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ABSTRACT 
 
The quaternion spherical linear interpolation method 
(slerp), which many researchers have adopted for 
numerical control, is inadequate for tool-axis-
orientation planning in general five-axis computer 
numerical control machines. This paper explains why 
the quaternion slerp method fails to achieve constant 
rotational speed. The machining quality is degraded 
when the quaternion slerp method is used in five-axis 
machining. To compensate for this failure, this paper 
proposes a solution for tool-axis-orientation planning, 
the five-axis slerp method, which generates steady 
angular velocity of the interpolation curve. 
 

INTRODUCTION 
 

Five-axis machine tools accurately machine 
complicated products. Two revolving axes are 
synchronously controlled along with three translating 
axes to manipulate the tool-axis orientation with 
respect to the piece being machined. The objective is 
to achieve accurate and steady movement along the 
tool-axis orientation to prevent low-quality products. 
The Euler angle method of mathematical modeling for 
tool-axis orientation is widely used (Henderson, 1997); 
however, it suffers from the gimbal-lock effect 
(Shoemake , 1985), (Dam et al., 1998). The quaternion 
method, which has favorable properties, is not only 
free of the gimbal-lock effect but also facilitates 
analytical manipulations. Thus, it has become 
increasingly widely employed. 

Quaternion interpolation is applied to obtain a 
certain intermediate orientation between two specified 
key frames in animations. Shoemake (1998) 
constructed a spherical Bezier curve to interpolate 

several specified key orientations for animated features 
and calculated successive orientations in between by 
using recursive spherical linear interpolation (slerp) of 
key quaternions on different Bezier curves sliced 
together in the manner of splines. Barr et al. (1992) 
proposed a discrete derivative approach for 
interpolating orientations with quaternion curves on 
the unit quaternion space by minimizing the total 
energy function subject to angular velocity constraints. 
Ramamoorthi and Barr (1997) further introduced a 
criterion for automatic refinement based on the Euler–
Lagrange error function to accelerate the construction 
of quaternion spline curves upon which a relatively 
steady interpolation can be maintained. 

Ho et al. (2003) proposed the tool orientation 
smoothing (TOS) method for five-axis machining to 
interpolate smooth tool-axis directions from the 
representative tool-axis orientations in general areas to 
avoid interference in tool-path generation by using the 
computer-aided manufacturing (CAM) module. The 
TOS method coupled with the cutting error 
improvement method reduced cutting errors and 
increased machining efficiency by modifying the cutter 
location data and rearranging the tool-axis orientations. 
Zhang et al. (2014) obtained a smoother trajectory for 
tool-axis orientations by fitting quaternion B-spline 
curves and accordingly optimizing unit quaternion 
space. Li and Guo (2009) introduced a dual-quaternion 
representation of both orientation and position for five-
axis machining and developed the quaternion-quintic 
spherical Bezier-spline-interpolation algorithm to 
synchronously enable five-axis orientation and 
positioning for superior machining efficiency and 
surface quality. Zhao et al. (2017) further selected the 
dominant points that can characterize the path among 
specified positions and orientations of five-axis 
machining and therefore generated a smooth tool path 
by using the dual-quaternion B-spline approximation 
method. Our proposed scheme is expected to 
significantly reduce the number of points for fitting and 
increase computational efficiency for real-time 
trajectory generation. 

Previous studies on improving the control of tool-
axis orientation have relied on the slerp method or its 
derivatives. Dam et al. (1998) analyzed the angular 
velocity of the interpolation curve in a unit quaternion 
space. The results applied to animated objects 
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demonstrated the full mobility of six degrees of 
freedom that the five-axis machines however do not 
have. The slerp method for table-tilting-type five-axis 
machines is thus proposed in this paper to generate 
steady angular velocity of the interpolation curve. The 
simulation results are presented and compared with 
those produced using existing methods. 

  

 
GEOMETRICAL ROTATION 

 
Geometrical rotation is useful in the computer 

graphics domain, which involves displaying 3D 
models. The geometric interaction among objects, such 
as a workpiece cut by a milling tool demonstrated in 
real time, known as a cutting simulation, enables the 
CAM module or control designer to visualize the 
physics such as machine collision or undercutting and 
overcutting conditions. The vector motion is useful for 
demonstrating the position and orientation of a milling 
tool during cutting simulation. The key concern of 
motion planning in multi-axis CNC is how to attain 
constant-speed motion in the milling tool for higher 
machining quality. In recent years, a basic pipeline of 
CNC motion planning is that tool-path (position) 
planning is performed followed by tool-axis 
orientation planning. The tool-axis orientation 
planning modifies the tool-axis orientation of each 
cutter contact point to adhere to the speed and 
acceleration limits of each individual rotation axis. 
After the tool-tip position is determined through path 
planning by using techniques such as nonuniform 
rational basis spline to attain constant-speed 
interpolation in displacement, the rest of the milling 
tool body can be deviated from the tool-tip position due 
to the orientation. Orientation planning preferably 
yields a constant rotational speed. 

 
2.1 Spherical linear interpolation of a unit vector 
motion 

Unit vector motion occurs when one end of a unit 
is pinned at the origin and the other end moves on the 
unit sphere (Fig. 1). When the unit vector moves from 
point 𝒑𝒑1 to point 𝒑𝒑2, the two points 𝒑𝒑1 and 𝒑𝒑2 can 
be used to form the arc of a great circle on the unit 
sphere. The normal vector of this arc is derived from 
the cross product of the two position vectors 𝒑𝒑1 and 
𝒑𝒑2 as follows: 

 
𝒏𝒏 = 𝒑𝒑1 × 𝒑𝒑2 (1) 
 

The angle subtended by the arc may also be derived 
using 
 
 Ω = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝒑𝒑𝟏𝟏 ∙ 𝒑𝒑𝟐𝟐) 
 
The position vector that lies on the great circle and is 
normal to 𝒑𝒑1 is then derived as follows. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Spherical linear interpolation of a unit vector. 

