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ABSTRACT 

 
Weak fault information features regularly in a 

defective rolling bearing. Consequently, fault 
diagnosis of rolling bearings is always challenging. 
Based on stationarity and linearity, traditional 
methods for data analysis are scarcely suitable for 
processing bearing fault data. Although applied to 
investigate nonstationary and nonlinear data, either of 
EMD and EEMD faces mode mixing. For 
overcoming the shortcoming, this paper introduced 
singular spectrum decomposition (SSD), a new 
method for analyzing nonstationary and nonlinear 
data, to examine bearing fault data and then proposed 
a novel method for fault feature enhancement of 
bearings based on SSD. Afterwards, the performance 
of the proposed method was benchmarked against 
each of envelope analysis, EMD and EEMD 
numerically and experimentally. Thus, the 
comparison indicates that SSD outperforms the other 
methods in retrieving physically interpretative 
components as a result of restraining mode mixing. 
Therefore, the proposed method demonstrates the 
potential for enhancing fault features of bearings. 
 

INTRODUCTION 
 
Rolling bearings have demonstrated wide 

application in various industrial fields. A rolling 
bearing generally shoulders complex loads and works 
in unsteady conditions. For this reason, vibrations of 
a defective rolling bearing typically exhibit 
nonstationary and nonlinear properties. Aiming at 

 
 
 
 
 
 
 
 
 

 deciphering stationary and linear data, some 
traditional techniques for data processing, such as 
statistical parameters and Fourier transform, seem 
scarcely suitable for analyzing bearing fault data 
(Huang, N.E., Shen, Z., Long, S.R., Wu, M.L.C., 
Shih, H.H., Zheng, Q.N., Yen, N.C., Tung, C.C. and 
Liu, H.H., 1998). In addition, wavelet transform (WT) 
has been proposed to investigate nonstationary data 
(Daubechies, I., 1992). Nevertheless, the WT usually 
lacks adaption for the investigated data (Huang, N.E., 
Shen, Z., Long, S.R., Wu, M.L.C., Shih, H.H., Zheng, 
Q.N., Yen, N.C.,  Tung, C.C. and Liu, H.H., 1998). 
In recent decades, empirical mode decomposition 
(EMD) has been put forward for studying 
nonstationary and nonlinear data and achieved some 
good results (Huang, N.E., Shen, Z., Long, S.R., Wu, 
M.L.C., Shih, H.H., Zheng, Q.N., Yen, N.C., Tung, 
C.C. and Liu, H.H., 1998). However, EMD 
frequently suffers from mode mixing, which means 
that either a single component contains different time 
scales or similar time scales reside in different 
components (Wu, Z.H. and Huang, N.E., 2009). 
Consequently, this normally makes physical meaning 
of an individual component unclear (Wu, Z.H. and 
Huang, N.E., 2009). For remedying this drawback, 
ensemble empirical mode decomposition (EEMD), an 
improved version of EMD, was developed (Wu, Z.H. 
and Huang, N.E., 2009). The fundamental principle 
of EEMD is firstly to project different portions of an 
original data onto the corresponding time-frequency 
grids provided by added white noise and then to 
cancel the added white noise by ensemble averaging 
of components from different trials. Nevertheless, it 
seems intractable to determine amplitude of the 
added white noise as well as to select a proper 
ensemble number due to lacking a practical guideline 
(Zhang, J., Yan, R., Gao, R.X. and Feng, Z., 2010; 
Lin, J., 2012). As a result, a strong need exists to 
develop some novel techniques for analysis of 
bearing vibration data.  

