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Abstract 
 

 The contact for donut-shaped asperity has been 
investigated for decades based on two-dimensional 
Hertz contact.  In this paper, the contact is 
investigated by finite element analysis.  The results 
show that two-dimensional Hertz contact can predict 
the contact only for the donut-asperity with large 
radius.  Thus, new semi-empirical equations are 
proposed.  The total load, load-indentation depth 
relations and the coordinates of contact edges can be 
predicted accurately by semi-empirical equations.  
For the donut-asperity with small radius, the modified 
model can predict the contact.  
 

Introduction 
 
 Laser texturing is important for surface 
engineering.  Laser texturing is important for surface 
engineering.  It is usually used for metallic materials 
in micro/nano scale due to the focal size of laser pulses 
(Dou et al., 2023).  It can produce surfaces with 
various wettability, adhesion and friction properties 
(Bhaduri et al. 2017).  The laser texturing can be used 
in the touchdown area of computer hard-disks to avoid 
the stiction problem (Gui et al., 1997).  It can also be 
used in aerospace, marine and biomedical industries 
(Dou et al., 2023) and engine component (Rossi and 
Vieira, 2019).  The asperities made by laser texturing 
have an annular shapes consisting of a crater 
surrounded by a raised rim.  These may be called 
“volcano” or “donut” type bumps (Oka, 2000) (which 

is called the donut-shaped asperity in this paper).  
The contact of such asperities was investigated for 
decades. 
 
 Gui et al. (1997) investigated the stiction of the 
donut-shaped asperity experimentally.  They propose 
a stiction model by fitting the experimental results.  
Zhao and Talke (2000) investigated the plasticity 
index for the contact of the donut-shaped asperities.  
The asperity in their model is like a real baker's donut.  
Their model is based on the contact between the 
circular-cylinder and a half-space.   Oka (2000) 
proposed an analytical solution for the contact of the 
donut-shaped asperity based on the point Hertz contact.  
His solution can be evaluated numerically using 
double integrals.  However, his solution needs very 
complicated computation.  Therefore, assuming the 
initial shape along any radial line is parabolic, 
Greenwood (2001) solved this problem based on the 
two-dimensional Hertz contact.  Greenwood 
proposed easy-implemented equations.  Argatov et al. 
(2016) also used two-dimensional Hertz contact to 
perform a study of toroidal indenters.  They used the 
leading-order asymptotic solution for the contacts of 
the power-law shaped torus, and obtained the same as 
Greenwood (2001) for donut-shaped torus. 
 All previous researches are based on the point-
Hertz contact or two-dimensional Hertz contact, and 
are not accurate.  The correct prediction for donut-
shaped asperity contact is important.  If the accuracy 
is not enough, engineering problem (e.g. stiction) may 
occur. (Gui et al., 1997).  Therefore, the contact for 
donut asperity is investigated using finite element 
method (Kelly et al., 2022) or experiment (Dou et al., 
2023) recently.  In this paper, the contact of the donut 
asperity is investigated using finite element method.  
The more accurate results are obtained.  The results 
are compared with Greenwood’s research (2001).  
New semi-empirical equations are proposed. 
 

Analyses 
 
1. Model 
 The contact between a donut-shaped asperity 
and a half-space is shown in Figure 1.  The asperity 
is annular, and is approximated parabolic shape in its 
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cross section.  The asperity is pushed towards an 
elastic half-space.  The contact is elastic and 
frictionless.  The elastic contact between an asperity 
and a half-space can be regarded as the contact 
between a rigid asperity and an elastic half-space.   
Thus, the donut-shaped asperity is set to be rigid. 
 

 

 
 
Figure 1.  The contact between a donut and a half-

space. 
 
 In this research, the cylindrical coordinate 
system is used.  As shown in Fig. 1, the radius of the 
annular donut is 𝑅𝑅.  The cross section of the donut-
shaped asperity is assumed to be parabolic with radius 
of curvature equal to 𝜌𝜌.  When in contact, the contact 
half-width is 𝑏𝑏.  In the laser texture asperity, 𝜌𝜌 ≫ 𝑅𝑅.  
In Greenwood’s research (2001), the contact for 𝜌𝜌 =
10𝑅𝑅 was investigated.  In this research, the contacts 
for 𝑅𝑅 = 0.1 𝜌𝜌, 0.2 𝜌𝜌, 0.4 𝜌𝜌  and   𝜌𝜌  ( 𝑅𝑅/ 𝜌𝜌 =
0.1, 0.2, 0.4, 1) are investigated. 
 