 

𝒑𝒑⊥ 1 =
𝒏𝒏 × 𝒑𝒑1

|𝒏𝒏 × 𝒑𝒑1| ==
𝒑𝒑2 − 𝒑𝒑1𝑎𝑎𝑎𝑎𝑎𝑎Ω

𝑎𝑎𝑠𝑠𝑠𝑠Ω
 

 
Let 𝑡𝑡 be the parameter with 0 ≤ 𝑡𝑡 ≤ 1 and let 𝒑𝒑𝑡𝑡  be the 
corresponding interpolation; Rodrigues’ rotation 
formula yields the following: 
 
 𝒑𝒑𝑡𝑡 =  𝒑𝒑1cos𝜃𝜃 + 𝒑𝒑⊥ 1sin𝜃𝜃 + 

𝒏𝒏(𝒏𝒏 ∙ 𝒑𝒑1)(1 − cos𝜃𝜃) 
 
where 𝜃𝜃 = 𝑡𝑡Ω. Because 𝒏𝒏 ∙ 𝒑𝒑1 = (𝒑𝒑𝟏𝟏 × 𝒑𝒑2) ∙ 𝒑𝒑1 =
0,  

𝒑𝒑𝑡𝑡 = 𝒑𝒑1cos(𝑡𝑡Ω) + 𝒑𝒑⊥ 1sin(𝑡𝑡Ω) 
= sin (Ω−𝑡𝑡Ω)

𝑠𝑠𝑠𝑠𝑠𝑠Ω
𝒑𝒑1 + sin(𝑡𝑡Ω)

𝑠𝑠𝑠𝑠𝑠𝑠Ω
𝒑𝒑2 (2) 

  
The afore mentioned result is referred to as slerp, 
which refers to constant-speed motion along an arc of 
a great circle on which the vector ends on a unit sphere 
and the interpolation parameter 𝑡𝑡 is between 0 and 1. 
 
2.2 Axis–angle representation 

The axis–angle representation of a rotation 
parameterizes it in a 3D Euclidean space on the basis 
of two quantities: a unit vector, 𝒏𝒏, called the Euler axis, 
which indicates the direction of the axis of rotation, and 
an angle, 𝜃𝜃 , which describes the magnitude of the 
rotation around the axis, as shown in Fig. 2. Let 𝑵𝑵 be 
the cross-product matrix, a skew-symmetric matrix, of 
𝒏𝒏 and 

 

 𝑵𝑵 = �
0 −𝑠𝑠𝑧𝑧 𝑠𝑠𝑦𝑦
𝑠𝑠𝑧𝑧 0 −𝑠𝑠𝑥𝑥
−𝑠𝑠𝑦𝑦 𝑠𝑠𝑥𝑥 0

�  

 𝑵𝑵𝟐𝟐 = �
𝑠𝑠𝑥𝑥2 − 1 𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦 𝑠𝑠𝑥𝑥𝑠𝑠𝑧𝑧
𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦 𝑠𝑠𝑦𝑦2 − 1 𝑠𝑠𝑦𝑦𝑠𝑠𝑧𝑧
𝑠𝑠𝑥𝑥𝑠𝑠𝑧𝑧 𝑠𝑠𝑦𝑦𝑠𝑠𝑧𝑧 𝑠𝑠𝑧𝑧2 − 1

�  
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The rotational matrix based on a Lie algebra may be 
written as 

 
 
 Fig. 2. Axis–angle representation. 
 
𝑹𝑹(𝒏𝒏,𝜃𝜃) = 𝑒𝑒𝜃𝜃𝑵𝑵 = 𝑰𝑰 + 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝑵𝑵 + 𝑣𝑣 𝜃𝜃𝑵𝑵2  (3) 
 

It is well known that 
  

𝑹𝑹(𝒏𝒏,−𝜽𝜽)𝑹𝑹(𝒏𝒏,𝜽𝜽) = 𝒆𝒆𝜽𝜽𝑵𝑵𝒆𝒆−𝜽𝜽𝑵𝑵 = 𝒆𝒆𝜽𝜽𝑵𝑵/𝒆𝒆𝜽𝜽𝑵𝑵 = 𝑰𝑰 
 
 

PHYSICAL ROTATION 
 

Physical rotation is different from geometrical 
rotation because the mechanical structure, for example 
a gyroscope, robot, or five-axis machine, is physically 
integrated through bearings in a specific sequence. In 
other words, unlike geometrical rotation, physical 
rotation is dependent on the sequence of rotations. The 
axle bearings are highly accurate because a small 
amount of clearance or misalignment deliberately 
introduced to the system can cause either substantial 
friction or a large positioning error. In the assembly 
process, which must take account of the electrical 
wiring, and actuator weights are the key factors for the 
configuration of axle sequence. The rotary table, 
typically referred to as the C axis, is often mounted on 
top of a cradle-like structure, typically referred to as 
the A or B axis. Thus, the cradle-like structure must 
exert a larger torque than the rotary table during 
machining. The A and B axis use a larger servo motor 
and can be assembled to the five-axis machine earlier 
than the rotary table. To represent the physical meaning 
of machine assembly, Euler angles with three angles 
are used to describe the orientation of a rigid body with 
respect to a fixed coordinate system. They can 
represent the orientation of a mobile frame of reference 
in physics. 
 

Euler angle transformation 
Any orientation can be achieved by modifying 

three elemental rotations (that is, rotations about the 
axes of a coordinate system). Euler angles can be 
defined by three of these rotations. They can also be 

defined through elemental geometry, and the 
geometrical definition indicates that three rotations are 
always sufficient to reach any frame. There exist 12 
possible sequences of rotation axes: ZXZ, XYX, YZY, 
ZYZ, XZX, YZY, XYZ, YZX, ZXY, XZY, ZYX, and 
YXZ. Extrinsic rotations are elemental rotations that 
occur about the axes of the fixed coordinate system. 
Intrinsic rotations are elemental rotations that occur 
about the axes of a coordinate system attached to a 
moving body. Among them, intrinsic rotations are 
commonly used in CNC machinery because of the 
simplicity of the mechanism’s design. For example, the 
ZYX Euler angle transformation that maps the 
machine coordinate (fixed frame) to the workpiece 
coordinate (mobile frame) with the axis rotation 
sequence 𝜃𝜃𝐴𝐴 about the X axis, 𝜃𝜃𝐵𝐵 about the Y axis, 
and 𝜃𝜃𝐶𝐶 about the Z axis, as shown in Fig. 3, may be 
expressed as follows, where 𝑎𝑎 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃  and 𝑎𝑎 𝜃𝜃 =
𝑎𝑎𝑠𝑠𝑠𝑠 𝜃𝜃. 

