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Abstract

The contact for donut-shaped asperity has been
investigated for decades based on two-dimensional
Hertz contact. In this paper, the contact is
investigated by finite element analysis. The results
show that two-dimensional Hertz contact can predict
the contact only for the donut-asperity with large
radius.  Thus, new semi-empirical equations are
proposed. The total load, load-indentation depth
relations and the coordinates of contact edges can be
predicted accurately by semi-empirical equations.
For the donut-asperity with small radius, the modified
model can predict the contact.

Introduction

Laser texturing is important for surface
engineering. Laser texturing is important for surface
engineering. It is usually used for metallic materials

in micro/nano scale due to the focal size of laser pulses
(Dou et al., 2023). It can produce surfaces with
various wettability, adhesion and friction properties
(Bhadurietal. 2017). The laser texturing can be used
in the touchdown area of computer hard-disks to avoid
the stiction problem (Gui et al., 1997). It can also be
used in aerospace, marine and biomedical industries
(Dou et al., 2023) and engine component (Rossi and
Vieira, 2019). The asperities made by laser texturing
have an annular shapes consisting of a crater
surrounded by a raised rim. These may be called
“volcano” or “donut” type bumps (Oka, 2000) (which
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is called the donut-shaped asperity in this paper).
The contact of such asperities was investigated for
decades.

Gui et al. (1997) investigated the stiction of the
donut-shaped asperity experimentally. They propose
a stiction model by fitting the experimental results.
Zhao and Talke (2000) investigated the plasticity
index for the contact of the donut-shaped asperities.
The asperity in their model is like a real baker's donut.
Their model is based on the contact between the
circular-cylinder and a half-space. Oka (2000)
proposed an analytical solution for the contact of the
donut-shaped asperity based on the point Hertz contact.
His solution can be evaluated numerically using
double integrals. However, his solution needs very
complicated computation. Therefore, assuming the
initial shape along any radial line is parabolic,
Greenwood (2001) solved this problem based on the
two-dimensional Hertz  contact. Greenwood
proposed easy-implemented equations.  Argatov etal.
(2016) also used two-dimensional Hertz contact to
perform a study of toroidal indenters. They used the
leading-order asymptotic solution for the contacts of
the power-law shaped torus, and obtained the same as
Greenwood (2001) for donut-shaped torus.

All previous researches are based on the point-
Hertz contact or two-dimensional Hertz contact, and
are not accurate. The correct prediction for donut-
shaped asperity contact is important.  If the accuracy
is not enough, engineering problem (e.g. stiction) may
occur. (Gui et al., 1997). Therefore, the contact for
donut asperity is investigated using finite element
method (Kelly et al., 2022) or experiment (Dou et al.,
2023) recently.  In this paper, the contact of the donut
asperity is investigated using finite element method.
The more accurate results are obtained. The results
are compared with Greenwood’s research (2001).
New semi-empirical equations are proposed.

Analyses

1. Model

The contact between a donut-shaped asperity
and a half-space is shown in Figure 1. The asperity
is annular, and is approximated parabolic shape in its



cross section.  The asperity is pushed towards an
elastic half-space. ~ The contact is elastic and
frictionless. The elastic contact between an asperity
and a half-space can be regarded as the contact
between a rigid asperity and an elastic half-space.
Thus, the donut-shaped asperity is set to be rigid.

The contact between a donut and a half-
space.

Figure 1.

In this research, the cylindrical coordinate
system is used. As shown in Fig. 1, the radius of the
annular donut is R. The cross section of the donut-
shaped asperity is assumed to be parabolic with radius
of curvature equalto p. When in contact, the contact
half-widthis b. Inthe laser texture asperity, p > R.
In Greenwood’s research (2001), the contact for p =
10R was investigated. In this research, the contacts
for r R=01p, 02p,04p and p ( R/p=
0.1,0.2,0.4, 1) are investigated.

2. Greenwood’s research

Greenwood (2001) assumed that the pressure
distribution at the cross section of the contact follows
that of the two-dimensional Hertz contact,

p="5b?—(r —R)? (1)
where r is the radial coordinate and p, is the

maximum pressure. Thus, the indentation depth §
is derived.

§ = 2o (Znﬂ + 3) ()

E* b 2
where E* = (1 —v?)/E is the equivalent Young’s
modulus (while E is Young’s modulus and v is
Poisson ratio of the elastic half-space.). Argatov et
al. (2016) used different approach and obtained the
same result.