2. Greenwood’s research 
 Greenwood (2001) assumed that the pressure 
distribution at the cross section of the contact follows 
that of the two-dimensional Hertz contact, 
𝑝𝑝 = 𝑝𝑝0

𝑏𝑏
�𝑏𝑏2 − (𝑟𝑟 − 𝑅𝑅)2     (1) 

where 𝑟𝑟  is the radial coordinate and 𝑝𝑝0  is the 
maximum pressure.  Thus, the indentation depth 𝛿𝛿 
is derived. 
𝛿𝛿 = 𝑏𝑏𝑝𝑝0

𝐸𝐸∗
�𝑙𝑙𝑙𝑙 16𝑅𝑅

𝑏𝑏
+ 1

2
�      (2) 

where 𝐸𝐸∗ = (1 − 𝜈𝜈2)/𝐸𝐸  is the equivalent Young’s 
modulus (while 𝐸𝐸  is Young’s modulus and 𝜈𝜈  is 
Poisson ratio of the elastic half-space.).  Argatov et 
al. (2016) used different approach and obtained the 
same result. 
 In two-dimensional Hertz contact, the maximum 
pressure 𝑝𝑝0 and the total load 𝑊𝑊 have the following 
relationships. 

𝑝𝑝0 = 𝑏𝑏𝐸𝐸∗

2𝜌𝜌
                          (3) 

𝑊𝑊 = 𝜋𝜋2𝑅𝑅𝑏𝑏𝑝𝑝0                  (4) 
Thus, equation (2) can also expressed as 
𝛿𝛿 = 𝑏𝑏2

2𝜌𝜌
�𝑙𝑙𝑙𝑙 16𝑅𝑅

𝑏𝑏
+ 1

2
�      (5) 

𝛿𝛿 = 𝑊𝑊
𝜋𝜋2𝑅𝑅𝐸𝐸∗

�𝑙𝑙𝑙𝑙 16𝑅𝑅
𝑏𝑏

+ 1
2
�     (6) 

 Greenwood (2001) found that, given 𝛿𝛿, 𝜌𝜌 and 
𝑅𝑅 , the contact half-width 𝑏𝑏  can obtained from 
equation (5) by iteration.  Thus, 𝑝𝑝0, 𝑝𝑝 and 𝑊𝑊 can 
be obtained by equations (3), (1) and (4), respectively. 
 By fitting the experimental stiction results, Gui 
et al. (1997) obtained a similar equation with a 
different constant. 
𝛿𝛿 = 𝑊𝑊

𝜋𝜋2𝑅𝑅𝐸𝐸∗
�𝑙𝑙𝑙𝑙 8𝜋𝜋𝑅𝑅

𝑏𝑏
− 0.1935�    (7) 

Zhao and Talke (2000) using a different approach and 
obtained a totally different equation. 
𝛿𝛿 = 𝑊𝑊

𝜋𝜋2𝑅𝑅𝐸𝐸∗
�𝑙𝑙𝑙𝑙 16𝜌𝜌

𝑏𝑏
− 1

2
�     (8) 

 Basically, Argatov’s model is the same as 
Greenwood’s model.  Oka’s model is too 
complicated, and must be evaluated numerically.  
Gui et al. employed two-dimensional Hertz contact, 
but used wrong assumption (𝑏𝑏2 = 2𝜌𝜌𝑏𝑏 ).  Zhao and 
Talke’s use Johnson's equation for contact between a 
cylinder (Johnson, 1985), but obtained a wrong form 
(𝜌𝜌/𝑏𝑏) in equation (8).  Thus, Greenwood’s model is 
used in this paper. 
  
