, 217b) are 
used to develop the MOC model including the PM.  

In (Salhi, 2017), (Salhi, Zebbiche and Mehalem, 
2016a) and (Salhi, Zebbiche and Roudane, 2017), the 
problem encountered is the resolution of the system 
of non-linear equations with two unknowns based on 
the computation of 4 integrals of complex functions, 
especially for PM inversion, necessary at the throat 
nozzle expansion center to determine the flow 
parameters to allow the use of the MOC. The 
algorithm presented in (Salhi, 2017) requires a very 
high computation time with a discussed precision. So 
as solutions, the authors used a small number of mesh 
points to have only approximated results in a 
moderate time.  

The aim of this work is to develop a fast and 
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accurate algorithm allowing to do the inverse of the 
PM in the context of RG model by the determination 
of the temperature and the density corresponding to 
the given PM deviation which itself depends on the 
flow deviation according to the shape of the 
supersonic nozzle. The Bernoulli equation must be 
added to construct two nonlinear algebraic equations 
with two coupled unknowns T and ρ. The values of M 
and P are determined by analytic equations. The two 
nonlinear equations are presented by integral of four 
complex functions, where the integration is made 
numerically by the Gauss Legendre's formulae. The 
numerical solving of the system of equations is done 
by combining the successive approximation 
algorithm and the bipartition algorithm to accelerate 
the numerical process. The initial solution is chosen 
as the parameters corresponding to the previous 
Mach line. The application is made at the MLN 
expansion center and the PN lip to make design in a 
much reduced time with high precision. 

 
MATHEMATICAL FORMULATION 

 
For our RG model, all state parameters can be 

defined by two state variables (Thompson, 1995), 
(Van Wylen, 1973) and (Annamalai, Ishwar and 
Milind, 2011), chosen by T and ρ. But for HT 
(Zebbiche and Youbi, 2007a, 2007b) and PG  
(Zebbiche, 2005) and (Emanuel and Argrow, 1988) 
models, all the state parameters depends only on one 
state variable. The expansion center A is the point of 
discontinuity, to see Fig. 1. At this point there is   
sudden increase of all the thermo-physical parameters. 
This discontinuity gives infinity of Mach line which 
is issued from point A. In each deviation i (i=2, 3, …, 
N) of a new Mach line, the PM takes the following 
value from the sonic Mach line, 

 
θν ∆−=  )1(ii                               (1) 

 
In relation (1), Δθ is given if the ME is from the 

data, or calculated from θ*. 
 

 
 
 
 
 

 
Fig. 1 Expansion at the throat for nozzle design 

 
The problem consists in determining Ti, ρi, Mi and 

Pi corresponding to this deviation numbers i. Since 
PM depends on two variables T and ρ (Salhi, 2017), 
(Salhi, Zebbiche and Mehalem, 2016a) and (Salhi, 
Zebbiche and Roudane, 2017), we must solve the 
following two nonlinear algebraic equations 
simultaneously to obtain Ti and ρi. Equation (2) is 
obtained by equalization of the PM (Salhi, 2017), 

(Salhi, Zebbiche and Mehalem, 2016a) and (Salhi, 
Zebbiche and Roudane, 2017) with Eq. (1), and Eq. 
(3) is the Bernoulli equation (Salhi and Zebbiche 
2015), (Salhi, Zebbiche and Mehalem, 2016a, 2016b), 
(Salhi, 2017), (Salhi, Zebbiche and Roudane, 2017). 
So, 
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For the Berthelot state equation, the expressions 

of V(T, ρ), SV(T, ρ), CT(T, ρ) and CP(T, ρ) are 
presented in (Salhi and Zebbiche, 2015), (Salhi, 
Zebbiche and Mehalem, 2016a, 2016b), (Salhi, 2017), 
(Salhi, Zebbiche and Roudane, 2017).  

