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ABSTRACT

Weak fault information features regularly in a
defective rolling bearing. Consequently, fault
diagnosis of rolling bearings is always challenging.
Based on stationarity and linearity, traditional
methods for data analysis are scarcely suitable for
processing bearing fault data. Although applied to
investigate nonstationary and nonlinear data, either of
EMD and EEMD faces mode mixing. For
overcoming the shortcoming, this paper introduced
singular spectrum decomposition (SSD), a new
method for analyzing nonstationary and nonlinear
data, to examine bearing fault data and then proposed
a novel method for fault feature enhancement of
bearings based on SSD. Afterwards, the performance
of the proposed method was benchmarked against
each of envelope analysis, EMD and EEMD
numerically and  experimentally.  Thus, the
comparison indicates that SSD outperforms the other
methods in retrieving physically interpretative
components as a result of restraining mode mixing.
Therefore, the proposed method demonstrates the
potential for enhancing fault features of bearings.

INTRODUCTION

Rolling bearings have demonstrated wide
application in various industrial fields. A rolling
bearing generally shoulders complex loads and works
in unsteady conditions. For this reason, vibrations of
a defective rolling bearing typically exhibit
nonstationary and nonlinear properties. Aiming at
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deciphering stationary and linear data, some
traditional techniques for data processing, such as
statistical parameters and Fourier transform, seem
scarcely suitable for analyzing bearing fault data
(Huang, N.E., Shen, Z., Long, S.R., Wu, M.L.C,,
Shih, H.H., Zheng, Q.N., Yen, N.C., Tung, C.C. and
Liu, H.H., 1998). In addition, wavelet transform (WT)
has been proposed to investigate nonstationary data
(Daubechies, 1., 1992). Nevertheless, the WT usually
lacks adaption for the investigated data (Huang, N.E.,
Shen, Z., Long, S.R., Wu, M.L.C., Shih, H.H., Zheng,
Q.N., Yen, N.C., Tung, C.C. and Liu, H.H., 1998).
In recent decades, empirical mode decomposition
(EMD) has been put forward for studying
nonstationary and nonlinear data and achieved some
good results (Huang, N.E., Shen, Z., Long, S.R., Wu,
M.L.C., Shih, H.H., Zheng, Q.N., Yen, N.C., Tung,
C.C. and Liu, H.H.,, 1998). However, EMD
frequently suffers from mode mixing, which means
that either a single component contains different time
scales or similar time scales reside in different
components (Wu, Z.H. and Huang, N.E., 2009).
Consequently, this normally makes physical meaning
of an individual component unclear (Wu, Z.H. and
Huang, N.E., 2009). For remedying this drawback,
ensemble empirical mode decomposition (EEMD), an
improved version of EMD, was developed (Wu, Z.H.
and Huang, N.E., 2009). The fundamental principle
of EEMD is firstly to project different portions of an
original data onto the corresponding time-frequency
grids provided by added white noise and then to
cancel the added white noise by ensemble averaging
of components from different trials. Nevertheless, it
seems intractable to determine amplitude of the
added white noise as well as to select a proper
ensemble number due to lacking a practical guideline
(zhang, J., Yan, R., Gao, R.X. and Feng, Z., 2010;
Lin, J., 2012). As a result, a strong need exists to
develop some novel techniques for analysis of
bearing vibration data.

In past decades, singular spectrum analysis
(SSA), as an adaptive nonparametric spectral
estimation method, has been employed for analyzing
short and noisy data (Vautard, R. and Ghil, M., 1989;
Vautard, R., Yiou, P. and Ghil, M., 1992). SSA has
an advantage over other methods for data analysis in
enhancing periodic contents of original data and