In past decades, singular spectrum analysis 
(SSA), as an adaptive nonparametric spectral 
estimation method, has been employed for analyzing 
short and noisy data (Vautard, R. and Ghil, M., 1989; 
Vautard, R., Yiou, P. and Ghil, M., 1992). SSA has 
an advantage over other methods for data analysis in 
enhancing periodic contents of original data and 
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retrieving a highly non-harmonic oscillation buried in 
original data (Vautard, R. and Ghil, M., 1989; 
Vautard, R., Yiou, P. and Ghil, M., 1992). In general, 
the use of SSA may make extracted components from 
complex data physically interpretative (Vautard, R. 
and Ghil, M., 1989; Vautard, R., Yiou, P. and Ghil, 
M., 1992). Unfortunately, SSA is still hardly 
automatic for determining the window length (or the 
embedding dimension) and selecting the principal 
components for reconstruction of a specific series. To 
resolve this problem, singular spectrum 
decomposition (SSD), an iterative SSA-based method, 
was presented (Bonizzi, P., KAREL, J.M., Meste, O. 
and Peeters, R.L., 2014). Different from SSA, SSD 
can determine the embedding dimension and choose 
the principal components for reconstruction fully 
automatically (Bonizzi, P., KAREL, J.M., Meste, O. 
and Peeters, R.L., 2014). By additional 
wrapping-around, SSD can enhance oscillatory 
contents in original data. In addition, SSD can 
guarantee energy of the residual to be decreased 
iteratively. Hence, SSD demonstrates the potential for 
restraining mode mixing and for separating 
intermittent components at transition points 
accurately. Currently, SSD has been successfully 
applied to data analysis in biological and physical 
disciplines (Bonizzi, P., KAREL, J.M., Meste, O. and 
Peeters, R.L., 2014).  

This paper introduced SSD to explore bearing 
vibration data and proposed a novel method for fault 
feature enhancement based on SSD. Afterwards, the 
performance of the proposed method was 
benchmarked against each of envelope analysis, 
EMD and EEMD numerically and experimentally. 
The results show that SSD outperforms each of the 
other methods in enhancing fault features of bearings. 

 
SINGULAR SPECTRUM 
DECOMPOSITION (SSD) 

SSD can decompose an original signal into a 
collection of physically-interpretative narrow-banded 
components iteratively. For automatically setting 
fundamental parameters, SSD was devised 
elaborately. SSD comprises three steps: embedding, 
decomposition and reconstruction. The SSD process 
for the time series ( )x n  ( )1,2, ,n N=   is 
formulated as follows.  

 
Embedding: Choice of the Embedding Dimension 

 SSD automatically determines the embedding 
dimension M  at iteration j  as follows. 

(1) Calculate the Power Spectral Density (PSD) 
of the residual time series at iteration j , 

( ) ( ) ( )
1

1

j

j k
k

v t x n v n
−

=

= −∑ , ( ) ( )( )0v n x n= . Then, 

estimate the primary frequency maxf  for the 
dominant peak of the PSD.  

(2) At the first iteration, testing for a sizable 
trend is conducted. If the normalized frequency 

max sf F  is less than a preset threshold (usually 
0.001), where the parameters sF  represents the 
sample frequency, there exists a sizable trend in the 
residual. Here, the embedding dimension is typically 

set as 
3
NM = , according to an existing work 

(Vautard, R., Yiou, P. and Ghil, M., 1992).  
(3) For iteration 1j > , the embedding 

dimension is selected to 
max

1.2 sFM
f

= . Here, the 

margin 20% of a time span aims to increase 
identification accuracy of SSA.  

 
Embedding: Building of Trajectory Matrix by 
Wrapping-around 

With the embedding dimension M , the original 
series ( )x n  is transformed into an ( )M N×  
matrix X , where the ith row is defined as 

( ) ( ) ( ) ( ),..., , 1 ,..., 1ix x i x N x x i= −   , 1,...,i M= . 
Accordingly, the matrix X can be written as 

1 2[ , , , ]T T T T
MX x x x=  . For example, given the time 

series ( ) { }1,2,3,4,5x n =  and the embedding 
dimension 3M = , the corresponding trajectory 
matrix is  

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2

X
 
 =  
  

.                  (1) 

Here, the block at the left-hand side stands for the 
trajectory matrix defined in the standard SSA. As 
shown in Equation (1), the alternative matrix wraps 
around the time series ( )x n  . Thus, SSD seemingly 
has an advantage over the SSA method in enhancing 
oscillatory information and supplying essential 
characteristics for the decrease of energy of the 
residual.  