 
𝑹𝑹(𝒛𝒛,𝜃𝜃𝐶𝐶)𝑹𝑹(𝒚𝒚, 𝜃𝜃𝐵𝐵)𝑹𝑹(𝒙𝒙, 𝜃𝜃𝐴𝐴) =  

�
𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝜃𝜃𝐵𝐵 𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝜃𝜃𝐵𝐵𝑎𝑎𝜃𝜃𝐴𝐴 − 𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝜃𝜃𝐴𝐴 𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝜃𝜃𝐵𝐵𝑎𝑎𝜃𝜃𝐴𝐴 + 𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝜃𝜃𝐴𝐴
𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝜃𝜃𝐵𝐵 𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝜃𝜃𝐵𝐵𝑎𝑎𝜃𝜃𝐴𝐴 + 𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝜃𝜃𝐴𝐴 𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝜃𝜃𝐵𝐵𝑎𝑎𝜃𝜃𝐴𝐴 − 𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝜃𝜃𝐴𝐴
−𝑎𝑎𝜃𝜃𝐵𝐵 𝑎𝑎𝜃𝜃𝐴𝐴𝑎𝑎𝜃𝜃𝐵𝐵 𝑎𝑎𝜃𝜃𝐴𝐴𝑎𝑎𝜃𝜃𝐵𝐵

� 

 (4) 
 

Fig. 3. Intrinsic ZYX transformation. 
Setting 𝜃𝜃𝐵𝐵 = 0  in the ZYX Euler angle 

transformation, a rotation identical to the ZXZ Euler 
angle transformation with the axis rotation sequence Z, 
X, Z when setting the first rotation around the Z axis in 
the sequence to zero can be obtained. 

 
𝑴𝑴(𝜃𝜃𝐴𝐴,𝜃𝜃𝐶𝐶) = 𝑹𝑹(𝐳𝐳,𝜃𝜃𝐶𝐶)𝑹𝑹(𝒚𝒚, 0)𝑹𝑹(𝒙𝒙, 𝜃𝜃𝐴𝐴) =

�
𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝐶𝐶 −𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝐴𝐴 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐶𝐶𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴
𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝐴𝐴 −𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝐶𝐶𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴

0 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝐴𝐴
� (5) 

 
The following inverse transformation is obtained:  
  

𝑴𝑴−1(𝜃𝜃𝐴𝐴,𝜃𝜃𝐶𝐶) = 𝑹𝑹(𝒙𝒙,−𝜃𝜃𝐴𝐴)𝑹𝑹(𝐳𝐳,−𝜃𝜃𝐶𝐶) 
 

𝒏𝒏 

𝑶𝑶 

𝜃𝜃 

𝜃𝜃 

𝜃𝜃 

𝜃𝜃 

𝑦𝑦 

𝑧𝑧 

𝑥𝑥 𝑥𝑥′ 

𝑧𝑧′ 

𝑦𝑦′ 

𝑧𝑧𝑚𝑚 

𝑦𝑦𝑚𝑚 

𝑥𝑥𝑚𝑚 𝜃𝜃𝐵𝐵 𝜃𝜃𝐶𝐶 

𝜃𝜃𝐴𝐴 

𝑦𝑦𝑤𝑤 
 

𝑧𝑧𝑤𝑤 
 

𝑥𝑥𝑤𝑤 
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The conversion between the Euler angle 
transformation to the axis–angle transformation may 
be achieved by simply comparing the matrix 
𝑴𝑴(𝜃𝜃𝐴𝐴,𝜃𝜃𝐶𝐶)  in (5) and the matrix 𝑹𝑹(𝒏𝒏,𝜃𝜃) in (3) 
(Henderson, 1997). 
 

𝑠𝑠𝑥𝑥 = 𝑎𝑎𝑠𝑠𝑠𝑠
𝜃𝜃𝐴𝐴
2
𝑎𝑎𝑎𝑎𝑎𝑎

𝜃𝜃𝑐𝑐
2

/𝑎𝑎𝑠𝑠𝑠𝑠𝜙𝜙 

𝑠𝑠𝑦𝑦 = 𝑎𝑎𝑠𝑠𝑠𝑠
𝜃𝜃𝐴𝐴
2
𝑎𝑎𝑠𝑠𝑠𝑠

𝜃𝜃𝑐𝑐
2

/𝑎𝑎𝑠𝑠𝑠𝑠𝜙𝜙 

𝑠𝑠𝑧𝑧 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝐴𝐴
2
𝑎𝑎𝑠𝑠𝑠𝑠 𝜃𝜃𝑐𝑐

2
𝐿𝐿/𝑎𝑎𝑠𝑠𝑠𝑠𝜙𝜙 (6) 

 
where 𝜙𝜙 is half of the magnitude of the rotation 𝜃𝜃 in 
the axis–angle transformation and 
 

 𝜙𝜙 = 𝜃𝜃
2

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝐴𝐴
2
𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝐶𝐶

2
). (7) 

 
Although there is no rotation about the Y axis in the 
ZYX Euler angle transformation (i.e., 𝜃𝜃𝐵𝐵 = 0), the y 
component of the unit vector 𝒏𝒏 (i.e., 𝑠𝑠𝑦𝑦) is nonzero 
when 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴 ≠ 0 and 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐶𝐶 ≠ 0. By substituting the 
axis–angle transformation parameters in (6) and (7) 
back into (3), the transformation matrix identical to (5) 
can be obtained with 𝜃𝜃𝐵𝐵 = 0 even when 𝑠𝑠𝑦𝑦 ≠ 0.  
In the same manner as in the geometrical rotation, this 
physical rotation represented by the Euler angle 
transformation may be parameterized by three angles, 
but such parameterization is degenerated at some 
points on the hypersphere, leading to a problem 
concerning the gimbal lock that is discussed in Section 
3.2. 
 
Coordinate transformation in five-axis CNC 
machines 

CNC can transform the cutter’s location and 
orientation with respect to the workpiece coordinate 
system into axes positioned using the machine 
coordinate system. Lin et al. (2014) proposed several 
types of inverse kinematic transformation. Without 
loss of generality, a common type of five-axis CNC 
machine of a table-tilting type (i.e., an XYZAC type) 
is used as an example in this paper as shown in Fig. 4, 

 

 �
𝑥𝑥𝑚𝑚
𝑦𝑦𝑚𝑚
𝑧𝑧𝑚𝑚
� = 𝑴𝑴−1(𝜃𝜃𝐴𝐴,𝜃𝜃𝐶𝐶) �

𝑥𝑥𝑤𝑤
𝑦𝑦𝑤𝑤
𝑧𝑧𝑤𝑤
� + 𝒅𝒅 

 
where �

𝑥𝑥𝑚𝑚
𝑦𝑦𝑚𝑚
𝑧𝑧𝑚𝑚
� is the machine coordinate and �

𝑥𝑥𝑤𝑤
𝑦𝑦𝑤𝑤
𝑧𝑧𝑤𝑤
� is 

the workpiece coordinate. The XYZ linear translation 
induced by the guideway motion of the machine is 
stored in 𝒅𝒅 and the rotation induced by rotary table 
motion is stored in 𝜃𝜃𝐴𝐴 and 𝜃𝜃𝐶𝐶  respectively. Although 
the axis of a milling tool is fixed to the spindle axis S 
in the machine coordinate, when viewed from the 

workpiece, it is rotated because of the rotary table 
motion. 
 

 
Fig. 4. Five-axis CNC machine of the XYZAC type 

(table-tilting machine). 
 

