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ABSTRACT 
 

To develop a fault detecting model for moni-
toring the health of a drive shaft during operation of 
trains on Taipei’s Wenhu train line, this study devel-
oped a train drive shaft fault detection method by 
using principal component analysis (PCA). First, 
numerous features were extracted from drive shaft 
vibration signals collected during train operation. 
Redundant features were removed through feature 
ranking, and PCA was used to reduce the features’ 
dimensionality. The model was ultimately established 
using PCA and Hotelling’s T2 statistics. The proposed 
method is constructed using only vibration data from 
a healthy drive shaft. The feasibility of the proposed 
methodology was validated experimentally. The 
detection rate and false positive rate were 100% and 
4.7%, respectively. The main contributions of this 
study are as follows: Interpretable drive shaft wear 
signals were identified. The diagnosis model is con-
structed entirely from measurements of healthy drive 
shafts. The model enables real-time drive shaft mon-
itoring. 
 

INTRODUCTION 
 

The key components of a drive shaft in a mass 
rapid transit (MRT) railway vehicle are a rotary shaft, 
a ball socket base, a ball, and a shaft base. The ball is 
mounted on the shaft base and connected to the ball 
socket base, which transfers the engine torque from 
the rotary shaft to the differential. Over time, wear of 
the ball or ball socket base occurs. Internal statistics 
 
 
 
 
 
 
 
 

of the Taipei MRT Corporation (Metro Taipei) indi-
cate that for the Taipei MRT system on Taipei’s 
Wenhu train line, wear of the ball socket base is a 
main cause of MRT train failure. If the wear is exces-
sive, the drive shaft may detach from the ball socket 
joint, resulting in the drive shaft idling and the train 
halting without warning. Such an event would be 
inconvenient and unsafe for passengers. Therefore, 
component monitoring and fault detection are critical 
to ensuring that railway vehicles are safe and reliable 
(Shah et al., 2021). Studies (Muszynska, 1995; 
Gangsar et al., 2021; Espinoza-Sepulveda and Sinha, 
2021) have experimentally demonstrated that the 
vibration level is correlated with the health of the 
rotating shaft; abnormal states are associated with 
specific patterns that can be extracted from vibration 
signals (Tiboni et al., 2022). 

Vibration measurement analysis has been used 
for railway vehicle transmission system diagnosis for 
many years; relevant recent studies have focused on 
various transmission system components, such as the 
gearbox or bearings (Yi et al., 2015; Huang et al., 
2020; Bai et al., 2021; Xu et al., 2021; Luo et al., 
2020). Few studies have discussed the vibra-
tion-based diagnosis of faults caused by ball nesting 
and ball wear of the drive shaft. Because the two ends 
of a drive shaft are connected to the traction motor 
and differential, respectively, drive shaft failure 
causes substantial vibration in the differential. Thus, 
information on the drive shaft and possible faults can 
be indirectly obtained by analyzing differential vibra-
tion (Yi et al., 2015). 

However, the characteristics of vibration in a 
train transmission system are dynamic due to 
wheel-rail coupling excitation effects, which can 
result in force excitation (Zhai, 2015; Xu et al., 2018). 
Moreover, abnormal track sections, such as track 
gradient change points and track transitions, also 
result in vibration (Hamadache et al., 2019). Hence, 
due to the complexity of the transmission system’s 
structure and the operating environment, measured 
transmission system vibration signals are often 
coupled (Qiao et al., 2021). 

Features extracted from a measured signal must 
subsequently be selected on the basis of their 
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importance if an accurate and generalizable model is 
to be obtained (Cheng et al., 2020). In fact, deter-
mining the number of features to be selected is 
another key step in feature selection. The dimension-
ality of the feature space that fully represents drive 
shaft failure is unknown; however, selecting an 
excessive number of features results in overfitting of 
the model (Verleysen and François, 2005). Besides, 
one challenge is faced when using such data driven 
methods: the physical meaning of mined features is 
often unclear (they are not interpretable), resulting in 
difficulty generalizing models or evaluating their 
robustness. Obtaining interpretable features is crucial 
for developing a general diagnosis model (Cheng et 
al., 2020). 