In two-dimensional Hertz contact, the maximum
pressure p, and the total load W have the following
relationships.

-186-

J. CSME Vol.44, No.2 (2023)

bE*
Po = 2p 3)
W = m?Rbp, 4)
Thus, equation (2) can also expressed as
b? 16R | 1
= Z (lnT + E) (5)
w 16R 1
6= n2RE* (lnT + 5) (6)

Greenwood (2001) found that, given §, p and
R, the contact half-width b can obtained from
equation (5) by iteration. Thus, p,, p and W can
be obtained by equations (3), (1) and (4), respectively.
By fitting the experimental stiction results, Gui
et al. (1997) obtained a similar equation with a

different constant.
8TR

§ = (™= - 0.1935) @)

Zhao and Talke (2000) using a different approach and
obtained a totally different equation.

w 16 1
6= m2RE* ( nTp N E) 8)

Basically, Argatov’s model is the same as
Greenwood’s  model. Oka’s model is too
complicated, and must be evaluated numerically.
Gui et al. employed two-dimensional Hertz contact,
but used wrong assumption (b* = 2pb). Zhao and
Talke’s use Johnson's equation for contact between a
cylinder (Johnson, 1985), but obtained a wrong form
(p/b) in equation (8). Thus, Greenwood’s model is
used in this paper.

3. Finite Element Analysis
In this paper, finite element analysis is employed.
The following parameters are used.
p = 50um, E =200 GPa, v = 0.3.
R = 5um, 10um, 20pum, 50pm.
Totally, four cases are simulated.
Boundary conditions are shown in Figure 2.
The half-space is represented by a large cylinder with
height and radius equal to 250um. The annular
donut-shaped asperity is set to be rigid.  The left side
is the axisymmetric axis. The bottom is fixed. The
donut-shaped asperity is pressed downward 0.5um
(6/p = 0.01). Quasi-static analysis is employed in
the finite element analyses.

Figure 2. The boundary conditions.
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Result

Figure 3a shows the complete deflection curves
of the cross section for R = 5um, p = 50um and
6=05um ( &6/p=001 and R/p=0.1).
Figure 3b shows the contact pressure distribution.
Figure 3c shows the coordinates of the outer and the
inner edges of the contact (denoted as r;,, and 7,,;).
From these figures, it is obvious that Greenwood’s
prediction is not accurate.

In Fig. 3D, it is found that the coordinate of p,
(denoted as R,,,,) is larger than R. The magnitude
of p, is larger than that of the two-dimensional Hertz
contact. In Fig. 3c, both the coordinates of the outer
and the inner contact edges are larger than those of the
two-dimensional Hertz contact. The contact edges
are not symmetric about either R or R,,,,. Define
the inner half-width b;, as R4y — "in, and the outer
half-width b,,; as 7yt — Rmax- bin 1S larger than
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Figure 3a. Complete deflection curves for R/p = 0.1
and &/p = 0.01.
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Figure 3b. Pressure distribution for R/p = 0.1 and
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§/p = 0.01.
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Figure 3c. Contact edges vs indentation depth for
R/p =0.1.
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Figure 4. Load vs. indentation depth for R/p =1
and &/p = 0.01.

Figure 4 shows load vs indentation depth for
R/p=1 and §/p=0.01. It is found that
Greenwood’s prediction underestimates the total load.
Therefore, Greenwood’s model needs to be modified.

Discussion

1. Comparison with Greenwood’s prediction

Both Argatov (2016) and Greenwood (2001)
assumed that the maximum pressure is at r = R, the
contact half-width is b, and the pressure distribution
follows equation (1). Based on these assumptions,
equation (2) is derived. Then, Greenwood used two-
dimensional Hertz contact (equations (3) and (4)), and
derived equations (5) and (6).



From Fig. 3a, the maximum deflectionisat r =
R. But, from Fig. 3b, the the maximum pressure is at
T =Rpgx (Rmax > R). The magnitude of the
maximum pressure p, is larger than that of two-
dimensional Hertz contact.  The pressure distribution
is different from equation (1). Also from Fig. 3c, the
inner half-width b;, is not the same as the outer half-
width b,,;. The inner and outer radii are different
from that of the two-dimensional Hertz contact.
Thus, in Fig. 4, the non-dimensional load vs.
indentation depth are different from Greenwood’s
equations.