In addition, for performing the average along the 
ith cross-diagonal of X , SSD moves the wrapped 
part of the right-hand block in Eq. (1) to the top right 
of the left-hand block so that each cross-diagonal of 
the appended matrix X contains the same number of 
element M . For the previous example, 

1
1 2

1 2 3 4 5
2 3 4 5 *
3 4 5 * *

X

 
 
 
 =
 
 
  

,                 (2) 

where the asterisks indicate left vacancies after the 
wrapped part is moved to the top right of the 
left-hand block.  
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Decomposition 
In this step, the singular value decomposition of 

the trajectory matrix X is implemented, TX UDV= . 
Here, M MU ×  and K KV ×  denote orthogonal matrices 
containing the left and the right singular vectors, 
respectively, and M KD ×  is a diagonal matrix with 
the singular value iσ  on the principal diagonal, 

where i iKσ λ= with iλ  the eigenvalues of the 

covariance matrix 1 TC XX
K

= (the symbol 

T represents the transposition). As a consequence, the 
trajectory matrix X  is decomposed into a sum of 

rank-one matrices iX , 
1 1

M M
T

i i i i
i i

X X u vσ
= =

= =∑ ∑ , 

where iσ , iu  and iv  denote the ith singular value 
of matrix X , the ith column of matrix U  and the ith 
column of matrix V , respectively.  

 
Reconstruction 

In the SSD, the jth component series ( ) ( )jg n  is 
constructed as follows.  

(1) At the first iteration, if the test for a sizable 
trend is positive, only the first left and the first right 
eigenvectors are employed for generation of ( ) ( )1g n , 

where ( ) ( )1g n  is achieved by diagonal averaging of 

1 1 1 1
TX u vσ= .  

(2) Otherwise, for iteration 1j > , frequency 

contents of the component series ( ) ( )jg n  are 
congregated in the frequency band 
[ ]max max,f f f fδ δ− + , where fδ  indicates half the 
width of the dominant peak in the PSD of the residual 

( )jv n . Consequently, a subset { }( )1,...,j pI i i=  is 

grouped from all eigentriples ( ), ,i i iu vσ  whose left 
eigenvectors demonstrate a dominant frequency in 
the range [ ]max max,f f f fδ δ− +  and one of the 
eigentriples makes the most contributions to the 
energy of the dominant peak of the selected scales. 
Accordingly, the jth component series ( ) ( )jg n  is 
retrieved by diagonal averaging of the matrix 

1
...

j pI i iX X X= + +  along the cross-diagonals.  
Moreover, a spectral model for describing a 

profile of the PSD is constructed for estimating the 
dominant peak width fδ . Specifically, the model is 
designed as a sum of three Gaussian functions, each 
with a spectral peak 

( )
( )2

2
3

2

1

,
i

i

f u

i
i

f Ae σγ θ
−

−

=

= ∑ ,                 (3) 

where the parameters iA , iσ  and iu  symbolize 

the magnitude, the width and the location of the ith 
Gaussian function, respectively. Here, 

( )TAθ σ= , [ ]1 2 3, ,A A A A=  and 

[ ]1 2 3, ,σ σ σ σ= . Afterwards, an optimizing 
procedure is used to fit the whole PSD. Here, the 
initial parameters are set as  

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )
( )

1

2

3

0
1 max

0
max

0
2 2

0
2

0
3 3

0
max 2

1
2

2:
3

1
2

2:
3

1
4
4

A PSD f

f PSD f PSD f

A PSD f

f PSD f PSD f

A PSD f

f f

σ

σ

σ

 =

 = =

 =

 = =

 =

 = −

.      (4) 