Moreover, the samples used to train models are 
usually small because training datasets containing 
information on abnormal drive shaft operation are 
difficult to collect during a train’s operation. 
Establishing accurate diagnostic models under such 
conditions and with limited data is challenging (Wang 
et al., 2021). 

 
Fig. 1. Data analysis and establishing the diagnostic 

model. 
To overcome this challenge, experiments were 

first conducted on the drive shafts of actual trains 
used on the MRT Wenhu Line to collect vibration 
data from healthy and faulty drive shafts. Subse-
quently, numerous time- and frequency-domain 
features were extracted. The diagnostic features were 
then found based on their importance to ensure the 
capability for detecting faulty drive shaft. In practical 
application, the method proposed in this study 
utilized these diagnostic features only from healthy 
drive shafts of in-service operating trains to establish 
an PCA-based unsupervised model. This model then 
employed corresponding Hotelling's T2 statistics 

(Ahmed et al., 2012) to estimate the threshold for 
distinguishing between healthy and faulty drive shafts 
(Fig. 1). The remainder of this paper is structured as 
follows. Section 2 describes the experiments in which 
the vibration within an in-service train was measured. 
Vibration were measured using accelerometers 
mounted on the differential of the train’s transmission 
system during train operation. Section 3 details the 
feature extraction, feature ranking, and PCA-based 
fault diagnosis. The verification of the proposed 
method by conducting an in-service train monitoring 
experiment is discussed in Section 4. Finally, Section 
5 summarizes the results and contributions of this 
study. 
 

EXPERIMENT DESCRIPTION 
 
Problem Description 

Numerous researchers have investigated the 
diagnosis of faults in train transmission systems; 
however, testing has been limited due to passenger 
safety considerations. Therefore, experiments are 
typically conducted using test rigs or numerical sim-
ulations instead of real trains (Huang et al., 2020; Bai 
et al., 2021; Xu et al., 2021; Luo et al., 2020). 
However, test rigs usually do not accurately replicate 
the complex operating environments of an actual 
vehicle; therefore, such methods may have low accu-
racy in practical applications. 

In this study, experiments were conducted on 
the drive shaft of actual trains used on the MRT 
Wenhu Line with the cooperation of Metro Taipei; the 
study’s goal was to develop an effective model for 
diagnosing faults in a train’s drive shaft and that can 
be applied in practice. MRT trains on the Wenhu Line 
have a drive shaft (Model No. apt-312676-001) com-
prising a rotary shaft, ball socket base, ball, and shaft 
base (Fig. 2). The ball is mounted on the shaft base 
and connected to the ball socket base, which transfers 
engine torque from the rotary shaft to the differential. 
Abnormal vibration due to slight wear of the ball or 
ball socket base is difficult for passengers and train 
attendants to detect; initial drive shaft abnormality is 
thus typically ignored. However, increasing wear 
eventually results in the drive shaft detaching from 
the ball joint, resulting in the train coming to a stop 
without warning; this is dangerous for passengers. 

 
Fig. 2. Vehicle drive shaft: (a) rotary shaft and (b) 

ball socket base, ball, and shaft base. 
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Abnormal vibration due to ball socket base 
wear is transmitted from the drive shaft to the differ-
ential. Therefore, the vibration of the transmission 
system and the health of the drive shaft are closely 
related (Muszynska, 1995; Gangsar et al., 2021; 
Espinoza-Sepulveda and Sinha, 2021; Yi et al., 2015). 
To understand the relationship between the health of 
the drive shaft and its vibration, vibration tests were 
conducted on operating trains by installing an accel-
erometer on the body of the differential; the relevant 
features of the drive shaft’s vibration were then 
analyzed. 
 