3. Finite Element Analysis 
 In this paper, finite element analysis is employed.
 The following parameters are used. 
𝜌𝜌 = 50μm, 𝐸𝐸 = 200 GPa, 𝜈𝜈 = 0.3. 
𝑅𝑅 = 5μm, 10μm, 20μm, 50μm.  
Totally, four cases are simulated. 
 Boundary conditions are shown in Figure 2.  
The half-space is represented by a large cylinder with 
height and radius equal to 250μm .  The annular 
donut-shaped asperity is set to be rigid.  The left side 
is the axisymmetric axis.  The bottom is fixed.  The 
donut-shaped asperity is pressed downward 0.5μm 
(𝛿𝛿/𝜌𝜌 = 0.01).  Quasi-static analysis is employed in 
the finite element analyses. 
 

 
 

Figure 2. The boundary conditions. 
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Result 

 
 Figure 3a shows the complete deflection curves 
of the cross section for 𝑅𝑅 = 5𝜇𝜇𝜇𝜇 , 𝜌𝜌 = 50𝜇𝜇𝜇𝜇  and 
𝛿𝛿 = 0.5μm  ( 𝛿𝛿/𝜌𝜌 = 0.01  and 𝑅𝑅/𝜌𝜌 = 0.1 ).  
Figure 3b shows the contact pressure distribution.  
Figure 3c shows the coordinates of the outer and the 
inner edges of the contact (denoted as 𝑟𝑟𝑖𝑖𝑖𝑖 and 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜).  
From these figures, it is obvious that Greenwood’s 
prediction is not accurate.   
 In Fig. 3b, it is found that the coordinate of 𝑝𝑝0 
(denoted as 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) is larger than 𝑅𝑅.  The magnitude 
of 𝑝𝑝0 is larger than that of the two-dimensional Hertz 
contact.  In Fig. 3c, both the coordinates of the outer 
and the inner contact edges are larger than those of the 
two-dimensional Hertz contact.  The contact edges 
are not symmetric about either 𝑅𝑅 or 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚.  Define 
the inner half-width 𝑏𝑏𝑖𝑖𝑖𝑖 as 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑖𝑖𝑖𝑖, and the outer 
half-width 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 as 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 .  𝑏𝑏𝑖𝑖𝑖𝑖 is larger than 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜.    
 

 
 

Figure 3a. Complete deflection curves for 𝑅𝑅/𝜌𝜌 = 0.1 
and 𝛿𝛿/𝜌𝜌 = 0.01. 

 

 
 

Figure 3b. Pressure distribution for 𝑅𝑅/𝜌𝜌 = 0.1 and 

𝛿𝛿/𝜌𝜌 = 0.01. 
 

 
 
 
 

 
 

Figure 3c. Contact edges vs indentation depth for 
𝑅𝑅/𝜌𝜌 = 0.1. 

 

\ 
Figure 4. Load vs. indentation depth for 𝑅𝑅/𝜌𝜌 = 1 

and 𝛿𝛿/𝜌𝜌 = 0.01. 
 
 Figure 4 shows load vs indentation depth for 
𝑅𝑅/𝜌𝜌 = 1  and 𝛿𝛿/𝜌𝜌 = 0.01 .  It is found that 
Greenwood’s prediction underestimates the total load.  
Therefore, Greenwood’s model needs to be modified. 
 

Discussion 
 

1. Comparison with Greenwood’s prediction 
 Both Argatov (2016) and Greenwood (2001) 
assumed that the maximum pressure is at 𝑟𝑟 = 𝑅𝑅, the 
contact half-width is 𝑏𝑏, and the pressure distribution 
follows equation (1).  Based on these assumptions, 
equation (2) is derived.  Then, Greenwood used two-
dimensional Hertz contact (equations (3) and (4)), and 
derived equations (5) and (6). 
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 From Fig. 3a, the maximum deflection is at 𝑟𝑟 =
𝑅𝑅.  But, from Fig. 3b, the the maximum pressure is at 
𝑟𝑟 = 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  ( 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑅𝑅 ).  The magnitude of the 
maximum pressure 𝑝𝑝0  is larger than that of two-
dimensional Hertz contact.  The pressure distribution 
is different from equation (1).  Also from Fig. 3c, the 
inner half-width 𝑏𝑏𝑖𝑖𝑖𝑖 is not the same as the outer half-
width 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜.  The inner and outer radii are different 
from that of the two-dimensional Hertz contact.  
Thus, in Fig. 4, the non-dimensional load vs. 
indentation depth are different from Greenwood’s 
equations. 
 