-375-



retrieving a highly non-harmonic oscillation buried in
original data (Vautard, R. and Ghil, M., 1989;
Vautard, R., Yiou, P. and Ghil, M., 1992). In general,
the use of SSA may make extracted components from
complex data physically interpretative (Vautard, R.
and Ghil, M., 1989; Vautard, R., Yiou, P. and Ghil,
M., 1992). Unfortunately, SSA is still hardly
automatic for determining the window length (or the
embedding dimension) and selecting the principal
components for reconstruction of a specific series. To
resolve  this  problem,  singular  spectrum
decomposition (SSD), an iterative SSA-based method
was presented (Bonizzi, P., KAREL, J.M., Meste, O.
and Peeters, R.L., 2014). Different from SSA, SSD
can determine the embedding dimension and choose
the principal components for reconstruction fully
automatically (Bonizzi, P., KAREL, J.M., Meste, O.
and Peeters, R.L., 2014). By additional
wrapping-around, SSD can enhance oscillatory
contents in original data. In addition, SSD can
guarantee energy of the residual to be decreased
iteratively. Hence, SSD demonstrates the potential for
restraining mode mixing and for separating
intermittent components at transition  points
accurately. Currently, SSD has been successfully
applied to data analysis in biological and physical
disciplines (Bonizzi, P., KAREL, J.M., Meste, O. and
Peeters, R.L., 2014).

This paper introduced SSD to explore bearing
vibration data and proposed a novel method for fault
feature enhancement based on SSD. Afterwards, the
performance of the proposed method was
benchmarked against each of envelope analysis,
EMD and EEMD numerically and experimentally.
The results show that SSD outperforms each of the
other methaods in enhancing fault features of bearings.

SINGULAR SPECTRUM

DECOMPOSITION (SSD)

SSD can decompose an original signal into a
collection of physically-interpretative narrow-banded
components iteratively. For automatically setting
fundamental  parameters, SSD was devised
elaborately. SSD comprises three steps: embedding,
decomposition and reconstruction. The SSD process
for the time series x(n) (n=12-,N) is

formulated as follows.

Embedding: Choice of the Embedding Dimension
SSD automatically determines the embedding
dimension M atiteration j as follows.

(1) Calculate the Power Spectral Density (PSD)

of the residual time series at iteration | ,
j-1

vi(t)=x(n)=X v, (n) , (v%(n)=x(n)) . Then,
k=1

estimate the primary frequency f_ for the

dominant peak of the PSD.

l
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(2) At the first iteration, testing for a sizable
trend is conducted. If the normalized frequency
foo/F, 1S less than a preset threshold (usually
0.001), where the parameters F, represents the

sample frequency, there exists a sizable trend in the
residual. Here, the embedding dimension is typically

N . .
set as M =€, according to an existing work

(Vautard, R., Yiou, P. and Ghil, M., 1992).

(3) For iteration j>1 , the embedding

FS

dimension is selected to M =1.2 . Here, the

max
margin 20% of a time span aims to increase
identification accuracy of SSA.

Embedding: Building of Trajectory Matrix by
Wrapping-around
With the embedding dimension M , the original

series  x(n) is transformed into an (M xN)
matrix X , where the i" row is defined as
xi:[x(i),...,x(N),x(l),...,x(i—1)] L i=1...M

Accordingly, the matrix X can be written as
X =[x",%",-,X, 1. For example, given the time

series  x(n)={1,2,34,5; and the embedding
dimension M =3 , the corresponding trajectory
matrix is
1 2 3/4 5
X=[2 3 4|5 1]|. (1)
3 4 5|1 2

Here, the block at the left-hand side stands for the
trajectory matrix defined in the standard SSA. As
shown in Equation (1), the alternative matrix wraps

around the time series x(n) . Thus, SSD seemingly

has an advantage over the SSA method in enhancing
oscillatory information and supplying essential
characteristics for the decrease of energy of the
residual.

In addition, for performing the average along the
i cross-diagonal of X, SSD moves the wrapped
part of the right-hand block in Eq. (1) to the top right
of the left-hand block so that each cross-diagonal of
the appended matrix X contains the same number of
element M . For the previous example,

1
2
3 4

where the a_sterisks indicat_e left vacancies after the
wrapped part is moved to the top right of the
left-hand block.