 �
𝑥𝑥𝑤𝑤,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑦𝑦𝑤𝑤,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑧𝑧𝑤𝑤,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� = 𝑴𝑴(𝜃𝜃𝐴𝐴,𝜃𝜃𝐶𝐶)𝑺𝑺 

 
The axis of a milling tool is typically in parallel with 
the Z axis (i.e., 𝑺𝑺 = [0 0 1]𝑇𝑇 ). The procedures for 
interpolating the tool axis may be as follows. 
1) According to the cutter location data from the G-

code command in the NC program, calculate the 
tool axis in the workpiece coordinate as follows: 
 
𝒑𝒑𝑤𝑤 1 = 𝑴𝑴(𝜃𝜃𝐴𝐴,1,𝜃𝜃𝐶𝐶,1)𝑺𝑺 
𝒑𝒑𝑤𝑤 2 = 𝑴𝑴(𝜃𝜃𝐴𝐴,2,𝜃𝜃𝐶𝐶,2)𝑺𝑺 

 
2) According to the geometrical rotation, perform 

slerp from 𝒑𝒑𝑤𝑤 1 and 𝒑𝒑𝑤𝑤 2  to obtain 𝒑𝒑𝑤𝑤 𝑡𝑡 
according to (2). 

3) According to the physical model, identify 
𝜃𝜃𝐴𝐴,𝑡𝑡  and 𝜃𝜃𝐶𝐶,𝑡𝑡 by solving 
 

𝒑𝒑𝑤𝑤 𝑡𝑡 = �
𝒙𝒙𝒘𝒘,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡
𝒚𝒚𝒘𝒘,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡
𝒛𝒛𝒘𝒘,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡

� = 𝑴𝑴�𝜃𝜃𝐴𝐴,𝑡𝑡 ,𝜃𝜃𝐶𝐶,𝑡𝑡�𝑺𝑺 

= �
𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐶𝐶,𝑡𝑡𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,𝑡𝑡
−𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝐶𝐶,𝑡𝑡𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝐴𝐴,𝑡𝑡

�. (8) 

 
The solution of (8) includes 
 

𝜃𝜃𝐴𝐴,𝑡𝑡 = ±𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧𝑤𝑤,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡) (9) 
𝜃𝜃𝐶𝐶,𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠( 𝑥𝑥𝒘𝒘,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝒕𝒕/𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,𝑡𝑡

−𝑦𝑦𝒘𝒘,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝒕𝒕/𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,𝑡𝑡
) (10) 

 
The solution of (9) suffers because 𝜃𝜃𝐴𝐴,𝑡𝑡 may be either 

𝑦𝑦𝑚𝑚 

𝑥𝑥𝑚𝑚 

𝑧𝑧𝑚𝑚 

𝐶𝐶 

𝐴𝐴 

𝑺𝑺 

𝑥𝑥𝑤𝑤 

𝑦𝑦𝑤𝑤 𝑧𝑧𝑤𝑤 

https://en.wikipedia.org/wiki/Gimbal_lock
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positive or negative and must be checked against the 
results of neighboring solutions. One possible method 
is by predicting 𝜃𝜃𝐴𝐴,𝑡𝑡 on the basis of the interpolation 
between 𝜃𝜃𝐴𝐴,1 and 𝜃𝜃𝐴𝐴,2 as follows. 
 

𝜃𝜃�𝐴𝐴,𝑡𝑡 = 𝜃𝜃𝐴𝐴,1(1 − 𝑡𝑡) + 𝜃𝜃𝐴𝐴,2 (11) 
 

The resolution becomes 
 

𝜃𝜃𝐴𝐴,𝑡𝑡 = 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃�𝐴𝐴,𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧𝑤𝑤,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡) 
 

where 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃�𝐴𝐴,𝑡𝑡)  = −1 when 𝜃𝜃�𝐴𝐴,𝑡𝑡 <  0  and 
𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃�𝐴𝐴,𝑡𝑡)  = 1 otherwise. This formula causes 
unexpected discontinuity because the true solution of 
𝜃𝜃𝐴𝐴,𝑡𝑡  may be nonlinear with respect to 𝑡𝑡. The second 
problem occurs when 𝒛𝒛𝒘𝒘,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡  = 1 because it results in 
𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,𝑡𝑡  = 0 and 𝜃𝜃𝐶𝐶,𝑡𝑡  becomes indeterminate from 
(10). This phenomenon is also known as the gimbal 
lock. 

The interpolation on the axis–angle 
transformation of a coordinate is different from the 
spherical linear interpolation of a pure unit vector 
because the coordinate frame has three orthogonal 
vectors. When the milling tool is treated as a coordinate 
frame such as 

 
𝑻𝑻𝑚𝑚 = [ 𝑺𝑺⊥ × 𝑺𝑺, 𝑺𝑺,⊥ 𝑺𝑺] 

 
the angles 𝜃𝜃𝐴𝐴 and 𝜃𝜃𝐶𝐶 can be determined by solving 
the following equation without solving the gimbal-lock 
problem: 
 

𝑴𝑴(𝜃𝜃𝐴𝐴,𝜃𝜃𝐶𝐶) = 𝑻𝑻𝑤𝑤 𝑻𝑻−1𝑚𝑚  
 

where 
 

𝑻𝑻𝑤𝑤 = [ 𝑺𝑺⊥𝑤𝑤 × 𝑺𝑺𝑤𝑤 , 𝑺𝑺,⊥
𝑤𝑤 𝑺𝑺𝑤𝑤 ] 

 

Quaternion slerp 
The rotation quaternion when the coordinate 

frame rotation is taken into account may be applicable 
to the tool-axis-orientation planning in multi-axis CNC 
machining because it is unaffected by the gimbal-lock 
problem. When used to represent a rotation relative to 
a reference coordinate system, unit quaternions are 
called orientation quaternions or attitude quaternions. 
The axis–angle transformation can be represented by a 
rotation quaternion using an extension of Euler’s 
formula: 

 

𝒒𝒒 = 𝑞𝑞0 + 𝑞𝑞1𝐢𝐢 + 𝑞𝑞2𝐣𝐣 + 𝑞𝑞3𝐤𝐤 = 𝑒𝑒
𝜃𝜃
2𝒏𝒏 

= 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃
2

+ 𝒗𝒗 𝑎𝑎𝑠𝑠𝑠𝑠 𝜃𝜃
2
 (12) 

 

where 𝒗𝒗 = 𝒏𝒏� = 𝑠𝑠𝑥𝑥𝐢𝐢 + 𝑠𝑠𝑦𝑦𝐣𝐣 + 𝑠𝑠𝑧𝑧𝐤𝐤 , 𝒏𝒏 = �
𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦
𝑠𝑠𝑧𝑧
�  is the 