2. Modification equations 
 Since the contact is different from two-
dimensional Hertz contact, following modified 
equations are proposed. 
 
2.1 Maximum pressure 
(1) Coordinate at maximum pressure 
 The coordinate of the maximum pressure is 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 not at 𝑅𝑅.  As the 𝛿𝛿 is larger, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 is larger.  
The coordinate at the maximum pressure can be fitted 
by the simulated results.  The semi-empirical 
formulas for the coordinate of the maximum pressure 
is listed in Table 1. 
 
𝑅𝑅
𝜌𝜌

 fitting equation for 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

𝑅𝑅
 maximum 

error 

0.1 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

𝑅𝑅
= −992.9�

𝛿𝛿
𝜌𝜌
�
2

+ 33.06 �
𝛿𝛿
𝜌𝜌
�+ 1 0.69% 

0.2 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

𝑅𝑅
= −23.87�

𝛿𝛿
𝜌𝜌
�
2

+ 9.075 �
𝛿𝛿
𝜌𝜌
�+ 1 0.39% 

0.4 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

𝑅𝑅
= −10.62�

𝛿𝛿
𝜌𝜌
�
2

+ 2.845 �
𝛿𝛿
𝜌𝜌
�+ 1 0.1% 

1 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

𝑅𝑅
= −8.296�

𝛿𝛿
𝜌𝜌
�
2

+ 0.4833�
𝛿𝛿
𝜌𝜌
�+ 1 0.06% 

 
Table 1. Fitting parameters for 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚/𝑅𝑅. 

 
 For the same 𝑅𝑅/𝜌𝜌 , as 𝛿𝛿/𝜌𝜌  is larger, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚/𝑅𝑅 
is larger.  For the same 𝛿𝛿/𝜌𝜌 , as 𝑅𝑅/𝜌𝜌  is smaller, 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚/𝑅𝑅  is larger.  For example, at 𝛿𝛿/𝜌𝜌 = 0.01 , 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚/𝑅𝑅 =1.32 for 𝑅𝑅/𝜌𝜌 = 0.1 , and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚/𝑅𝑅 =1.005 
for 𝑅𝑅/𝜌𝜌 = 1.  As 𝑅𝑅/𝜌𝜌   is large, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  is nearly 
equal to 𝑅𝑅. 
  
(2) Magnitude of the maximum pressure 
 In two-dimensional Hertz contact, the maximum 
pressure depends on the radius of the cylinder and the 
width. 
𝑝𝑝0 = 𝑏𝑏𝐸𝐸∗

2𝜌𝜌
                              (9) 

 However, the donut-shaped asperity is annular.  
The maximum pressure is larger than that of the two-
dimensional Hertz contact.  Therefore, there is a 
correction factor 𝐾𝐾1 for 𝑝𝑝0.  Define the half-with 𝑏𝑏 
as the average of the inner half-width and the out half-
width. 

𝑏𝑏 = 𝑏𝑏𝑖𝑖𝑖𝑖+𝑏𝑏𝑜𝑜𝑢𝑢𝑢𝑢
2

                            (10) 
The maximum pressure should be that of two-
dimensional Hertz contact corrected by a factor 𝐾𝐾1. 
𝑝𝑝0 = 𝐾𝐾1

𝑏𝑏𝐸𝐸∗

2𝜌𝜌
                             (11) 

 The semi-empirical equation for the factor 𝐾𝐾1 
is shown in table 2. 
 