1
2 5 2
3 *

O b W N
* o1 b

*
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Decomposition
In this step, the singular value decomposition of

the trajectory matrix X is implemented, X =UDV .
Here, U,,.,, and V, , denote orthogonal matrices
containing the left and the right singular vectors,
respectively, and D,, , is a diagonal matrix with

the singular value o, on the principal diagonal,

where o, =, K4 with 4 the eigenvalues of the

1

covariance  matrix C=EXXT (the  symbol

T represents the transposition). As a consequence, the
trajectory matrix X is decomposed into a sum of

M M
rank-one matrices X, , X =D X;=> cuv ,
i=1 i=1

where o;, u; and v, denote the i"" singular value

of matrix X, the i column of matrix U and the i*"
column of matrix V , respectively.

Reconstruction
In the SSD, the j" component series g'” (n) is

constructed as follows.
(1) At the first iteration, if the test for a sizable
trend is positive, only the first left and the first right

eigenvectors are employed for generation of g(l) (n)
where g (n) is achieved by diagonal averaging of
X, =ouyV, .

(2) Otherwise, for iteration j>1, frequency

contents of the component series g“)(n) are

congregated in the frequency band
[fox—OF, fr +6 ], where 5f indicates half the

7 max

width of the dominant peak in the PSD of the residual

v,(n). Consequently, a subset I, :({il,...,ip}) is

grouped from all eigentriples (o;,u;,v;) whose left

eigenvectors demonstrate a dominant frequency in
the range [f,,—of, f +6f] and one of the

eigentriples makes the most contributions to the
energy of the dominant peak of the selected scales.
Accordingly, the j™ component series g“)(n) is
retrieved by diagonal averaging of the matrix
X, =X, +..+ X, along the cross-diagonals.
Moreover, a spectral model for describing a
profile of the PSD is constructed for estimating the
dominant peak width & f . Specifically, the model is
designed as a sum of three Gaussian functions, each
with a spectral peak
7(f_“|)2

y(f,H)ziAe 2 €)

where the parameters A, o; and u; symbolize

the magnitude, the width and the location of the it"
Gaussian function, respectively. Here,

6=(A o) . A=[A, A, A]  and
o=[o,, o, o0,] . Afterwards, an optimizing

procedure is used to fit the whole PSD. Here, the
initial parameters are set as

Ai(o) Z%PSD( fmax)
o=t :PSD(f)=§PSD(fmax)
AY =Lpsp(t,)
2 ) 4)
O_go) —f :pSD(f)ZEPSD(fz)

A? = PSD(1,)

o =4|f 1,

This paper determines the optimal values using the
Levenberg-Marquardt algorithm, which is a nonlinear
minimization algorithm. In case the optimal value is
estimated as o, a value for §f is determined as

ot =250, . Here, the choice of the factor 2.5 allows

almost 99% of the region to be covered by the
dominant peak to be accounted for, by leaving the
baseline noise out at the same time.

Advantages of the former reconstructing
strategy for le lie in unnecessaries to identify the

max

leading eigenvalues relative to the noise floor (or to
estimate the rank r of the trajectory matrix).
Therefore, the components characterizing scales
different from those at iteration j are automatically

excluded at iteration j and will be retrieved in the
following iterations, because their frequency contents
are outside [f, —of, f_ +5f]. Underlying the

7 T max
principle is the idea that at each iteration SSD selects
the oscillation contributing most of energy in the
residual, on the assumption that SSA searches for the
frequency bands mostly concentrating the explained
energy.

In addition, a second run of the algorithm is
performed on the j™ component just extracted,

g[(l’j) (n) (for j =1, this algorithm is carried out again
in case no sizable trend is detected) for improving the
results in the first run.

In the end, a scaling factor a is adopted to
adjust the variance of g“)(n)to the residual series

‘v“)(n)—ag“)(n)“z Ca= 3:;

(i) A _ mi
v’ (n), & =min

and g (n)=ag" (n).