The pressure can be calculated by the following 
Berthelot state equation (Salhi and Zebbiche, 2015), 
(Salhi, Zebbiche and Mehalem, 2016a, 2016b), (Salhi, 
2017), (Salhi, Zebbiche and Roudane, 2017), 
(Thompson, 1995), (Van Wylen, 1973) and 
(Annamalai, Ishwar and Milind, 2011), 
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The integrals in (2) and (3) are evaluated by the 

Gauss Legendre formulae of order 20 (Raltson and 
Rabinowitz, 1985). 

For air, we have γPG=1.402, R=287.1029 J/(kg K), 
a=117.2666 Pa m6, b=1.07334×10-3 m3 and α=3056.0 
K (Salhi and Zebbiche, 2015), (Salhi, Zebbiche and 
Mehalem, 2016a, 2016b), (Salhi, 2017), (Salhi, 
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Zebbiche and Roudane, 2017), (Thompson, 1995), 
(Van Wylen, 1973) and (Annamalai, Ishwar and 
Milind, 2011). 
 

ALGORITHM FOR EXPANSION 
CENTER 

 
After mathematical calculations and adaptation of 

the successive approximations algorithm, Eq. (3) 
takes the form (10) at the iteration K+1, 
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Then, at the iteration (K+1), the relation (2) takes the 
following form, 
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This gives a nonlinear equation to one unknown 

Ti
K+1. The solution lies in the following interval (12) 

regardless of the value of K, which is determined by 
the use of the dichotomy algorithm (Raltson and 
Rabinowitz, 1985), 
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In Eq. (11), the value of ρi

K+1 is given by (10). At 
iteration K=0, the solution at the point i is taken equal 
to the values of the previous Mach line corresponding 
to i-1, that is to say, 
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To determine the solution Ti

K+1 according to the 
interval (12), the minimum NT number can be 
calculated by the following relation (14) (Raltson and 
Rabinowitz, 1985): 
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Where: 
 
TD=Ti-1         ,       TG=TE                       (15) 
 

The maximum value of NT for the most 
unfavorable case is that, if ε=10-8, in the supersonic 
regime ME≤5.00, cannot exceed 30 according to (14).  

If this algorithm is used to solve an arbitrary point 
that is not related to the design problem of a 
supersonic nozzles, we can take an arbitrary initial 
value ρi

K=0<ρ* and TD=T* and TG=0.0. Here the 

iteration numbers NT and Nρ will be increased or 
decreased compared to our consideration. 

The final solution at point i, after K iterations, will 
be obtained if condition (16) is satisfied 
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The values of Mi and Pi are determined by the 

relations (8) and (9). 
Concerning the angle θi, it is equal for example to 

νi for the MLN [9, 12], and equal to νE-νi for the PN 
(Zebbiche and Youbi, 2007b) and (Zebbiche, 2005). 

The problem discussed is the improvement of the 
calculation time and the obtained precision in the 
design of the MLN and PN. 

 
RESULTS AND COMMENTS 

 
In the presentation of the results, the initial 

solution of T and ρ, at the iteration K=0, are chosen 
by Ti

K=0=T* and ρi
K=0=ρ*; The values of T* and ρ* 

depends on T0 and P0. 
Table 1 presents the values of the thermophysical 

parameters (T/T0, ρ/ρ0, M and P/P0) corresponding to 
the values of ν with ε=10-5 when T0=2000K and 
P0=50 bar. The values are determined by the 
developed program by inverting the PM coupled with 
the Bernouli equation. 

 
Table 1 : Supersonic parameters correspond to PM 

values for T0=2000 K, P0=50 bar and 
ε=10-6. 