 

𝑅𝑅
𝜌𝜌

 fitting equation for 𝐾𝐾1. 
maximum 

error 

0.1 𝐾𝐾1 = −757.8�
𝛿𝛿
𝜌𝜌
�
2

+ 26.65�
𝛿𝛿
𝜌𝜌
�+ 1 0.4% 

0.2 𝐾𝐾1 = −26.04�
𝛿𝛿
𝜌𝜌
�
2

+ 7.876�
𝛿𝛿
𝜌𝜌
�+ 1 0.37% 

0.4 𝐾𝐾1 = 150.6 �
𝛿𝛿
𝜌𝜌
�
2

+ 1.032�
𝛿𝛿
𝜌𝜌
�+ 1 0.4% 

1 𝐾𝐾1 = 327.9 �
𝛿𝛿
𝜌𝜌
�
2

− 2.417�
𝛿𝛿
𝜌𝜌
�+ 1 0.49% 

 
Table 2. Fitting parameters for 𝐾𝐾1 

 
 For the same 𝑅𝑅/𝜌𝜌 , as 𝛿𝛿/𝜌𝜌  is larger, 𝐾𝐾1  is 
larger.  For the same 𝛿𝛿/𝜌𝜌,  as 𝑅𝑅/𝜌𝜌 is smaller, 𝐾𝐾1 
is larger.  For example, at 𝛿𝛿/𝜌𝜌 = 0.01 , 𝐾𝐾1 =1.2 for 
𝑅𝑅/𝜌𝜌 = 0.1 , and 𝐾𝐾1 =1.008 for 𝑅𝑅/𝜌𝜌 = 1.  As 𝑅𝑅/𝜌𝜌  
is large, 𝐾𝐾1 is nearly equal to 1. 
 
 
(3) Pressure distribution 
 
  Thus, the pressure distribution can be 
approximated by 
𝑝𝑝 = 𝑝𝑝0

𝑏𝑏𝑖𝑖𝑖𝑖
�𝑏𝑏𝑖𝑖𝑖𝑖2 − (𝑟𝑟 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚)2         for  𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑖𝑖𝑖𝑖 ≤

𝑟𝑟 ≤ 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚        (12) 
𝑝𝑝 = 𝑝𝑝0

𝑏𝑏𝑜𝑜𝑢𝑢𝑢𝑢
�𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜2 − (𝑟𝑟 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚)2       for 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 ≥

𝑟𝑟 ≥ 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚         (13) 
The pressure distribution can be approximation by 
equations (12) and (13) with tolerable error.  Figure 5 
shows the modified pressure.   
 

 
 

Figure 5. Fitted pressure distribution for 𝑅𝑅/𝜌𝜌 = 0.1 
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and 𝛿𝛿/𝜌𝜌 = 0.01. 
 
 
2.2 Total load and maximum pressure 
 In two-dimensional Hertz contact, 

𝑊𝑊 = 𝜋𝜋2𝑅𝑅𝑏𝑏𝑝𝑝0                   (14) 
Since the donut-shaped asperity is annular, the total 
contact force is different from a cylinder.  Therefore, 
there should be a correction factor 𝐾𝐾2 for total load. 

𝑊𝑊 = 𝐾𝐾2𝜋𝜋2𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑝𝑝0             (15) 
The factor is shown in Table 3. 
 
𝑅𝑅
𝜌𝜌

 fitting equation for 𝐾𝐾2 
maximum 

error 

0.1 𝐾𝐾2 = 833.9�
𝛿𝛿
𝜌𝜌
�
2

− 14.16 �
𝛿𝛿
𝜌𝜌
�+ 1 0.32% 

0.2 𝐾𝐾2 = 317.3�
𝛿𝛿
𝜌𝜌
�
2

− 7.569 �
𝛿𝛿
𝜌𝜌
�+ 1 0.50% 

0.4 𝐾𝐾2 = 326.4�
𝛿𝛿
𝜌𝜌
�
2

− 5.653 �
𝛿𝛿
𝜌𝜌
�+ 1 0.47% 

1 𝐾𝐾2 = 411.4�
𝛿𝛿
𝜌𝜌
�
2

− 5.363 �
𝛿𝛿
𝜌𝜌
�+ 1 0.49% 

 
Table 3. Fitting parameters for 𝐾𝐾2. 