Real Vehicle Data Collection 

Vibration data were measured using a uniaxial 
piezoelectric accelerometer (NOVA NV-1202) 
mounted on the outer shell of the differential (Fig. 3) 
of a vehicle. The accelerometer specifications are 
presented in Table 1. The signal acquisition module 
was PROWAVE UAQ21 (Table 2). Signal analysis 
and processing were performed using MATLAB. The 
vibration signal measurements had a sampling rate of 
7324 Hz. 

 
Fig. 3. Differential vibration measurement setup: (a) 

vehicle chassis and differential and (b) 
accelerometer installation. 

 
Table 1. Accelerometer specifications (NOVA 

NV-1202). 

Parameter Value 
Sensitivity 100 mV/g 
Frequency response (±3dB) 0.5 ~ 10000 Hz 
Measuring range ±50 g 
Noise < 50µV 

 
Table 2. Data acquisition module specifications 

(PROWAVE UAQ21). 

Parameter Value 
Input Range 100 mV/g 
Maximal Sampling rate 28 kHz 
Resolution  24 bits 
Built-in filter Anti-aliasing filter 
Input configuration IEPE 

 
Wenhu line trains comprise two linked trainsets 

facing opposite directions. Tests were performed 
simultaneously on two trainsets linked to form a 
complete train: a reference trainset with a healthy 

drive shaft (reference trainset), and a faulty trainset 
with a worn-out ball in its drive shaft’s ball socket 
base (faulty trainset). The wear and peeling on the 
surface of the ball were clearly visible (Fig. 4). 
Vibration signals from both drive shafts were 
collected simultaneously while the train was in 
motion. This setup ensured that the routes, motion 
conditions, and environmental conditions (e.g., 
weather) for the two trainsets were nearly identical; 
ensuring the reliability of the measurement data and 
the generalizability of the developed model. 

 
Fig. 4. Comparison of a normal ball with a worn ball. 
 

Due to operational considerations by Metro 
Taipei, only vibration signals from the track section 
between the Songshan Airport and Dazhi stations 
were analyzed. However, the train accelerates, decel-
erates, and travels at constant speed at various points 
in this section; some sections are straight and others 
are curved. Changes in train speed due to acceleration 
or turns may produce vibration signals with irregular 
characteristics (Hu et al., 2021). Therefore, feature 
extraction and subsequent analysis were only 
performed for vibration signals generated during 
constant-speed (70.7 km/h) straight motion. This 
means that the diagnostic model subsequently devel-
oped can only be applied to make predictions for this 
particular section. If the driving track sections or 
conditions change, the detection model needs to be 
re-established. 
 
Experimental Results 

The drive shaft health diagnosis experiments 
were performed on various dates between October 21 
and December 1, 2021 (Table 3). A total of 430 data 
files were obtained; of these, 234 and 196 were from 
the reference and faulty trainsets, respectively. Each 
data file was a 1.118-second vibration signal recorded 
at 70.7 km/h with a sampling rate of 7324 Hz, mean-
ing that there were 8192 data points. The files were 
divided into four subdatasets: A, B, C, and D. 
Datasets A and C were captured from the healthy 
drive shaft, whereas datasets B and D were captured 
from the faulty one. Time- and frequency-domain 
features were extracted from datasets A and B and 
then ranked. Dataset A was also used for PCA. 
Datasets C and D were used for model testing. Data 
were collected on 41 days to ensure that the datasets 
included data affected by various planned environ-
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mental factors, such as different weather conditions, 
weekdays, holidays, as well as morning peak hours 
and evening off-peak hours. This approach was taken 
to ensure the robustness of the feature selection and 
the detection model. 
 

Table 3. Details of the four subdatasets. 