This paper determines the optimal values using the 
Levenberg-Marquardt algorithm, which is a nonlinear 
minimization algorithm. In case the optimal value is 
estimated as 1σ , a value for fδ  is determined as 

12.5fδ σ= . Here, the choice of the factor 2.5 allows 
almost 99% of the region to be covered by the 
dominant peak to be accounted for, by leaving the 
baseline noise out at the same time.  
    Advantages of the former reconstructing 
strategy for 

jIX lie in unnecessaries to identify the 
leading eigenvalues relative to the noise floor (or to 
estimate the rank r of the trajectory matrix). 
Therefore, the components characterizing scales 
different from those at iteration j  are automatically 
excluded at iteration j  and will be retrieved in the 
following iterations, because their frequency contents 
are outside [ ]max max,f f f fδ δ− + . Underlying the 
principle is the idea that at each iteration SSD selects 
the oscillation contributing most of energy in the 
residual, on the assumption that SSA searches for the 
frequency bands mostly concentrating the explained 
energy.  

In addition, a second run of the algorithm is 
performed on the jth component just extracted, 

[ ]
( ) ( )1

jg n (for 1j = , this algorithm is carried out again 
in case no sizable trend is detected) for improving the 
results in the first run.  

In the end, a scaling factor a  is adopted to 
adjust the variance of ( ) ( )jg n to the residual series 

( ) ( )jv n ,  ( ) ( ) ( ) ( )
2

2
ˆ min j j

a
a v n ag n= − , 

T

T

g va
g g

=  

and ( ) ( ) ( ) ( )j jg n ag n= .  
 

Stopping Criterion 
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In the SSD, a normalized mean square error 
(NMSE) between the residual and the original signal 
serves as a stopping criterion. For this reason, the 
decomposition process will be stopped when the 
stopping criterion NMSE is less than a given 
threshold (usually 0.1%).  

( )

( ) ( )

( )

21

1

2

1

N
j

j i
N

i

v i
NMSE

x i

+

=

=

 
 

=
  

∑

∑
               (5) 

Finally, the original series ( )x n  is decomposed into 
a sum of components and a trend 

( ) ( ) ( ) ( ) ( )1

1

m
k m

k
x n g n v n+

=

= +∑  ,            (6) 

where ( ) ( )kg n  stands for the kth component, m  for 

the number of retrieved components and ( ) ( )1mv n+  
for the final trend.  

APPLICATION OF SSD TO FAULT 
FEATURE ENHANCEMENT OF 

ROLLING BEARINGS 
 

Numerical Verification 
A constructed signal containing impulses, noise 

and trends, mixed with intermittent contents, was for 
simulating vibrations of a defective rolling bearing. 
Herein, the addition of the intermittence is simply to 
increase complexities of the simulated signal. 
Following this, the simulated signal consists of four 
components: the impulse component 1c , the 
intermittent component 2c , the sinusoidal 
component 3c  and the trend 4c , in addition to the 
white noise wn . The simulated signal with the 
length 8000N =  and the sample frequency 

8000sF =  is expressed as follows  

1 2 3 4x c c c c wn= + + + + ,             (7) 
where  

( ){ }
( ){ }

1 1
1

1

, 80

0.1sin 3000 0.004 0.0125

exp 600 0.004 0.0125

, 0 1

k

j
j

j

s

c c k

c t j

t j

nt n N
F

π
=


= =


 = − +  


− − +   

 = ≤ ≤ −

∑



2

30.25sin 200
4

, 1
2

0

0 1
2

s

t

n Nt n N
c F

Nn

ππ
  +     = ≤ ≤ −= 




≤ < −

 

3 0.3sin 46
8

, 0 1
s

c t

nt n N
F

ππ  = +   

 = ≤ ≤ −


 

4 0.2 , , 0 1
s

nc t t n N
F

= = ≤ ≤ −  

( ) ( )10.01 1,wn std c randn N= ⋅ ⋅ . 