 
 For the same 𝑅𝑅/𝜌𝜌 , as 𝛿𝛿/𝜌𝜌  is larger, 𝐾𝐾2  is 
smaller.  For the same 𝛿𝛿/𝜌𝜌, as 𝑅𝑅/𝜌𝜌 is smaller, 𝐾𝐾2 
is larger  For example, at 𝛿𝛿/𝜌𝜌 = 0.01, 𝐾𝐾2 =0.94 for 
𝑅𝑅/𝜌𝜌 = 0.1, and 𝐾𝐾2=0.99 for 𝑅𝑅/𝜌𝜌 =1. 
   The total load can be obtained as 
𝑊𝑊 = 𝐾𝐾1𝐾𝐾2𝜋𝜋2

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏2𝐸𝐸∗

2𝜌𝜌
                   (16) 

 
2.3 Indentation depth and half-width 
 Both Argatov (2016) and Greenwood (2001) 
derived the following equation.  
𝛿𝛿 = 𝑏𝑏𝑝𝑝0

𝐸𝐸∗
�𝑙𝑙𝑙𝑙 16𝑅𝑅

𝑏𝑏
+ 1

2
�                     (2) 

This equation is based on the assumption that, the 
maximum pressure is located at 𝑅𝑅, the half-width is 
𝑏𝑏, and the pressure distribution follows equation (1).  
The constant 1/2 is obtained by integrating the 
pressure distribution. 
 In the finite element analysis, the pressure 
distribution does not follow equation (1), therefore, the 
constant is different from 1/2.  In order to find the 
inner half-width and the outer half-width, the equation 
can be modified.  As Gui et al.’s research, the 
constant may be different from 0.5.  It is reasonable 
to assume there are different constants for the contact 
with different half-widths.  Thus, equation (2) can be 
modified as the following equations. 
𝛿𝛿 = 𝑊𝑊

𝜋𝜋2𝑅𝑅𝐸𝐸∗
�𝑙𝑙𝑙𝑙 16𝑅𝑅

𝑏𝑏𝑖𝑖𝑖𝑖
+ 𝐶𝐶𝑖𝑖𝑖𝑖�                 (17) 

𝛿𝛿 = 𝑊𝑊
𝜋𝜋2𝑅𝑅𝐸𝐸∗

�𝑙𝑙𝑙𝑙 16𝑅𝑅
𝑏𝑏𝑜𝑜𝑢𝑢𝑢𝑢

+ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜�               (18) 

𝛿𝛿 = 𝑊𝑊
𝜋𝜋2𝑅𝑅𝐸𝐸∗

�𝑙𝑙𝑙𝑙 16𝑅𝑅
𝑏𝑏

+ 𝐶𝐶�                  (19) 
 Using the simulation results, the 𝐶𝐶𝑖𝑖𝑖𝑖, 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 and 
𝐶𝐶 are listed in Table 4. 

 

𝑅𝑅
𝜌𝜌

 𝐶𝐶𝑖𝑖𝑖𝑖 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶 

0.1 0.2921 0.8385 0.6028 
0.2 0.2453 0.6122 0.4454 
0.4 0.061 0.304 0.1899 
1 -0.3658 -0.2375 -0.2996 

 
Table 4. Constant for inner and outer half-width. 

 
   If the mean half-width is used, equation (19) 
can be transformed into the following equation. 
𝛿𝛿 = 𝐾𝐾1𝐾𝐾2𝑏𝑏2

2𝜌𝜌
�𝑙𝑙𝑙𝑙 16𝑅𝑅

𝑏𝑏
+ 𝐶𝐶�                  (20) 

Given 𝛿𝛿 , 𝜌𝜌  and 𝑅𝑅 , the contact half-width 𝑏𝑏  can 
obtained from equation (20) by iteration.  Total load 
can be obtained from equation (16).  Then, 𝑏𝑏𝑖𝑖𝑖𝑖 and 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜  can be obtained by equations (17) and (18).  
Figure 6 shows that the coordinates of contact edges 
vs. indentation depth.  The modified equations can 
predict the coordinates of the contact edges very 
accurately. 
 

 
Figure 6. Coordinates of the contact edges vs. 

indentation depth for 𝑅𝑅/𝜌𝜌 = 0.1 and 𝛿𝛿/𝜌𝜌 = 0.01. 
 
2.4 Total Load and indentation depth 
 Using equations (18), the indentation depth can 
be obtained.  Then, total load can be obtained from 
equation (12).  Figure 7 shows the relationship 
between total load and indentation depth for 𝑅𝑅/𝜌𝜌 = 1 
and 𝛿𝛿/𝜌𝜌 = 0.01 .   Greenwood’s equation cannot 
predict the load accurately.  Equations (18) or (12) 
can predict the load very accurately. 