Euler axis, and 𝜃𝜃  is the magnitude of the rotation 
about the axis. Notably, 𝐢𝐢𝐢𝐢 = 𝐣𝐣𝐣𝐣 = 𝐤𝐤𝐤𝐤 = 𝐢𝐢𝐣𝐣𝐤𝐤 = −1 . 
Additionally, 
 

𝒒𝒒𝑡𝑡 = (𝑒𝑒
𝜃𝜃
2𝒏𝒏)𝑡𝑡 = 𝑒𝑒

𝑡𝑡𝜃𝜃
2 𝒏𝒏 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡𝜃𝜃
2

+ 𝒗𝒗 𝑎𝑎𝑠𝑠𝑠𝑠
𝑡𝑡𝜃𝜃
2

 

 
To perform two rotation quaternions of axis–angle 
transformation, a rotation of 𝜃𝜃𝐴𝐴 is first applied about 
the X axis followed by another rotation of 𝜃𝜃𝐶𝐶 about 
the Z axis:  
 

𝒒𝒒0𝐴𝐴 = 𝒆𝒆
𝜃𝜃𝐴𝐴
2 𝒙𝒙 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝐴𝐴

2
+ 𝒗𝒗𝑥𝑥 𝑎𝑎𝑠𝑠𝑠𝑠

𝜃𝜃𝐴𝐴
2

, 𝒗𝒗𝑥𝑥 = 1𝐢𝐢 + 0𝐣𝐣 + 0𝐤𝐤  

𝒒𝒒𝐴𝐴𝐶𝐶 = 𝒆𝒆
𝜃𝜃𝐶𝐶
2 𝒛𝒛 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝐶𝐶

2
+ 𝒗𝒗𝑧𝑧 𝑎𝑎𝑠𝑠𝑠𝑠

𝜃𝜃𝐶𝐶
2

, 𝒗𝒗𝑧𝑧 = 0𝐢𝐢 + 0𝐣𝐣 + 1𝐤𝐤 
 

The two quaternions can be combined into one 
equivalent quaternion. 
 

𝒒𝒒0𝐶𝐶 = 𝒒𝒒𝐴𝐴𝐶𝐶 𝒒𝒒𝟎𝟎𝐴𝐴 =  (𝑎𝑎𝑎𝑎𝑎𝑎
𝜃𝜃𝐶𝐶
2

+ 𝒗𝒗𝑧𝑧 𝑎𝑎𝑠𝑠𝑠𝑠
𝜃𝜃𝐶𝐶
2

)(𝑎𝑎𝑎𝑎𝑎𝑎
𝜃𝜃𝐴𝐴
2

+ 𝒗𝒗𝑥𝑥 𝑎𝑎𝑠𝑠𝑠𝑠
𝜃𝜃𝐴𝐴
2

) 
=  𝑎𝑎𝑎𝑎𝑎𝑎

𝜃𝜃𝐴𝐴
2
𝑎𝑎𝑎𝑎𝑎𝑎

𝜃𝜃𝐶𝐶
2

+ 𝑎𝑎𝑠𝑠𝑠𝑠
𝜃𝜃𝐴𝐴
2
𝑎𝑎𝑎𝑎𝑎𝑎

𝜃𝜃𝐶𝐶
2
𝐢𝐢 

+ 𝑎𝑎𝑠𝑠𝑠𝑠 𝜃𝜃𝐴𝐴
2
𝑎𝑎𝑠𝑠𝑠𝑠 𝜃𝜃𝐶𝐶

2
𝐣𝐣 + 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃𝐴𝐴

2
𝑎𝑎𝑠𝑠𝑠𝑠 𝜃𝜃𝐶𝐶

2
𝐤𝐤 (13) 

  
In addition, 𝒒𝒒𝐴𝐴𝐶𝐶 𝒒𝒒𝟎𝟎𝐴𝐴 ≠ 𝒒𝒒𝟎𝟎𝐴𝐴 𝒒𝒒𝐴𝐴𝐶𝐶  holds because 𝒛𝒛 ×

𝒙𝒙 ≠ 𝒙𝒙 × 𝒛𝒛; thus, the rotation quaternion can be used to 
distinguish different physical configurations or 
assembly sequences. The quaternion in (13) and the 
axis–angle transformation in (6) and (7) are consistent 
in the expression of the rotation quaternion. The 
quaternion combination is vital for controlling the 
rotational axis, which maps the workpiece coordinate 
into the machine coordinate system and vice versa. 
Two rotation quaternions, 

 

𝒒𝒒01 = 𝒆𝒆
𝜃𝜃1
2 𝒏𝒏𝟏𝟏 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝜃𝜃1
2

+ 𝒗𝒗1 𝑎𝑎𝑠𝑠𝑠𝑠
𝜃𝜃1
2

 
𝒒𝒒𝟎𝟎2 = 𝒆𝒆

𝜃𝜃2
2 𝒏𝒏𝟐𝟐 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝜃𝜃2
2

+ 𝒗𝒗2 𝑎𝑎𝑠𝑠𝑠𝑠
𝜃𝜃2
2

 
 

can also be combined into one equivalent 
quaternion of relative rotation 
 

𝒒𝒒12 = 𝒒𝒒02 ( 𝒒𝒒−10
1 )  

=  (𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃1
2
𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃2

2
+ 𝑎𝑎𝑠𝑠𝑠𝑠 𝜃𝜃1

2
𝑎𝑎𝑠𝑠𝑠𝑠 𝜃𝜃2

2
𝒏𝒏2 ∙ 𝒏𝒏1) −

𝑎𝑎𝑠𝑠𝑠𝑠 𝜃𝜃1
2
𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃2

2
𝒗𝒗1 +  

𝑎𝑎𝑠𝑠𝑠𝑠
𝜃𝜃1
2
𝑎𝑎𝑠𝑠𝑠𝑠

𝜃𝜃2
2
𝒗𝒗2 − 𝑎𝑎𝑎𝑎𝑎𝑎

𝜃𝜃1
2
𝑎𝑎𝑠𝑠𝑠𝑠

𝜃𝜃2
2
𝒏𝒏𝟐𝟐 × 𝒏𝒏𝟏𝟏�  

 
When slerp is applied to unit quaternions, the 

quaternion path maps a path through 3D rotations in a 
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standard manner. The effect is a rotation with uniform 
angular velocity around a fixed rotation axis. Let 𝑡𝑡 be 
the parameter, 0 ≤ 𝑡𝑡 ≤ 1,  

 
𝒒𝒒𝑡𝑡 = ( 𝒒𝒒12 )𝑡𝑡 𝒒𝒒01  =  ( 𝒒𝒒21 )1−𝑡𝑡 𝒒𝒒02   (14) 