ν(°) T/T0 ρ/ρ0 M P/P0 
1 0.83305 0.55137 1.07348 0.45740 
5 0.79176 0.46801 1.22816 0.36872 
10 0.74924 0.39206 1.38313 0.29209 
20 0.67043 0.27549 1.66955 0.18346 
30 0.59367 0.18855 1.95964 0.11109 
40 0.51739 0.12407 2.27198 0.06367 
50 0.44152 0.07774 2.62245 0.03403 
55 0.40388 0.06023 2.81815 0.02411 
60 0.36657 0.04591 3.03204 0.01668 
65 0.32972 0.03436 3.26880 0.01122 
70 0.29355 0.02519 3.53467 0.00732 
75 0.25830 0.01803 3.83786 0.00461 
80 0.22430 0.01256 4.18900 0.00279 
85 0.19191 0.00847 4.60143 0.00161 
90 0.16148 0.00550 5.09192 0.00088 
95 0.13330 0.00341 5.68270 0.00045 

100 0.10755 0.00200 6.40625 0.00021 
 

Tables 2 presents the necessary iteration umbers 
NT and Nρ as a function of ε. We note the influence of 
all parameters on NT and Nρ, especially ε and ν. We 
have observed that the influence of T0 and P0 on NT 
and Nρ is quite slight with NT=20 and Nρ=4 for ε=10-5.  

If we apply this algorithm on the design process 
of a supersonic nozzle, the iteration numbers NT and 
Nρ are slightly small by those found in table 2, since 
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the initial solution will be taken close to the found 
solution according to the proposal (13), which gives a 
very advantageous result to further accelerate the 
numerical calculation process.  

According to (14), the number NT depends on the 
search interval of the solution TiK+1 by the choice of 
TD and TG and especially the desired accuracy ε. 

For comparison, the difference between the 
results presented in the table 1 and those in (Salhi, 
2017) can reach 29% with the values in table 1 are 
lower than those in Ref. [3]. For example, from (Salhi, 
2017), if ν=60°, we have M=4.21502, with an error 
ε=28% approximately. Consequently, the other 
parameters, and, according to (Salhi, 2017), are equal 
to T/T0=0.46852, ρ/ρ0=0.06971 and P/P0=0.02433 
giving respectively errors of 22%, 34% and 31%. 
 
Table 2: Numbers of iterations corresponded to desired 

precision for νi=60°, T0=2000 K and P0=50 bar. 
ε 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 

NT 7 10 14 17 20 24 27 30 
Nρ 3 4 4 4 5 5 5 6 

 
COMPARISON WITH ALGORITHM 

OF (SALHI, 2017) 
 

The first comparison on the integrals of (3) and (4) 
is that (Salhi, 2017) used Simpson's formula with 100 
points for applications, while our algorithm uses 
Gauss Legendre quadrature of order 20 with its high 
power and precision. We know that despite 100 
points are used, the precision given by (Salhi, 2017) 
is still very small compared to the precision given by 
our squaring. Therefore, the execution time of our 
algorithm is lowered 5 times in this context compared 
to that of (Salhi, 2017). 

The second comparison on the technique used to 
determine (Ti, ρi) as a solution to the expansion center 
A, the Ref. (Salhi, 2017) searches for the root by the 
scanning of the intervals [TE, T*] and [ρE, ρ*] on a 
number of points equal to 100×100 for each Mach 
line i (i=2, 3, ..., N). Then it determines the root on 
the basis that the values given by Eqs. (2) and (3) are 
the smallest possible in absolute values. Since there is 
a physical solution for each deviation νi, the solution 
will be accepted with a discussion of accuracy. The 
authors of (Salhi, 2017) have used this technique to 
avoid the computation of the partial derivatives of the 
functions under the integral sign presented in (2) and 
(3), since all the algorithms use the Jacobean 
formulated on the computation of these derivatives. It 
should be noted that the computation of the partial 
derivative with respect to T has a major difficulty 
compared to the partial derivative with respect to ρ. 
The execution time is very high since their algorithm 
calculates 4×100×100=40000 integrals by the 
Simpson formula for each Mach line i (i=2, 3, …, N). 
For information, our algorithm makes a number of 

4×NT×Nρ integrations by the Gauss Legendre 
formulae of order 20 for each value of νi. 