Sub-dataset Number 
of data 

Experimental 
date 

Status of 
drive shaft 

A 148 10/21, 10/26, 
11/1~11/8 Healthy 

B 114 11/3~11/8 Failure 

C 86 11/9~11/11, 
12/1 Healthy 

D 82 11/9~11/11, 
12/1 Failure 

 
FAULT DIAGNOSIS MODELLING 

BASED ON PCA 
 
Characteristic Vibration Frequency Analysis 

Figure 5 presents the transmission system 
structure of a Wenhu Line train. The torque generated 
from the engine is transmitted to the wheels through 
the drive shaft, differential, axle shaft, and hub 
reductor in turn. When the drive shaft fails, abnormal 
vibrations can be measured by an accelerometer 
installed on the differential. The theoretical frequency 
of the drive shaft vibration characteristics can be 
obtained on the basis of parameters such as the speed 
reduction ratio of the transmission system and train 
speed (70.7 km/h), as shown in Table 4. For an 
abnormal drive shaft, the vibration signal related to 
its characteristic frequency is expected to differ from 
that of a healthy drive shaft. 
 

 
Fig. 5. Train transmission system. 

 
Table 4. Vibration characteristic frequencies of the 

transmission system. 

Transmission components Frequency (Hz) 
Drive shaft (fd) 58 
mesh frequency of the pinion gear 
and large gear in the differential (fm) 522 

Rotating frequency of axle shaft (fa) 12.8 
Rotating frequency of wheel (fw) 6.4 

 

To understand the relationship between the 
vibration characteristics of the drive shaft and its 
health, a simple comparison of the vibration spectra 
of the healthy and faulty drive shafts, obtained 
through the fast Fourier transform (FFT), is presented 
in Fig. 6; the two vibration spectra clearly differ. The 
dominant vibrations were at 522 Hz, which was the 
mesh frequency of the driving gear and driven gear 
(fm), and also its harmonic 2 × fm at 1045 Hz. Because 
the driving gear is directly connected to the drive 
shaft, abnormal vibrations in a faulty drive shaft usu-
ally affect the amplitude of fm. Moreover, the 
frequency amplitudes in the faulty drive shaft spec-
trum were larger than those in the healthy drive shaft 
spectrum over the frequencies of 3038–3255 Hz. In 
addition, it can be observed that the amplitude of the 
fundamental drive shaft rotation frequency (fd) of the 
faulty drive shaft is 1.8 times that of a healthy drive 
shaft. This indicates that relying on the characteristics 
of vibration signals to identify the health status of 
drive shafts is feasible. 

However, relevant signal characteristics in the 
spectrum may be subject to noise interference; there-
fore, determining the fault condition solely on the 
basis of the spectrum’s peaks is challenging when 
using an intuitive analysis. To more accurately 
determine fault status, vibration signal features can be 
obtained and ranked using various algorithmic meth-
ods. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Comparison of FFT spectra for a (a) healthy, 
(b) faulty drive shaft and (c) the amplitudes of the 
fundamental drive shaft rotation frequency. 
 
Signal Feature Extraction Methods 

In a rotary machine system, the vibration 
spectra due to wear generally contain harmonic 
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frequencies (e.g., 2 × RPM, 3 × RPM) and fractional 
frequencies (e.g., 1/2 × RPM, 1/3 × RPM, 1/4 × 
RPM); the rotational frequency (in RPM) is the 
fundamental frequency of the rotary machine system 
(Moble, 1999; Chu and Lu, 2005). For a railway 
vehicle transmission system with a worn ball or ball 
socket base, the rotational frequency of the drive 
shaft (fd = 58 Hz) can be regarded as the fundamental 
frequency. As wear increases, the ball joint loosens, 
often resulting in subharmonic frequencies such as 
0.5 × fd, 1.5 × fd, or 2.5 × fd (Moble, 1999; Chu and 
Lu, 2005). In other words, abnormal friction, relative 
motion, or collisions between the worn ball and ball 
socket base may affect the amplitudes of the 
harmonic or subharmonic frequencies of fd. In 
addition, due to the excitation of vibrations caused by 
worn parts, higher amplitudes and more sidebands 
surrounding the harmonic frequencies of fd were 
expected to be present in the worn-shaft signal. 
Sidebands may be better wear indicators than the 
harmonic frequencies of fd. However, predicting 
which harmonic frequencies, subharmonic 
frequencies, or sidebands will be present in the 
vibration spectra as the ball or ball socket base wears 
out is challenging. 