 
It may also be treated as a four-dimensional vector and 
holds the slerp relationship. As shown in Fig. 5, 
 

𝒒𝒒𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝛺𝛺−𝑡𝑡𝛺𝛺)
𝑠𝑠𝑠𝑠𝑠𝑠𝛺𝛺

𝒒𝒒01 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝛺𝛺)
𝑠𝑠𝑠𝑠𝑠𝑠𝛺𝛺

𝒒𝒒02   (15) 
 

The angle subtended by the great arc of the four-
dimensional space may also be derived by 
 

Ω = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝒒𝒒1 ∙ 𝒒𝒒𝟐𝟐) 
 
It can be proven that (14) and (15) are equivalent 
statements (Dam, 1998), that is 
 

( 𝒒𝒒12 )𝑡𝑡 𝒒𝒒01 = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝛺𝛺−𝑡𝑡𝛺𝛺)
𝑠𝑠𝑠𝑠𝑠𝑠𝛺𝛺

𝒒𝒒01 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝛺𝛺)
𝑠𝑠𝑠𝑠𝑠𝑠𝛺𝛺

𝒒𝒒02  (16) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. General quaternion slerp. 
 
The angular sweeping velocity in (14) and (15) 

was been shown to be constant when 𝑡𝑡 increases with 
constant speed from 0 to 1. This constant rotational 
speed is vital for tool-orientation planning in the CNC 
machine when all Euler angles can be fulfilled by the 
physical structure of the machine. The result in (16) is 
also useful in tool-axis-orientation planning of a five-
axis CNC machine of the XYZAC type because 𝒒𝒒12  
can be derived from a relative rotation in the axis–angle 
transformation as follows: 

 
𝑹𝑹(𝒏𝒏, 𝜃𝜃) = 𝑴𝑴(𝜃𝜃𝐴𝐴,2,𝜃𝜃𝐶𝐶,2)𝑴𝑴−1(𝜃𝜃𝐴𝐴,1,𝜃𝜃𝐶𝐶,1)  

 
    However, whether the quaternion remains in the 
AC plane when both the starting and end rotations lie 
on the AC plane is unclear. The following 
demonstration explains why it does not remain in the 
AC plane. 

 
𝑴𝑴(𝜃𝜃𝐴𝐴,2,𝜃𝜃𝐶𝐶,2)𝑴𝑴−1(𝜃𝜃𝐴𝐴,1,𝜃𝜃𝐶𝐶,1) 

= �
𝑚𝑚11 𝑚𝑚12 𝑚𝑚13
𝑚𝑚21 𝑚𝑚22 𝑚𝑚23
𝑚𝑚31 𝑚𝑚32 𝑚𝑚33

� (17) 

 
The entry 𝑚𝑚31 = 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,2𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐶𝐶 ,1  is nonzero when 
𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,2 ≠ 0 and 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐶𝐶 ,1 ≠ 0. Comparing (17) with (6) 
indicates that B rotation (i.e., rotation around the Y axis) 
is required. However this is not required by ( 𝒒𝒒12 )𝑡𝑡 
when 𝑡𝑡 ≠ 0  for a five-axis CNC machine of the 
XYZAC type. That is, to achieve quaternion slerp 
stated in (15), a six-axis XYZABC machine is needed. 
Six-axis machines are suitable for many robotics 
applications but not to five-axis CNC machines of any 
type, including the rotation tool center point (RTCP) 
type. 

 
Five-axis slerp 

Five-axis slerp improved from quaternion slerp is 
proposed to yield superior axis-tool-orientation 
planning. It is identical to quaternion slerp in the 
gimbal-lock locations, for example, when 𝜃𝜃𝐴𝐴 = 0 in 
five-axis CNC machines of the XYZAC type. The rest 
of the tool-axis-orientation planning is derived from 
tool-axis slerp provided that only one of the axes is 
obtained from quaternion slerp. Taking the five-axis 
CNC machine of the XYZAC type as an example, the 
quaternion obtained from (15) can be converted into 

 
𝒒𝒒𝒕𝒕 = 𝑞𝑞𝑡𝑡,0 + 𝑞𝑞𝑡𝑡,1𝐢𝐢+ 𝑞𝑞𝑡𝑡,2𝐣𝐣+ 𝑞𝑞𝑡𝑡,3𝐤𝐤 
  

where 
 
𝑞𝑞𝑡𝑡,𝑠𝑠 = 𝑎𝑎(𝑡𝑡) 𝑞𝑞𝑠𝑠0

1 + 𝑏𝑏(𝑡𝑡) 𝑞𝑞𝑠𝑠0
2 , i = 1, 2, 3 (18) 

 
and 

𝑎𝑎(𝑡𝑡) =
𝑎𝑎𝑠𝑠𝑠𝑠 (𝛺𝛺 − 𝑡𝑡𝛺𝛺)

𝑎𝑎𝑠𝑠𝑠𝑠𝛺𝛺
,   𝑏𝑏(𝑡𝑡) =

𝑎𝑎𝑠𝑠𝑠𝑠(𝑡𝑡𝛺𝛺)
𝑎𝑎𝑠𝑠𝑠𝑠𝛺𝛺

 
to the axis–angle transformation by comparing (12) 
and (3). 
 

𝑴𝑴 = 

�
1 − 2(𝑞𝑞𝑡𝑡,3

2 + 𝑞𝑞𝑡𝑡,4
2 ) 2(𝑞𝑞𝑡𝑡,2𝑞𝑞𝑡𝑡,3 − 𝑞𝑞1𝑞𝑞4) 2(𝑞𝑞𝑡𝑡,2𝑞𝑞𝑡𝑡,4 + 𝑞𝑞𝑡𝑡,1𝑞𝑞𝑡𝑡,3)

2(𝑞𝑞𝑡𝑡,2𝑞𝑞3 + 𝑞𝑞𝑡𝑡,1𝑞𝑞𝑡𝑡,4) 1 − 2(𝑞𝑞𝑡𝑡,2
2 + 𝑞𝑞𝑡𝑡,4

2 ) 2(𝑞𝑞𝑡𝑡,3𝑞𝑞𝑡𝑡,4 − 𝑞𝑞𝑡𝑡,1𝑞𝑞𝑡𝑡,2)
2(𝑞𝑞𝑡𝑡,2𝑞𝑞𝑡𝑡,4 − 𝑞𝑞𝑡𝑡,1𝑞𝑞𝑡𝑡,3) 2(𝑞𝑞𝑡𝑡,3𝑞𝑞𝑡𝑡,4 + 𝑞𝑞𝑡𝑡,1𝑞𝑞𝑡𝑡,2) 1 − 2(𝑞𝑞𝑡𝑡,2