Stopping Criterion
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In the SSD, a normalized mean square error
(NMSE) between the residual and the original signal
serves as a stopping criterion. For this reason, the
decomposition process will be stopped when the
stopping criterion NMSE is less than a given
threshold (usually 0.1%).

N B
Y[V
NMSEW =i~ (5)
N2
> x(0)]
Finally, the original series x(n) is decomposed into
a sum of components and a trend

m

x(n)=2g" (n)+v"" (n), ()

k=1

where g/ (n) stands for the k™ component, m for

the number of retrieved components and v™* (n)
for the final trend.
APPLICATION OF SSD TO FAULT
FEATURE ENHANCEMENT OF
ROLLING BEARINGS

Numerical Verification

A constructed signal containing impulses, noise
and trends, mixed with intermittent contents, was for
simulating vibrations of a defective rolling bearing.
Herein, the addition of the intermittence is simply to
increase complexities of the simulated signal.
Following this, the simulated signal consists of four
components: the impulse component ¢, , the

intermittent
component ¢, and the trend c,, in addition to the
white noise wn . The simulated signal with the

component ¢, , the sinusoidal

length N =8000 and the sample frequency
F, =8000 is expressed as follows
X=C +C,+C,+C, +WnN, (7)

where

c, =Zk:c“, k=80
j=1

¢,; =0.1sin {30007 [ t—(0.004+0.0125 ) ||
exp{-600[ t—(0.004+0.0125])]}

t=" p<n<N-1
F

S

0.25sin (20072"[ +3—”j

4
t=—, ﬂShSN—l
2

S

o
N
Il

0

0£n<ﬂ—1
2
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¢, =0.3sin [46;zt +Z
8

N—

c,=02t, t=_, 0<n<N-1
F

S

wn =0.01-std (c,)-randn(1,N).
Here, the symbols std(-) and randn(1,N) mean

to calculate the standard deviation and to generate
Gaussian white noise with the length N
respectively. The simulated signal x is exhibited in
Figure 1 and its four realistic components in Figure 2.

Firstly, EMD was employed to investigate the
simulated signal and the results are demonstrated in
Figure 3. As demonstrated in Fig. 3, the results from
EMD demonstrate severe mode mixing. Afterwards,
EEMD was applied to analyze the simulated signal
and the results are suggested in Figure 4. According
to the suggestion given by Wu, Z.H. and Huang, N.E.
(Wu, Z.H. and Huang, N.E., 2009), the amplitude of
the added white noise was set as 0.2 time the standard
deviation of the simulated signal and the ensemble
number as 100 in this paper. As suggested in Fig. 4,
the ensemble strategy seemingly fails to allow EEMD
to avoid mode mixing. Furthermore, SSD was
exploited to examine the simulated signal and the
results are illustrated in Figure 5. As a result, Fig. 5
indicates that SSD shows the potential for recovering
all the physically interpretative components from the
simulated signal.

1

Amplitude(m.s

Time(s)

Fig. 1. A simulated signal containing noise, impulses

and trends, mixed with intermittent contents.

Q

n . . .
0 0.2 04 06 0.8 1
Time(s)

Fig. 2. Four realistic components of the simulated
signal.
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. . . I
0 02 04 0.6 0.8
Time(s)

-

Fig. 3. Decomposition results of the simulated signal
using EMD, (a) the 1%~4" components, (b)
the 51"~8™" components.

Fig. 4. Decomposition results of the simulated signal
using EEMD, (a) the 1%~4" components, (b)
the 5"-8" components, (c) the 9th~12t
components.

01
; ; ; ;
. K_//_/ \1
o
01 ‘ ‘ ‘ ‘
0 0.2 04 0.6 0.8 1
)

Time(s)

Fig. 5. Decomposition results of the simulated signal
using SSD.