Table 5 presents the 104 features that were 
extracted. The time-domain features include the RMS 
amplitude, kurtosis (KUR), skewness (SKE), 
standard deviation (STD), and crest factor (CF) of the 
signals. The frequency-domain features were the 
amplitudes (M) corresponding to the rotation 

frequency of the drive shaft (fd = 58 Hz), its harmonic 
frequencies (2 × fd, …, 7 × fd) and subharmonic 
frequencies (0.5 × fd, 1.5 × fd, …, 7.5 × fd) as well as 
the sum of the amplitudes of the specific frequency 
region (band energy, BE) and the BE proportion 
(BEP). MnX represents the amplitude in the vibration 
spectrum of the transmission system at n × fd, where 
n is an integer.  Changes in the amplitude and 
number of sidebands were quantified using the BE 
and BEP. The BE was calculated by dividing the 
spectrum from 55 to 455 Hz into 40 nonoverlapping 
10-Hz frequency bands and summing the amplitudes; 
the BEP was the ratio between this sum and that of 
the entire spectrum. For example, BE[55,65] represents 
the sum of amplitudes from 55 to 65 Hz; BE[55,455] 
represents the sum of amplitudes from 55 to 455 Hz; 
and BEP[55,65] represents the ratio of BE[55,65] to 
BE[55,455]. The BE indicates the absolute amplitudes 
of a frequency band; the BEP represents the 
amplitude of that frequency band in relation to that of 
the entire spectrum. These frequency-domain features 
were selected to avoid the vibration characteristic 
frequencies (and their harmonics, Table 4) of other 
components in the transmission system, such as the 
differential, pinion gear, large gear, axle shaft, and 
wheel; this ensured that the extracted 
frequency-domain features (Table 5) were only 
related to the vibration characteristics of the drive 
shaft. 
 

 
Table 5. Extracted features. 

Features Expression Description 

RMS 2

1

1 N

i
i

x
N =
∑  Root mean square 

STD 2

1

1 ( )
N

i
i

x x
N =

−∑  Standard deviation 

SKE 
3

1
3

( )
(STD)

N
ii

x x
N
=

−∑  Skewness 

KUR 
4

1
4

( )
(STD)

N
ii

x x
N
=

−∑  Kurtosis 

CF 
max( )

RMS
ix  Crest factor 

MnX ( ), 1,1.5, 2, ,7.5ds n f n× =   Amplitudes corresponding to the harmonic 
and sub-harmonic frequency of fd 

BE[f1,f2] 2

1
1 2 1( ), 55,65, , 445; 10f

k f
s k f f f

=
= = +∑   Sum of the amplitudes of the spectrum 

region from f1 to f2 Hz 

BEP[f1,f2] 1 2[ , ]
1 2 1

[55,455]

BE
, 55,65, , 445; 10

BE
f f f f f= = +  The ratio of BE[f1,f2] to BE[55,455] 

Note: xi = (x1, x2, …, xN) is the sequence of time-domain signal; s(k) is the amplitude corresponding to the 
frequency of k Hz in fast Fourier transform (FFT) spectrum of xi. 
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Feature Selection and Modelling for Fault 
Diagnosis 

The Fisher criteria (Gan and Zhang, 2021) were 
selected for feature ranking in this study because this 
method evaluates the importance of features on the 
basis of only their ability to distinguish whether a 
drive shaft is healthy or faulty. Thus, environmental 
factors (train load, direction of travel, weather condi-
tions, etc.) were unlikely to influence the ranking. 
However, the key features obtained using the Fisher 
criteria may be colinear and therefore the set of these 
features may have redundancy (Shekar et al., 2017). 
PCA was used to reduce the dimensions of the feature 
dataset by eliminating colinearity between features. 