Here, the symbols ( )std ⋅  and ( )1,randn N  mean 
to calculate the standard deviation and to generate 
Gaussian white noise with the length N , 
respectively. The simulated signal x  is exhibited in 
Figure 1 and its four realistic components in Figure 2.  

Firstly, EMD was employed to investigate the 
simulated signal and the results are demonstrated in 
Figure 3. As demonstrated in Fig. 3, the results from 
EMD demonstrate severe mode mixing. Afterwards, 
EEMD was applied to analyze the simulated signal 
and the results are suggested in Figure 4. According 
to the suggestion given by Wu, Z.H. and Huang, N.E. 
(Wu, Z.H. and Huang, N.E., 2009), the amplitude of 
the added white noise was set as 0.2 time the standard 
deviation of the simulated signal and the ensemble 
number as 100 in this paper. As suggested in Fig. 4, 
the ensemble strategy seemingly fails to allow EEMD 
to avoid mode mixing. Furthermore, SSD was 
exploited to examine the simulated signal and the 
results are illustrated in Figure 5. As a result, Fig. 5 
indicates that SSD shows the potential for recovering 
all the physically interpretative components from the 
simulated signal.  
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Fig. 1. A simulated signal containing noise, impulses 
and trends, mixed with intermittent contents. 
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Fig. 2. Four realistic components of the simulated 
signal. 
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Fig. 3. Decomposition results of the simulated signal 
using EMD, (a) the 1st~4th components, (b) 
the 5th~8th components. 
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Fig. 4. Decomposition results of the simulated signal 
using EEMD, (a) the 1st~4th components, (b) 
the 5th~8th components, (c) the 9th~12th 
components. 
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Fig. 5. Decomposition results of the simulated signal 
using SSD. 

Case Study 
In this subsection, the performance of SSD was 

further benchmarked against each of envelope 
analysis, EMD and EEMD using realistic 
rolling-bearing fault data from Case Western Reserve 
University Bearing Data Center (Bearing Data Center 
Website, Case Western Reserve University). These 
accelerating vibration data of bearings contain 
single-point faults introduced by electro-discharge 
machining. The bearing vibration data were collected 
from drive end bearings, which are SKF 6205-2RS 
deep groove ball bearings, with the sample frequency 
12000Hz and the size 12000. Table 1 displays defect 
frequencies of the rolling bearing.  

 
Fault Diagnosis of Bearing Inner Races 

A piece of bearing inner-race fault data with the 
running speed about 1418 RPM was manifested in 
Figure 6. According to Table 1, the defect frequencies 
for inner races, outer races, cage train and rolling 
elements are about 128Hz, 85Hz, 9.4Hz and 111Hz, 
respectively. Firstly, envelope analysis was employed 
to research the bearing inner-race fault data and the 
results are demonstrated in Figure 7. As demonstrated 
in Fig. 7, the frequencies 128Hz and 110Hz almost 
match the defective frequencies of inner rings and 
rolling elements, respectively. As a consequence, an 
obvious clue to the identity of the bearing fault type 
is hard to find from the envelope spectra. In the 
following, EMD was used to analyze these inner-race 
fault data and the results are suggested in Figure 8, 
which is composed of twelve components. By trial 
and error, the first three components, which contain 
most of useful information, were selected for further 
analysis. Envelope spectra of the first three 
components recovered by EMD are displayed in 
Figure 9. Here, Fig. 9(b) seemingly demonstrates 
inner-race fault characteristics, since the frequencies 
254Hz and 381Hz are near the first- and second-order 
harmonics of the inner-race defective frequency, 
respectively. However, the frequency 110Hz is so 
near to the defect frequency of the rolling element 
that it causes incorrect identification of the bearing 
fault type, still occurring in Fig. 9(b). Afterwards, 
EEMD was applied to examine these inner-race fault 
data and the results are revealed in Figure 10, which 
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contains twelve components. Also, envelope spectra 
of the first three components retrieved by EEMD are 
displayed in Figure 11. It turns out that Fig. 11(b) 
exhibits the defect frequency of the inner races and 
the first two harmonics thereof. Nevertheless, the 
spectra in Fig. 11(b) are still contaminated by the 
frequency 110Hz. Moreover, SSD was adopted to 
examine the inner-race fault data and the results are 
suggested in Figure 12. As suggested in Fig. 12, SSD 
decomposes the inner-race fault data into just four 
components. Figure 13 shows envelope spectra of the 
first three components recovered by SSD. 
Consequently, Fig. 13(c) gives a more successful 
exhibition of the inner-race defective characteristics, 
in contrast with either of Fig. 9 and Fig. 11.  