From Refs (Salhi and Zebbiche, 2015), (Salhi, 
Zebbiche and Mehalem, 2016a, 2016b), (Salhi, 2017) 
and (Salhi, Zebbiche and Roudane, 2017), for each 
pair (T, ρ), we need respectively 18, 42, 23, 35 
mathematical operations to obtain the values of V(T, 
ρ), SV(T, ρ), CT(T, ρ) and CP(T, ρ) after removing the 
additional mathematical operations.  

Note that the integrals in (2) and (3) are 
formulated by the functions ν1(T, ρ), ν2(T, ρ), E1(T, ρ) 
and E2(T, ρ), and according to (5), (6), (7) and (8), we 
note again that the 4 said functions are formulated by 
V(T, ρ), SV(T, ρ), CT(T, ρ), CP(T, ρ) and M(T, ρ). Then, 
as a numerical technique, to reduce the execution 
time as much as possible, it is recommended to avoid 
the calculation of the 4 integrals separately and to 
group the computation in two quadratures to avoid 
the repetition of the calculations of the terms form the 
functions ν1(T, ρ), ν2(T, ρ), E1(T, ρ) and E2(T, ρ) since 
the Gauss Legendre quadrature order and the bounds 
of the integration are the same respetively for ν1(T, ρ), 
E1(T, ρ) and the same for ν2(T, ρ), E2(T, ρ). Then we 
need only 8×20 additional mathematical operations to 
evaluate 2 integrals at the same time witch calculated 
2 times without repetition, instead of repeating each 
time the calculations of V(T, ρ), SV(T, ρ), CT(T, ρ), 
CP(T, ρ) in the calculation if the 4 integrals are 
evaluated separately. Then in total we need of 
(18+42+23+35+8)×20×2=2520×2 mathematicals 
operations to evaluate the 4 integrals for each 
iteration without repetition. Then the total number of 
mathematical operations, for each point of Mach line 
i (i=2, 3, …, N) is equal to 5040×NT×Nρ. 

In (Salhi, 2017), the evaluation of the 4 integrals 
presented in (2) and (3) is done separately. For this, 
and given the skew of the Simpson formula, the 
number of mathematical operations performed for 
each iteration is equal to (18+42+23+35+8)×100×4 
=50400. Compared with the number of our 
mathematical operation, the execution time is 
decreased 10 times on this path. 

Two solutions can be chosen for the algorithm of 
(Salhi, 2017) is the use of a very powerful computer 
to hide this disadvantage, or to make calculations for 
large meshes only to have first solutions that do not 
contain a number of lines Mach enough. So given the 
obtained NT and Nρ according to table 2, we can say 
that our execution time is lowered in the unfavorable 
case to (100×100)×10/(30×6)=555 times without 
comparing the accuracy between the two algorithms.  

For example, for N=100 Mach lines, if our 
calculation is done in 1 second, the algorithm of 
(Salhi, 2017) does the same calculation in about 9 
minutes, without speaking about the precision 
obtained. So, our algorithm can be used successfully 
for meshes of very fine design. 

Figure 2 show the effect of P0 on the contour of 
the 2D MLN, giving ME=3.00 at the exit when 
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T0=2000 K. The design is done with a very large 
mesh point number using the algorithm presented in 
this work on the calculation of the flow parameters at 
the expansion center. Five values of P0 were taken 
which are 1 bar, 5 bar, 10 bar 50 bar and 100 bar. In 
this figure, the contours for the same data for the PG 
(Emanuel and Argrow, 1988) and HT (Zebbiche and 
Youbi, 2007a) models were added for comparison 
purposes. The corresponding numerical design results 
are presented in in table 3. The influence of P0 on the 
nozzle contour and on all the design parameters is 
clearly visible. In this case, the size of the nozzle 
given by our model RG is quite large compared to the 
size of the nozzles given by PG and HT models, 
whatever the value of P0. This result is very 
advantageous making it possible to say that in order 
to have a complete expansion inside the nozzle 
according to the real gas flow behavior, a large space 
of the nozzle is required compared to that given by 
the PG and HT models. 