2. Modification equations

Since the contact is different from two-
dimensional Hertz contact, following modified
equations are proposed.

2.1 Maximum pressure
(1) Coordinate at maximum pressure

The coordinate of the maximum pressure is
R Notat R. Asthe & islarger, R, is larger.
The coordinate at the maximum pressure can be fitted
by the simulated results. The semi-empirical
formulas for the coordinate of the maximum pressure
is listed in Table 1.

R

— fitting equation for 2maz maximum

P R error
R 5\* 5

0.1 | Zmex_ 9929( ) + 33.06( )+ 1 0.69%
R p
s

02 | Rmax_ 55 87( ) +9.075 (;) +1 0.39%
s

04 | Rmax_ g0 62( ) +2.845 (;) +1 0.1%
Rm z )

1 —= 8296( ) +0.4833 (—) +1 0.06%
R p p

Table 1. Fitting parameters for R,,,,./R.

For the same R/p, as &6/p is larger, Rp,qx/R
is larger. For the same 6/p, as R/p is smaller,
Ro.ax/R is larger. For example, at §/p = 0.01,
Roax/R=1.32 for R/p =0.1, and R,,./R=1.005
for R/p=1. As R/p is large, R, iS nearly
equal to R.

(2) Magnitude of the maximum pressure
In two-dimensional Hertz contact, the maximum
pressure depends on the radius of the cylinder and the

width.

Po=" ©)
However, the donut-shaped asperity is annular.

The maximum pressure is larger than that of the two-

dimensional Hertz contact. Therefore, there is a

correction factor K, for p,. Define the half-with b

as the average of the inner half-width and the out half-

width.
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b — bin"'zbout (10)
The maximum pressure should be that of two-

dimensional Hertz contact corrected by a factor K;.

bE*
Po = Klg (11)

The semi-empirical equation for the factor K;
is shown in table 2.

R .
= fitting equation for K;. maximum
p error
8\’ s
0.1 K, =-757.8 (—) + 26.65 (—) +1 0.4%
p p
5\° s
0.2 K, = —26.04 (p) +7. 876( ) +1 0.37%
0.4 K1—1506< ) +1o32( ) 0.4%
1 K1—3279( ) —2417( ) 0.49%

Table 2. Fitting parameters for K;

For the same R/p, as &§/p is larger, K; is
larger. For the same &/p, as R/p is smaller, K;
is larger. For example, at §/p = 0.01, K;=1.2 for
R/p=0.1, and K;=1.008 for R/p =1. As R/p
is large, K, is nearly equal to 1.

(3) Pressure distribution

Thus, the pressure distribution can be
approximated by

p= :T(;\/blzn - (T - Rmax)2 for Rmax - bin <
r< Rmax (12)
= Po \/bout max) for Rmax + bout 2
r= Rmax (13)

The pressure distribution can be approximation by
equations (12) and (13) with tolerable error.  Figure 5
shows the modified pressure.

o 0.5 1 1.8 2

r
radial coordinate
o

Figure 5. Fitted pressure distribution for R/p = 0.1
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and &/p = 0.01.

2.2 Total load and maximum pressure

In two-dimensional Hertz contact,

W = n?Rbp, (14)
Since the donut-shaped asperity is annular, the total
contact force is different from a cylinder. Therefore,
there should be a correction factor K, for total load.

W= KZT[ZRmabeO (15)
The factor is shown in Table 3.
R fitting equation for K. maximum
p gea 2 error
01| K=ssao(D) —1aas()+1 | oo
o/ p
s s
0.2 = -] - . 509
K, = 317.3 (p)z 7.569 (p) +1 0.50%
s s
0.4 = ) - Z 0.47%
K, =326.4 (p)z 5.653 (p) +1 0
s s
1 = 2) - Z 0.49%
K,=4114 (p) 5.363 (p) +1 0
Table 3. Fitting parameters for K,.
For the same R/p, as &/p is larger, K, is
smaller. For the same &/p, as R/p is smaller, K,
is larger Forexample,at §/p = 0.01, K, =0.94 for

R/p =0.1,and K,=0.99 for R/p =1.
The total load can be obtained as

W=KK7T2M
182 2p

(16)
2.3 Indentation depth and half-width

Both Argatov (2016) and Greenwood (2001)
derived the following equation.