Using PCA for condition monitoring involves 
two stages: in Stage 1, construct a PCA model on the 
basis of the training feature dataset; in Stage 2, apply 
the PCA model to a feature dataset produced from 
new observations. In Stage 1, for a z-score (Patro and 
Sahu, 2015) standardized feature dataset X ∈ ℜm×n of 
m samples and n variables (i.e., features obtained 
from healthy vibration signals), which could be de-
composed as follows: 

T ,=X tP                            (1) 
where [ ]1 i n=P p p p   is defined as 
the principal component (PC) loading matrix and 

[ ]1 i n=t t t t   is defined as the score 
matrix of the PCs. The PC loading vector pi is an 
eigenvector of the correlation matrix of X, and the 
corresponding eigenvalue is denoted as λi. This 
eigenvalue was used to measure the importance of the 
corresponding PC loading vector. Features with low 
importance or that were redundant had small eigen-
values and could be ignored. The contribution fj of 
each PC loading vector could be quantified by 
computing the ratio of its eigenvalue to the sum of all 
eigenvalues (Ahmed et al., 2012). In Stage 2, the 
standardized feature dataset Xnew of new observations 
was then projected onto the PC loading vectors of the 
original PCA model to obtain a corresponding score 
vector i′t  as follows: 

new , 1, 2,... .i i i n′ = =t X p              (2) 
Hotelling’s T2 statistic is a PCA-based fault detection 
index (Ahmed et al., 2012), it is computed by 
discarding the PC loading vectors with lower contri-
butions and keeping only the top k vectors: 

2

1

( )
,

k
j

j jλ=

′
=∑2 t

T       (3) 

where λj are the k largest eigenvalues of the correla-
tion matrix of X in Eq. (1), and j′t  is the jth PC 
score vector obtained from Eq. (2). The training 
dataset used to construct the PCA model was from a 
healthy drive shaft of the train; therefore, the 
Hotelling’s T2 statistic for a healthy drive shaft could 

be obtained by transforming the training data using 
Eqs. (2) and (3); these statistics are denoted the T2 
baseline model, which representing the pattern of a 
healthy drive shaft and can quantify the boundary 
between healthy and abnormal drive shafts. By 
comparing novel samples with the trained baseline 
model, these samples could be classified as normal or 
faulty. 
 

RESULTS AND DISCUSSION 
 
Results of Feature Ranking and Screening 

The feature datasets for the four experimental 
subdatasets A, B, C, and D were obtained using the 
feature extraction method described in Section 3.2; 
Feature importance ranking was performed for 
feature datasets A and B as shown in Fig. 7. The three 
most highly ranked features had substantially higher 
Fisher scores and were therefore retained (Table 6); 
the remaining features were discarded. The three 
selected features were related to the drive shaft 
rotation frequency. The highest-ranked feature, M1X, 
was the amplitude of the fundamental drive shaft 
rotation frequency (1 × fd). Thus, the amplitude of 1 × 
fd changed considerably as the ball or ball socket base 
wore; this was attributed to increased ball–socket 
clearance. The second- and third-ranked features, 
BEP[55,65] and BE[55,65], were related to the frequency 
band including 1 × fd. Thus, ball and ball socket base 
wear not only caused a major increase in amplitude at 
1 × fd but also around this frequency. These features 
could be interpretable in terms of the drive shaft 
mechanism. The screened three features, M1X, 
BEP[55,65], and BE[55,65], were extracted from 
subdatasets A, B, C, and D to obtain three corre-
sponding feature datasets A*, B*, C*, and D*. 

 
Fig. 7. Fisher feature ranking results. 

 
Table 6. Features selected on the basis of their Fisher 

feature ranking. 
Rank Feature Description 

1 M1X Amplitude of the spectrum at 1 × fd 
(fd = 58 Hz) 

2 BEP[55,65] The ratio of BE[55,65] to BE[55,455] 

3 BE[55,65] 
Sum of the amplitudes of the 
spectrum region from 55 to 65 Hz 
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PCA Model Development 
PCA was applied to feature dataset A* to 

construct a model, the performance of which was 
verified on feature datasets C* and D*. Figure 8 
presents the overall training and testing process. 
Elements of A* were randomly grouped into two 
datasets (A1 and A2) at a ratio of 1:1, and these 
datasets were used for training and testing the trained 
PCA model, respectively. The corresponding T2 
baseline (i.e., the Hotelling’s T2 statistic of the 
healthy drive shaft) could be obtained for drive shaft 
diagnosis. 