Case Study

In this subsection, the performance of SSD was
further benchmarked against each of envelope
analysis, EMD and EEMD using realistic
rolling-bearing fault data from Case Western Reserve
University Bearing Data Center (Bearing Data Center
Website, Case Western Reserve University). These
accelerating vibration data of bearings contain
single-point faults introduced by electro-discharge
machining. The bearing vibration data were collected
from drive end bearings, which are SKF 6205-2RS
deep groove ball bearings, with the sample frequency
12000Hz and the size 12000. Table 1 displays defect
frequencies of the rolling bearing.

Fault Diagnosis of Bearing Inner Races

A piece of bearing inner-race fault data with the
running speed about 1418 RPM was manifested in
Figure 6. According to Table 1, the defect frequencies
for inner races, outer races, cage train and rolling
elements are about 128Hz, 85Hz, 9.4Hz and 111Hz,
respectively. Firstly, envelope analysis was employed
to research the bearing inner-race fault data and the
results are demonstrated in Figure 7. As demonstrated
in Fig. 7, the frequencies 128Hz and 110Hz almost
match the defective frequencies of inner rings and
rolling elements, respectively. As a consequence, an
obvious clue to the identity of the bearing fault type
is hard to find from the envelope spectra. In the
following, EMD was used to analyze these inner-race
fault data and the results are suggested in Figure 8,
which is composed of twelve components. By trial
and error, the first three components, which contain
most of useful information, were selected for further
analysis. Envelope spectra of the first three
components recovered by EMD are displayed in
Figure 9. Here, Fig. 9(b) seemingly demonstrates
inner-race fault characteristics, since the frequencies
254Hz and 381Hz are near the first- and second-order
harmonics of the inner-race defective frequency,
respectively. However, the frequency 110Hz is so
near to the defect frequency of the rolling element
that it causes incorrect identification of the bearing
fault type, still occurring in Fig. 9(b). Afterwards,
EEMD was applied to examine these inner-race fault
data and the results are revealed in Figure 10, which
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contains twelve components. Also, envelope spectra
of the first three components retrieved by EEMD are
displayed in Figure 11. It turns out that Fig. 11(b)
exhibits the defect frequency of the inner races and
the first two harmonics thereof. Nevertheless, the
spectra in Fig. 11(b) are still contaminated by the
frequency 110Hz. Moreover, SSD was adopted to
examine the inner-race fault data and the results are
suggested in Figure 12. As suggested in Fig. 12, SSD
decomposes the inner-race fault data into just four
components. Figure 13 shows envelope spectra of the
first three components recovered by SSD.
Consequently, Fig. 13(c) gives a more successful
exhibition of the inner-race defective characteristics,
in contrast with either of Fig. 9 and Fig. 11.

Table 1. Defect frequencies of the rolling bearings
(Multiple of running speed in Hz).

Inner Outer Cade Train Rolling
Race Race g Element
5.4152 3.5848 0.39828 47135

Amplitude(m.s

L L L L
0 0.2 0.4 0.6 0.8 1

Time(s)

Fig. 6. A piece of bearing inner-race fault data.

0.2

01

Amplitude(m.s

0 1 2 3

3
Frequency( % 10 " Hz)

Fig. 7. Envelope spectra of the bearing inner-race
fault data.

1

I
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Time(s)

Time(s)

Fig. 8. Decomposition results of the bearing
inner-race fault data using EMD, (a) the
18~4"  components, (b) the 5"-g"
components, (c) the 9"~12% components.

. . .
0 05 1 s 15 2
Frequency( % 10 "Hz)

Fig. 9. Envelope spectra of the first three components
retrieved by EMD, (a), (b) and (c) represent
envelope spectra of the first, the second and the
third component, respectively.

[

c
2
P m N oo n b oo

Time(s)
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Fig. 10. Decomposition results of the bearing
inner-race fault data using EEMD, (a) the
18~4"  components, (b) the 5"-g"
components, (c) the 9"~12™ components.
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Fig. 11. Envelope spectra of the first three
components retrieved by EEMD, (a), (b)
and (c) represent envelope spectra of the
first, the second and the third component,

respectively.