2 + 𝑞𝑞𝑡𝑡,3
2 )

�

 (19) 
 
Then, 𝜃𝜃𝐴𝐴,𝑞𝑞,𝑡𝑡  is obtained from 𝑴𝑴  of the quaternion 
and the ZYX Euler angle transformation in (4) as 
follows: 
 

𝜃𝜃𝐴𝐴,𝑞𝑞,𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠(2(𝑞𝑞𝑡𝑡,3𝑞𝑞𝑡𝑡,4+𝑞𝑞𝑡𝑡,1𝑞𝑞𝑡𝑡,2)
1−2(𝑞𝑞𝑡𝑡,2

2 +𝑞𝑞𝑡𝑡,3
2 )

) (20) 

 
Equation (20) is valid for −𝜋𝜋 ≤ 𝜃𝜃𝐴𝐴,𝑞𝑞,𝑡𝑡 ≤ 𝜋𝜋  when 
�𝜃𝜃𝐵𝐵,𝑡𝑡� < 900 , which is true in quaternion slerp when 
𝜃𝜃𝐵𝐵,0 = 𝜃𝜃𝐵𝐵,1 = 00. Finally, 𝜃𝜃𝐶𝐶,𝑡𝑡 is solved by assuming 

𝑶𝑶 

Ω 
𝑡𝑡Ω 

𝒒𝒒01  

𝒒𝒒02  

𝒒𝒒⬚
𝑡𝑡  

𝒒𝒒⊥0
1  

( 𝒒𝒒12 )𝒕𝒕 

https://infosys.beckhoff.com/content/1033/tccncprogramming/html/rotationtoolcenterpointrtcp.htm
https://infosys.beckhoff.com/content/1033/tccncprogramming/html/rotationtoolcenterpointrtcp.htm


C.D. Yan et al.: Five-Axis Slerp for Tool-Orientation Planning in a Five-Axis CNC Machine. 

-571- 
 

that 𝜃𝜃𝐵𝐵,𝑡𝑡 = 0 in the ZYX Euler angle transformation. 
As shown in (4), 
 

𝜃𝜃𝐶𝐶,𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠((𝑞𝑞𝑡𝑡,2𝑞𝑞𝑡𝑡,4+𝑞𝑞𝑡𝑡,1𝑞𝑞𝑡𝑡,3)/𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,𝑞𝑞,𝑡𝑡

(𝑞𝑞𝑡𝑡,3𝑞𝑞𝑡𝑡,4−𝑞𝑞𝑡𝑡,1𝑞𝑞𝑡𝑡,2)/𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,𝑞𝑞,𝑡𝑡
) (21) 

 
This result is replaced by the quaternion slerp result in 
the gimbal-lock position 𝜃𝜃𝐴𝐴,𝑡𝑡 = 0. In the vicinity of 
the gimbal-lock position, 𝜃𝜃𝐶𝐶,𝑡𝑡  is identical to the 
rotation quaternion for the ZYX Euler angle 
transformation in which 
 

𝜃𝜃𝐶𝐶,𝑡𝑡 = 𝜃𝜃𝐶𝐶,𝑞𝑞,𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠(2(𝑞𝑞𝑡𝑡,3𝑞𝑞𝑡𝑡,4+𝑞𝑞𝑡𝑡,1𝑞𝑞𝑡𝑡,2)
1−2(𝑞𝑞𝑡𝑡,2

2 +𝑞𝑞𝑡𝑡,3
2 )

) (22) 

 
The gimbal lock is not a problem for quaternion slerp 
because the entry 𝑚𝑚31 = 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,2𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐶𝐶 ,1  of 𝑴𝑴  is 
zero when 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐴𝐴,2 = 0 or 𝑎𝑎𝑠𝑠𝑠𝑠𝜃𝜃𝐶𝐶,1 = 0. The vicinity 
of the gimbal lock region should be excluded by 
inserting a pair of G codes into the NC program at the 
positions where the tool-axis-orientation planning of 
quaternion slerp passes through the region of the 
gimbal lock as shown in Fig. 6. 
 

 
Fig. 6. Insertion of G codes into NC program. 

 
 

RESULTS AND COMPARISONS 
 
The methods introduced herein are listed and 

compared as follows. 
1. Tool-axis slerp method: According to (20) to (22), 

perform tool-axis-orientation planning on the 
basis of the milling-tool-axis change of one block 
of G-code commands. 

2. Quaternion slerp method: According to (20) to 
(22), perform tool-axis-orientation planning from 
the relative rotation transformation of one block of 
G-code commands. 

3. Five-axis slerp method: According to (20) to (22), 
perform tool-axis-orientation planning from the 
relative rotation transformation of one block of G-
code commands by inserting G codes into the 
gimbal lock region. 

 
The results are obtained for an XYZAC machine with 
the following specifications: 

A-axis swiveling range: 200° (100° to −100°) 
C-axis rotation range: 360° 
 

The maximum angle subtended by the great arc 
between two adjacent angular interpolations is set as 
0.02°. The maximum rotational speed of all axes is set 
as 0.03°/command. 

The NC program with six G-code command 
blocks is listed as follows for benchmarking. 

 
N00 G00 A0.0 C0.0;   Block #0: Homing position 
N01 G1 A-10.0 C-10.0;  Block #1: Test rotation 
 starting behavior 
N02 A-60.0 C60.0;   Block #2: Tool-orientation-
 planning results for short 
 travel 
N03 A-70.0 C220.0;   Block #3: Tool-orientation-
 planning results for large 
 travel 
N04 A40.0 C180.0;   Block #6: Test large-travel 
 gimbal-lock-region 
 behavior 
N05 A40.0 C50.0;      Block #5: Large travel at 
 positive A-axis position. 
N06 A0.0 C0.0;   Block #6: Test rotation 
 ending behavior 
N07 A40.0 C50.0;   The following blocks 
 mirror the previous ones 
 for verification. 
N08 A40.0 C180.0; 
N09 A-70.0 C220.0; 
N10 A-60.0 C60.0; 
N11 G1 A-10.0 C-10.0; 
N12 A0.0 C0.0; 
 

The results from the compared slerp methods are 
shown in Fig. 7. None of the methods exhibited 
hysteresis; in other words, they provided the same 
result when the starting and end points of each 
command block were interchanged. In five-axis CNC 
machine tools, the milling tool typically scans the 
contour offset or zig-zag on the projection plane and 
uses the surfaces of the reference model to determine 
the tool orientation for the workpiece to be machined. 
When the zig-zag scan is applied, many back-and-forth 
NC command blocks occur on a similar trajectory on 
the workpiece surface. During the zig-zag scan, the 
hysteresis can impose different machining patterns on 
adjacent cutting paths and downgrade machining 
quality. All methods satisfy this similarity condition, at 
least on the AC plane. Fig. 7 shows that, from block 3 
to block 4, a grave gimbal-lock problem hinders the 
tool-axis slerp method. The same gimbal-lock problem 
occurs on block 0 to block 1 and block 5 to block 6. 
Fig. 7 also reveals that the tool-axis slerp method 