 
Fig. 8. Training and testing with the feature datasets 

A*, C*, and D*. 
Figure 9 presents the contributions of the PC 

loading vectors. The two largest PCs accounted for 
95% of the cumulative contribution; thus, the 
subspace comprising only PC1 and PC2 contained 
sufficient information about the original features to 
diagnose drive shaft faults. Due to space limitations, 
the method of selecting the number of PCs is not 
discussed here but can be found in Jolliffe (1982). 

 
Fig. 9. PC loading vector selection. 

 
Drive Shaft Diagnostic Model 

The feature dataset A2 was used along with the 
developed PCA model and corresponding Hotelling’s 
T2 statistic to establish a threshold for differentiating 
healthy from faulty engines. If the T2 statistic of 
novel observations exceeds this threshold, a drive 
shaft is identified as abnormal. This threshold is 
denoted the T2 control limit (TCL) and was set as 
three standard deviations greater than the mean T2 
baseline value: 

TCL 3 ,µ σ= +     (4) 
where σ and µ are the standard deviation and the 
mean value of the data of T2 baseline, respectively. 
Previous studies have demonstrated that statistical 
thresholds of Hotelling’s T2 statistic can be calculated 
using the F-distribution as follows (Ahmed et al., 
2012): 

( 1) ( , ),k mT F k m k
m kα α

−
= −

−
   (5) 

where Tα is the threshold with confidence level α of 
95% or 99%, k is the number of PCs retained in the 
PCA model; m is the number of samples used in PCA; 
and Fα(k, m – k) is the upper (100 × α)% limit of the 
F-distribution with k and (m − k) degrees of freedom. 
The statistical threshold Tα with the selected 
confidence level 95% or 99% (i.e., Tα,95 and Tα,99) 
could be estimated using Eq. (5). 
 
Diagnosis Results and Discussion 

The feature datasets C* (healthy) and D* 
(faulty)—containing 86 and 82 data points, 
respectively—were used to verify the performance of 
the model. The Hotelling’s T2 statistics of C* and D* 
was obtained for the thresholds of TCL, Tα,95, and 
Tα,99. Figure 10 presents the confusion matrices 
(Fawcett, 2006) for the three diagnostic thresholds. 
The labels 0 and 1 indicate healthy and faulty drives, 
respectively. Figure 10 reveals that Tα,95 had the 
lowest accuracy, whereas TCL had the highest 
accuracy. The faulty drive shafts were all correctly 
classified. The classification accuracies for test 
datasets C and D when using TCL, Tα,95, and Tα,99 as 
the diagnostic threshold are 97.62%, 92.26%, and 
96.43%, respectively; the precisions are 95.3%, 
86.3%, and 93.2% respectively; and the recall rates 
are all 100%. The proposed threshold, TCL, had the 
highest classification accuracy. In fact, diagnostic 
thresholds based on statistical standard deviations or 
F-distributions often erroneously categorize outliers; 
this is a common challenge encountered when 
constructing diagnostic models on the basis of only 
healthy datasets. 

 
Fig. 10. Confusion matrix of the diagnostic model 
when using the three diagnostic thresholds: (a)TCL, 
(b) Tα,95, and (c) Tα,99. *Note: Label 0 means the 
status of the drive shaft is healthy, label 1 means 
faulty. 

In addition, the classification accuracy for 
differentiating healthy and faulty drive shafts through 
the proposed methodology (i.e., the PCA-based 
unsupervised learning model and TCL) and Support 
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vector machine (SVM) (Borhana et al., 2020) was 
also compared. SVM with Radial basis function 
(RBF) kernel was applied to feature dataset A* and B* 
to construct a classification model, the performance 
of which was verified on feature datasets C* and D*. 
Although supervised machine learning methods such 
as SVM can recognize the health of drive shafts with 
98.81% accuracy, training these models requires 
obtaining data on both healthy and faulty drive shafts. 
By contrast, although the accuracy of the proposed 
method was 1.19% lower than that of the test SVM, 
the diagnostic model and judgment threshold, the 
TCL, can be established on the basis of the vibration 
signals captured from only a healthy drive shaft; data 
from a faulty drive shaft are unnecessary. 
 