(lnﬂ 1)

6= (InT 43 @)
This equation is based on the assumption that, the
maximum pressure is located at R, the half-width is
b, and the pressure distribution follows equation (1).
The constant 1/2 is obtained by integrating the
pressure distribution.

In the finite element analysis, the pressure
distribution does not follow equation (1), therefore, the
constant is different from 1/2. In order to find the
inner half-width and the outer half-width, the equation
can be modified. As Gui et al.’s research, the
constant may be different from 0.5. It is reasonable
to assume there are different constants for the contact
with different half-widths.  Thus, equation (2) can be
modified as the following equations.

w 16R

§ = o (I + Cou) (18)
w 16R

§=—— (znT + c) (19)

Using the simulation results, the C;,, C,,: and
C are listed in Table 4.
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> Ci Cout ¢
0.1 0.2921 0.8385 0.6028
0.2 0.2453 0.6122 0.4454
0.4 0.061 0.304 0.1899
1 -0.3658 -0.2375 -0.2996

Table 4. Constant for inner and outer half-width.

If the mean half-width is used, equation (19)
can be transformed into the following equation.

__ K1Kpb? 16R
5 =" (m =+ c) (20)

Given §, p and R, the contact half-width b can
obtained from equation (20) by iteration. Total load
can be obtained from equation (16). Then, b;, and
byt Can be obtained by equations (17) and (18).
Figure 6 shows that the coordinates of contact edges
vs. indentation depth. The modified equations can
predict the coordinates of the contact edges very
accurately.

ment method

0.008

o 0.002 0.004 0.006 0.01

indentation depth 2
7
Figure 6. Coordinates of the contact edges vs.
indentation depth for R/p = 0.1 and §/p = 0.01.

2.4 Total Load and indentation depth

Using equations (18), the indentation depth can
be obtained. Then, total load can be obtained from
equation (12). Figure 7 shows the relationship
between total load and indentation depth for R/p =1
and 6/p =0.01. Greenwood’s equation cannot
predict the load accurately. Equations (18) or (12)
can predict the load very accurately.



o 0.002 0.004 0.006 0.008 0.01

&
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Figure 7. Load vs. indentation depth for R/p =1
and &/p = 0.01.

3 Summary

The donut contact can be described by two-
dimensional Hertz contact modified by K;, K,, C,
Rmax .

Given p ,R and &8, R, can obtained from
tablel. K; and K, canobtained fromtable 2 and 3,
respectively. b can be obtained from equation (19)
by iteration. Then, p, can obtained from equation
(14), and W can be obtained from equation (12).
b, and b,,; can be obtained from equations (17) and
(18). Fig. 5 to 7 show that the modified equations
can predict the contact accurately.

Argatov et al. (2016) showed that their model is
in the leading approximation. Popov et al. (2019)
showed that this model is only valid for “thin ring” (i.e.
b K R).  From the results, it is obvious that, as R/p
is large, the contact point is nearly located at the
central line. Greenwood and Argatov et al.’s model
is applicable. AsR/p is small, the contact point is not
located at the central line. The assumption is no
longer true, and the modified model is necessary.

Conclusion

The contact between a donut-shaped asperity
and a half-space is analyzed using finite element
method. The result is compared with Greenwood’s
prediction based on two-dimensional Hertz contact.
It is found that Greenwood’s prediction is accurate.
The modified equations are proposed. The contact
for a donut-shaped asperity can be approximated by
the modified equations.
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Nomenclature
b the contact half-width at cross section of the asperity.
by,  inner half-width, by, = Rpax — Tin
b,,: outer half-width, b,y = "oyt — Rmax
C,Cin,Coyue CONstants in equations for §.
E Young’s modulus.

E* equivalent Young’s modulus, E* = (1 —v?)/E

*

K, afactor, py = K; bzip

K, afactor, W = K,m2R,,,4,bpo
p pressure

P Maximum pressure
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R the radius of the annular donut-shaped asperity.
R0 coordinate of the maximum pressure.

r radial coordinate

13, coordinate of the inner edge of the contact.
T, coordinate of the outer edge of the contact.
W total load

& indentation depth of the donut-shaped asperity
v Poisson ratio

p radius of curvature at the cross section of the donut-
shaped asperity.
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