 
J. CSME Vol.44, No.2 (2023) 

-190- 
 

 
Figure 7. Load vs. indentation depth for 𝑅𝑅/𝜌𝜌 = 1 

and 𝛿𝛿/𝜌𝜌 = 0.01. 
 
3 Summary 
 The donut contact can be described by two-
dimensional Hertz contact modified by 𝐾𝐾1 , 𝐾𝐾2 , 𝐶𝐶 , 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 . 
 Given 𝜌𝜌  , 𝑅𝑅  and 𝛿𝛿 , 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  can obtained from 
table 1.  𝐾𝐾1 and 𝐾𝐾2 can obtained from table 2 and 3, 
respectively.  𝑏𝑏 can be obtained from equation (19) 
by iteration.  Then, 𝑝𝑝0  can obtained from equation 
(14), and 𝑊𝑊  can be obtained from equation (12).   
𝑏𝑏𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 can be obtained from equations (17) and 
(18).  Fig. 5 to 7 show that the modified equations 
can predict the contact accurately. 
 Argatov et al. (2016) showed that their model is 
in the leading approximation.  Popov et al. (2019) 
showed that this model is only valid for “thin ring” (i.e. 
𝑏𝑏 ≪ 𝑅𝑅).   From the results, it is obvious that, as R/ρ 
is large, the contact point is nearly located at the 
central line.  Greenwood and Argatov et al.’s model 
is applicable.  As R/ρ is small, the contact point is not 
located at the central line.  The assumption is no 
longer true, and the modified model is necessary. 
 

Conclusion 
 

 The contact between a donut-shaped asperity 
and a half-space is analyzed using finite element 
method.  The result is compared with Greenwood’s 
prediction based on two-dimensional Hertz contact.  
It is found that Greenwood’s prediction is accurate.  
The modified equations are proposed.  The contact 
for a donut-shaped asperity can be approximated by 
the modified equations. 
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Nomenclature 

 
𝑏𝑏 the contact half-width at cross section of the asperity. 
 
𝑏𝑏𝑖𝑖𝑖𝑖  inner half-width, 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑖𝑖𝑖𝑖 
 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜  outer half-width, 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  
 
𝐶𝐶,𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 constants in equations for 𝛿𝛿. 
 
𝐸𝐸 Young’s modulus. 
 
𝐸𝐸∗ equivalent Young’s modulus, 𝐸𝐸∗ = (1 − 𝜈𝜈2)/𝐸𝐸 
 
𝐾𝐾1 a factor, 𝑝𝑝0 = 𝐾𝐾1

𝑏𝑏𝐸𝐸∗

2𝜌𝜌
 

 
𝐾𝐾2 a factor, 𝑊𝑊 = 𝐾𝐾2𝜋𝜋2𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑝𝑝0 
 
𝑝𝑝 pressure 
 
𝑝𝑝0 maximum pressure 
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𝑅𝑅 the radius of the annular donut-shaped asperity. 
 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 coordinate of the maximum pressure. 
 
𝑟𝑟  radial coordinate 
 
𝑟𝑟𝑖𝑖𝑖𝑖 coordinate of the inner edge of the contact. 
 
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 coordinate of the outer edge of the contact. 
 
𝑊𝑊 total load  
 
𝛿𝛿 indentation depth of the donut-shaped asperity 
 
𝜈𝜈 Poisson ratio 
 
𝜌𝜌 radius of curvature at the cross section of the donut-
shaped asperity. 
 
 

甜甜圈型坡峰與半平面彈

性接觸之有限元素分析 
 

吳俊仲    吳佳鴻 
長庚大學機械工程學系 台灣大學應用力學研究所 

 

摘要 

過去二十年，許多學者使用赫茲接觸研究甜甜圈型

坡峰的接觸問題。本研究直接使用有限元素法研究

甜甜圈型坡峰的接觸問題。結果顯示，二維赫茲接

觸並非很好的近似。本研究提出半經驗公式，可以

精確預測合力、下壓深度與合力的關係，接觸半寬

度等參數。  
 