 
Table 1. Defect frequencies of the rolling bearings 

(Multiple of running speed in Hz). 
Inner 
Race 

Outer 
Race Cage Train Rolling 

Element 
5.4152 3.5848 0.39828 4.7135 
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Fig. 6.  A piece of bearing inner-race fault data. 
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Fig. 7. Envelope spectra of the bearing inner-race 
fault data. 
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Fig. 8. Decomposition results of the bearing 
inner-race fault data using EMD, (a) the 
1st~4th components, (b) the 5th~8th 
components, (c) the 9th~12th components. 

0

0.1

0.2

a

0

0.05

0.1

0.15

b

0 0.5 1 1.5 2
Frequency( 10 3 Hz)

0

0.1

0.2

c

128Hz

110Hz

110Hz 128Hz
254Hz

381Hz

 

Fig. 9. Envelope spectra of the first three components 
retrieved by EMD, (a), (b) and (c) represent 
envelope spectra of the first, the second and the 
third component, respectively. 
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Fig. 10. Decomposition results of the bearing 
inner-race fault data using EEMD, (a) the 
1st~4th components, (b) the 5th~8th 
components, (c) the 9th~12th components. 
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Fig. 11. Envelope spectra of the first three 
components retrieved by EEMD, (a), (b) 
and (c) represent envelope spectra of the 
first, the second and the third component, 
respectively. 
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Fig. 12. Decomposition results of the bearing 
inner-race fault data using SSD 
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Fig. 13. Envelope spectra of the first three 
components retrieved by SSD, (a), (b) and 
(c) represent envelope spectra of the first, 
the second and the third component, 
respectively. 

Fault Diagnosis of Bearing Outer Races 
Afterwards, the performance of SSD was further 

measured using bearing outer-race fault data. Figure 
14 describes a piece of bearing outer-race fault data 
with the running speed 1773RPM. Hence, the defect 
frequencies for inner races, outer races, cage train and 
rolling elements are about 160Hz, 106Hz, 11.8Hz and 
139Hz, respectively. Envelope spectra of the 
outer-race fault data are depicted in Figure 15. 
Because the frequencies 109Hz, 216Hz and 324Hz 
are close to the defect characteristics of the bearing 
outer race, the second-order and the third-order 
harmonics thereof, respectively, Fig. 15 seems to give 
a display of bearing outer-race characteristics to some 
extent. Nonetheless, as shown in Fig. 15, some 
frequencies, such as the frequency 157Hz, cause a 
disturbance to identification of bearing fault types. 
Then, EMD was made use of exploring these 
outer-race fault data and the results are exhibited in 
Figure 16, which consists of eleven components. By 
trial and error, the first component, which 
incorporates most of useful information, was chosen 
for analysis. Figure 17 shows envelope spectra of the 
first component recovered by EMD. Nonetheless, 
compared with Fig. 15, Fig. 17 does not demonstrate 
a significant improvement in highlighting the defect 
frequencies. Moreover, EEMD was used to probe 
these outer-race fault data and the results are 
displayed in Figure 18, which comprises twelve 
components. Figure 19 describes envelope spectra of 
the first component recovered by EEMD. However, 
compared with Fig. 15, Fig. 19 is still unsuccessful in 
showing an improvement in highlighting the defect 
frequencies. In addition, SSD was applied to 
investigate these outer-race fault data and the results 
are displayed in Figure 20, which consists of five 
components. Envelope spectra of the first component 
retrieved by SSD are depicted in Figure 21. 
Compared with each of Fig. 15, 17 and 19, Fig. 21 
more significantly highlights the defect frequencies.  
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Fig. 14.  A piece of bearing outer-race fault data. 