Time(s)

Fig. 12. Decomposition results of the bearing
inner-race fault data using SSD
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Fig. 13. Envelope spectra of the first three
components retrieved by SSD, (a), (b) and
(c) represent envelope spectra of the first,
the second and the third component,
respectively.

Fault Diagnosis of Bearing Outer Races
Afterwards, the performance of SSD was further
measured using bearing outer-race fault data. Figure
14 describes a piece of bearing outer-race fault data
with the running speed 1773RPM. Hence, the defect
frequencies for inner races, outer races, cage train and
rolling elements are about 160Hz, 106Hz, 11.8Hz and
139Hz, respectively. Envelope spectra of the
outer-race fault data are depicted in Figure 15.
Because the frequencies 109Hz, 216Hz and 324Hz
are close to the defect characteristics of the bearing
outer race, the second-order and the third-order
harmonics thereof, respectively, Fig. 15 seems to give
a display of bearing outer-race characteristics to some
extent. Nonetheless, as shown in Fig. 15, some
frequencies, such as the frequency 157Hz, cause a
disturbance to identification of bearing fault types.
Then, EMD was made use of exploring these
outer-race fault data and the results are exhibited in
Figure 16, which consists of eleven components. By
trial and error, the first component, which
incorporates most of useful information, was chosen
for analysis. Figure 17 shows envelope spectra of the
first component recovered by EMD. Nonetheless,
compared with Fig. 15, Fig. 17 does not demonstrate
a significant improvement in highlighting the defect
frequencies. Moreover, EEMD was used to probe
these outer-race fault data and the results are
displayed in Figure 18, which comprises twelve
components. Figure 19 describes envelope spectra of
the first component recovered by EEMD. However,
compared with Fig. 15, Fig. 19 is still unsuccessful in
showing an improvement in highlighting the defect
frequencies. In addition, SSD was applied to
investigate these outer-race fault data and the results
are displayed in Figure 20, which consists of five
components. Envelope spectra of the first component
retrieved by SSD are depicted in Figure 21.
Compared with each of Fig. 15, 17 and 19, Fig. 21
more significantly highlights the defect frequencies.
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15 components, (b) the 5"~8™" components, (c)
the 9t"~11" components.
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Fig. 14. A piece of bearing outer-race fault data.

~ Fig. 17. Envelope spectra of the first component
® o retrieved by EMD.
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Fig. 16. Decomposition results of bearing outer-race
fault data using EMD, (a) the 15~4®"
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Fig. 19. Envelope spectra of the first component
retrieved by EEMD.
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Fig. 20. Decomposition results of bearing outer-race
fault data using SSD.
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3
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Fig. 21. Envelope spectra of the first component
retrieved by SSD.

DISCUSSIONS

Although either of SSD and EMD can serve to
examine nonstationary and nonlinear data, there is a
considerable difference between them both. EMD
extracts components from original data in descending
order of frequencies. Since lacking focuses on
practically physical meaning of components, EMD
inevitably yields mode mixing. By contrast, SSD
extracts components from original data in descending
order of energy of spectral peaks. Owing to
protecting natural properties of spectral peaks at
utmost, SSD can generate components with clear
physical meaning by effectively restraining mode
mixing.

Although feasible in feature enhancement of
complex vibration data, SSD still suffers from some
difficulties, such as identification and separation of
the trend, evaluation of proprieties of the default

value 1% of the original variance and the end effects
from spurious oscillations describing the edge of the
reconstructed SSD-components. These problems
require further study in future.
CONCLUSIONS
This paper introduced SSD to examine complex
bearing vibration data and proposed a novel method
for fault feature enhancement of bearings based on

SSD. Both numerical and experimental examples

confirmed the feasibility of the proposed method.

Additionally, the comparison of SSD with envelope

analysis, EMD and EEMD indicates that SSD

outperforms the other methods in enhancing fault
features of bearings as well as restraining mode
mixing.
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