𝜃𝜃𝐴𝐴 

𝜃𝜃𝐶𝐶 Gimbal lock 
region; region 
applying 
quaternion slerp 

G-
d

Orientation 
planning of 5-
axis slerp 

G-
dG-code 

insertions 

Orientation 
planning of 
quaternion slerp 



J. CSME Vol.39, No.6 (2018) 
 

-572- 
 

maintains the tool axis on the great arc in Cartesian 
space (the workpiece coordinate system) and tends to 
cause greater rotation variation than does quaternion 
slerp. This implies that quaternion slerp does follow 
the great arc in Cartesian space, which maintains the 
constant-speed of the machine coordinate system. 
 
Fig. 7. Tool axis orientation planning in the AC plane. 
 

In Fig. 8, the A-, B-, and C-axis rotations of 
quaternion slerp for six-axis machines, such as robots, 
are shown in terms of the command count n divided by 
the total number of commands N, which are shown and 
compared for various methods in Table I. The required 
rotation of the B axis, which is absent in the five-axis 
XYZAC-type CNC machine, is nonzero, and the 
maximum value of 𝜃𝜃𝐵𝐵,𝑡𝑡  is approximately 15°. The 
effect of nonzero B rotation is shared by the rotation of 
the AC axes for five-axis slerp. 

 Fig. 8. A-, B-, and C-axis rotations for six-axis 
machines  
 

 

Table 1. The command counts of tool orientation 
planning. 
 

Fig. 9 reveals that the gimbal-lock position 
induces 𝜃𝜃𝐴𝐴  discontinuity in the vicinity of 𝜃𝜃𝐴𝐴 = 0 

when the tool-axis method is used. In Fig. 10, C-axis 
(or Z-axis) rotation is shown in terms of the command 
count n divided by the total number of commands N. 
The gimbal-lock problem can induce solution 
branching on C-axis rotation when the tool-axis 
method is used. 
 

 
Fig. 9. A-axis rotation on the planning path. 

 

 
Fig. 10. C-axis rotation on planning path. 

 
The enlarged C-axis-rotation plot shown in Fig. 

11 indicates that the motion of quaternion slerp is faster 
than the other method when it commences, which 
explains why phase shifts occur between quaternion 
slerp and five-axis slerp in both Fig. 10 and 11. 
However, because the total number of commands N for 
both quaternion slerp and five-axis slerp are similar, 
angular motion deceleration must occur in quaternion 
slerp during the ending period. This phenomenon can 
be observed in Fig. 12. The angle subtended by the 
great arc between the two adjacent angular  

 
Fig. 11. C-axis rotation starting behavior 

 Slerp 
command 

count 

Total 
command 
count N 

5-Axis slerp 45,185 45,185 
quaternion slerp 44,572 44,572 
tool axis slerp 40,640 49,640 
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Fig. 12. Angle subtended by the great arc between two 
adjacent angular interpolations. 
 
interpolations remains constant in tool-axis 
slerp.different machining patterns on adjacent cutting 
paths and lowers machining quality. Five-axis slerp 
yields a maximum angle variation of 8% that is 
acceptable for most high-precision applications 
because of the CAM software that generates G codes 
and because NC programs generally subdivide the NC 
commands into 0.1°–1° increments, which 
considerably reduces angle variation; moreover, the 
angle variation is symmetrical on the start and end 
commands. 

Table 2 compares slerp methods; the five-axis 
slerp method is viable for all criteria. Fig. 13 
demonstrates the notebook deburring process by using 
a five-axis XYZAC-type machine. Under such 
conditions, nonconstant tool-axis-orientation planning 
of the quaternion slerp method can cause overcutting 
or undercutting situation as shown in Fig. 13(c). Fig. 
14 demonstrates the gimbal-lock problem, which may 
occur when the tool-axis slerp method is used when the 
C axis approaches 0°. Although Fig. 14 illustrates a 
five-axis RTCP-type machine, the same gimbal-lock 
problem can occur in five-axis XYZAC-type CNC 
machines. 
 
 Table 2. Comparisons between different slerp 
methods 

 Total 
command 
count 
(machinin
g time) 

Constant 
speed of 
rotation 
(machinin
g quality) 

Gimbal-
lock 
problem 
(control 
stability) 

five-axis 
slerp Good Good Good 

quaterni
on slerp Best Bad Best 

tool-axis 
slerp Bad Best Bad 

 

 

 
CONCLUSION 

 
This paper explains the failure of quaternion slerp 
when it is employed to attain constant rotational-speed 
motion. This paper demonstrates that the gimbal-lock 
problem occurs when the tool-axis slerp method is used. 
Tool-axis slerp requires more machining time because 
of the discontinuity and rotational-speed limit. This 
study developed an innovative method of tool-axis-
orientation planning, called five-axis slerp, to achieve 
nearly constant rotational-speed motion. Although this 
paper demonstrated the result only on a specific five- 
axis CNC machine of the XYZAC type, the method is 
suitable for five-axis CNC machines with three 
translation and two rotation axes of any type. 
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Fig. 13. Simulation of a five-axis XYZAC-type 
machine: (a) machine view, (b) workpiece view, (c) 
corner machined through nonconstant-speed tool-axis-
orientation planning by using the quaternion slerp 
method, and (d) corner machined through constant-
speed tool-axis-orientation planning by using five-axis 
slerp method. 
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摘 要 

一般數值控制的四元數球面線性插值方法

（slerp）不適用於五軸數控機機中的刀具軸定向規

劃。本文解釋了為什麼四元數slerp方法無法實現恆

定轉速。當四元數slerp方法用於五軸加工時，加工

品質會降低。 為了彌補這一缺失，本文提出了一種

工具軸定向規劃的解決方案，即五軸slerp方法，它

可以應用於插值曲線的穩定角速度。 

 

Fig. 14. Simulation of a five-axis RTCP-type 
machine with the tool-axis slerp method (a) when 
cutting starts, (b) in the vicinity of the gimbal-lock 
position, (c) and when the C axis rotates 180° at 
the gimbal-lock position. (d) Final product 
indicates the discontinuity of machining. 

(𝑎𝑎) (𝑏𝑏) 

(𝑎𝑎) (𝑑𝑑) 