0 0.2 0.4 0.6 0.8 1

Frequency( 10
3 Hz)

0

0.1

0.2

A
m

pl
itu

de
(m

.s
-2

) 109Hz

157Hz 324Hz

216Hz

 

Fig. 15. Envelope spectra of bearing outer-race fault 
data. 
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Fig. 16. Decomposition results of bearing outer-race                  
fault data using EMD, (a) the 1st~4th 

components, (b) the 5th~8th components, (c) 
the 9th~11th components. 
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Fig. 17. Envelope spectra of the first component                
retrieved by EMD. 
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Fig. 18. Decomposition results of bearing outer-race 
fault data using EEMD, (a) the 1st~4th 
components, (b) the 5th~8th components, (c) 
the 9th~12th components. 
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Fig. 19. Envelope spectra of the first component          
retrieved by EEMD. 

-0.3

0

0.3

c
1

-2

0

2

c
2

-0.15

0

0.15

c
3

-0.2

0

0.2

c
4

0 0.2 0.4 0.6 0.8 1
Time(s)

-0.04

0

0.04

c
5

 

Fig. 20. Decomposition results of bearing outer-race 
fault data using SSD. 
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Fig. 21. Envelope spectra of the first component 
retrieved by SSD. 

DISCUSSIONS 
Although either of SSD and EMD can serve to 

examine nonstationary and nonlinear data, there is a 
considerable difference between them both. EMD 
extracts components from original data in descending 
order of frequencies. Since lacking focuses on 
practically physical meaning of components, EMD 
inevitably yields mode mixing. By contrast, SSD 
extracts components from original data in descending 
order of energy of spectral peaks. Owing to 
protecting natural properties of spectral peaks at 
utmost, SSD can generate components with clear 
physical meaning by effectively restraining mode 
mixing.  

Although feasible in feature enhancement of 
complex vibration data, SSD still suffers from some 
difficulties, such as identification and separation of 
the trend, evaluation of proprieties of the default 

value 1% of the original variance and the end effects 
from spurious oscillations describing the edge of the 
reconstructed SSD-components. These problems 
require further study in future.  

CONCLUSIONS 
This paper introduced SSD to examine complex 

bearing vibration data and proposed a novel method 
for fault feature enhancement of bearings based on 
SSD. Both numerical and experimental examples 
confirmed the feasibility of the proposed method. 
Additionally, the comparison of SSD with envelope 
analysis, EMD and EEMD indicates that SSD 
outperforms the other methods in enhancing fault 
features of bearings as well as restraining mode 
mixing.  
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摘 要 

滾動軸承的故障特徵通常比較微弱。因此，滾

動軸承的故障診斷具有挑戰性。基於平穩性和線性

理論的傳統資料分析方法不適合處理軸承振動資

料。EMD 和 EEMD 方法雖然被用於處理非平穩和

非線性信號，但是這兩個方法存在著模態混疊問

題。為此，本文將一種新的信號處理方法—奇異譜

分解(Singular Spectrum Decomposition, SSD)用於

分析軸承故障信號，提出了一種基於 SSD 的軸承

故障特徵增強方法。接著，將本文所提出的方法與

包絡分析、EMD 和 EEMD 方法進行了比較，結果

表明本文所提出的方法在抑制模態混疊及提取具

有物理意義的信號分量方面具有優勢，在增強軸承

故障特徵方面具有潛力。 
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