CONCLUSIONS 
 
For train drive shafts, the objective is to 

develop a model for monitoring the health of a drive 
shaft during operation of trains on Taipei’s Wenhu 
train line. For this, a train drive shaft fault detection 
method by using PCA and TCL was proposed in this 
study. The following conclusions can be drawn: 
1. Experiments were conducted on the trains used on 

the MRT Wenhu Line that were in actual service; 
a diagnostic model was developed to detect faults 
in the drive shafts, and it is capable of being 
applied in practice. 

2. The experimental results of the feature analysis 
and importance ranking indicate that the 
amplitude of the vibration spectrum at 58 Hz (i.e., 
the rotation frequency of the drive shaft), the sum 
of the amplitudes in the spectral region from 55 to 
65 Hz (BE[55,65]), and the ratio of BE[55,65] to 
BE[55,455] (BEP[55,65]), were identified as key 
features detecting drive shaft faults. The three 
selected features were highly related to the drive 
shaft rotation frequency.  

3. The classification accuracy when using the TCL, 
Tα,95, and Tα,99 as the diagnostic threshold were 
97.62%, 92.26%, and 96.43%, respectively; the 
precisions are 95.3%, 86.3%, and 93.2% 
respectively; and the recall rates are all 100%. 
The statistical thresholds of Hotelling's T2 statistic 
(i.e., Tα,95 and Tα,99) were estimated on the basis 
of the F-distribution, which is unaffected by 
actual measurement data. By contrast, the 
proposed threshold TCL was based on actual 
healthy drive shaft data and is thus more 
practically applicable. The detection rate and false 
alarm rate of using TCL were 100% and 4.7%, 
respectively. 

4. The classification accuracy using the proposed 
method was 2.38% lower than SVM, however, 
a diagnostic model and judgement threshold 
TCL can be established on the basis of only 
vibration signals captured from a healthy drive 
shaft; data from a faulty drive shaft are 

unnecessary. In light of this, a methodology of 
monitoring drive shaft health for a newly 
installed healthy train drive shaft and based on 
the proposed approach is depicted in Fig. 11. A 
training data set is collected from a newly 
installed healthy drive shaft. A PCA model and 
a diagnostic model of drive shaft health are 
developed. Once regular operation begins, the 
PCA model and the Hotelling’s T2 statistic can 
be used to quantify the health status of the 
drive shaft through comparison with the 
diagnostic threshold TCL. This system can 
automatically establish a drive shaft fault 
detection model from an in-service operating 
train, and enables long-term, inexpensive 
monitoring of drive shaft health. 

 
Fig. 11. Methodology for automatically diagnosing 

the health status of a drive shaft in a railway 
vehicle. 
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摘 要 

為了發展一種可在台北捷運文湖線列車行進

過程中監測傳動軸健康狀況的故障檢測模型，本研

究利用主成分分析（PCA）開發了一種列車傳動軸

故障檢測方法。首先，從列車行進過程間所收集的

傳動軸振動訊號中提取了多種具有用於建立診斷

模型潛力的大量特徵，接著透過特徵重要性排序移

除冗餘特徵後再使用 PCA 來降低其特徵空間的維

度，並使用霍特林 T2 統計量建立診斷模型。所提

出的方法僅使用來自健康傳動軸的振動數據構

建，且診斷模型的可行性通過實驗得到了驗證，檢

測率與假陽性率分別為 100％和 4.7％。本研究的

主要貢獻為用於偵測傳動軸健康狀態之特徵具有

可解釋性，且診斷模型完全由健康傳動軸的量測數

據所構建，不需要額外收集故障傳動軸之數據。 

 
 

 