 

 
 
Curve 1 : RG (P0=1 bar) , Curve 2 : RG (P0=5 bar) 
Curve 3 : RG (P0=10 bar) , Curve 4 : RG (P0=50 bar) 
Curve 5 : RG (P0=100 bar) , Curve 6 : HT (T0=2000 K) 
Curve 7 : PG (γ=1.402) 
 
Fig. 2 P0 effect on the RG 2D MLN design 
 
Table 3: Design values for the nozzles of Fig. 2 ν(°) P0 (bar) L/y* CMass CF yE/y* 

1 1 22.307 45.398 0.353 5.673 
2 5 22.190 45.166 0.351 5.579 
3 10 22.102 44.986 0.350 5.571 
4 50 21.387 43.533 0.342 5.569 
5 100 21.085 42.911 0.339 5.359 
6 HT 19.671 20.306 0.336 4.981 
7 PG 16.818 17.291 0.296 4.211 

 
CONCLUSIONS 

 
This work enabled us to develop an algorithm 

making fast calculation of the reverse of PM for RG 
model, and determine all thermophysical parameters 
in the expansion center of the supersonic nozzle 
designed on RG model. The following conclusions 
are obtained: 
1. The numbers NT and Nρ depends especialy on the 

desired precision ε. 
2. The Gauss Legendre formulae of order 20 is used 

for the numerical evaluation of the presented 4 
integrals with great precision. 

3. The dichotomy algorithm is used for T calculation 
and the algorithm of successive approximations is 
suitable for the ρ calculation. 

4. The PM depends on a single variable for the HT 
and PG models and on two variables for RG 
model, which affects the simplicity of calculation 
and the execution time between the three models. 

5. Our algorithm can be used for very fine design 
meshes giving a great precision in a very reduced 
computation time. 
Develop an algorithm to solve the two nonlinear 

algebraic equations to calculate T2/T1 and ρ2/ρ1 
through the normal shock wave based on the RG 
model. 

The second problem is to use this algorithm for 
the supersonic nozzle design of RG model. 
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NOMENCLATURE 

 
M  Mach number. 
x, y  Coordinate of a point 
a  Constant of intermolecular forces. 
b  Constant of molecular size 
α  Molecular vibration energy constant 
t  Integration variable 
ν1  First part for Prandtl Meyer function 
ν2  Second part for Prandtl Meyer function 
ν  Prandtl Meyer function 
E1  First function for Bernoulli equation 
E2  Second function for Bernoulli equation 
SV  Sound velocity. 
V  Flow velocity 
θ  Flow angle deviation. 
Nρ  Number of iteration for solution ρ 
NT  Number of iteration for solution T 
Δθ  Step from the expansion center for θ. 
P  Pressure. 
T  Temperature. 
R  Gas constant. 
CP  Specific heat to constant pressure. 
CT  Specific heat at constant temperature 
CF  Thrust coefficient of MLN 
L  Length of the nozzle. 
CMass  Non-dimensional nozzle mass. 
yE/y*  Critical section ratio of MLN 
γ  Specific heats ratio. 
ρ  Density. 
ε  Tolerance of calculation (desired precision). 
f  Nonlinear equations 
PG  Perfect gas model 
HT  High Temperature model 
RG  Real Gas model 
PM  Prandtl Meyer function 
MLN  Minimum Length Nozzle 
MOC  Method Of Characteristics 
PN  Plug Nozzle 
 
Subscripts 
 
0  Stagnation condition (combustion chamber). 
*  Critical condition. 
E  Exit section of the nozzle 
i  Point. 
K  For numerical iteration process 
G, D  End of interval, see equations (14) and (15). 


