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ABSTRACT

In this article, we address a Flexible Shop Job
Scheduling Problem with parallel machine batch
processing for minimizing total weighted flowtime of
the production of automotive gears manufacturing
industry. Scheduling has specifically addressed the
bottleneck functioning of the Pre-Heat treatment stage
of the vehicle gear manufacturing process. Numerous
real-world scenarios have been taken into account,
including machine eligibility constraints, sequence-
dependent setup delays, and unequal release times.
Dynamic beginning conditions are taken into
consideration using a mathematical model that has
been suggested. It is determined that the scheduling
problem is NP-hard and used the meta- heuristic
algorithm that is a Modified Clonal Selection
Algorithm by Positive Selection method (PSMCSA)
have been offered as ways to approach the issue. The
performance of the suggested algorithms is assessed
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based on planned computational experiments. The
proposed heuristic algorithms may consistently
produce solutions that are close to the optimal ones as
calculated by statistics in an acceptable amount of time,
according to extensive computational assessments.

INTRODUCTION

Effective production planning and scheduling are
essential for a company to remain competitive in a
world where dynamic events are happening more often
and affecting the production system in more complex
ways. It can be quite difficult to schedule dynamic
events correctly in real time on a daily basis. For many
years, research has recognised the value of effective
scheduling [Yugma, C., et al. (2012)] and the proper
dynamic optimisation of manufacturing systems is
increasingly the focus of research [Kopanos, G.M., et
al. (2010)]. Researchers’ literature surveys [Zhang, G.,
et al. (2009)] have demonstrated that artificial
intelligence techniques [Klotz, E., Newman, A.M.
(2013)] are among the best options for addressing
dynamic  occurrences like machine failure,
adjustments in processing times, receipt of new orders,
etc. [Ham, M., et al. (2011)]. According to the survey
[Park, J., et al. (2018)], the complexity of the multi
objective optimisation of the Flexible Job Shop
Scheduling Problem (FJSSP) is not addressed by
utilising just one artificial intelligence method [Fattahi,
P., et al. (2009)]. Thus, the findings of the researchers
indicate that it is reasonable to build various hybrid
approaches. Researchers improve each method's
effectiveness and resilience through hybridization by
combining its benefits and removing its drawbacks
[Ham, M., et al. (2011)], [Murugesan, R., Sivasakthi
Balan, K. (2012)]. The flexibility of the production
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system, which is made possible by the proper
mathematical description, actually reflects the reality
of the complexity of the FISSP problem [Imanipour,
N. (2006)]. Effective solutions are made possible by
the quick adaption of the suggested algorithms [Fattahi,
P., Fallahi, A. (2010)] and the dependable automatic
processing of dynamic events and system changes
[Park, J., et al. (2018)]. Despite some techniques'
drawbacks, including priority rules, their widespread
use in commercial in the modern world, utilisation is
beneficial [Zhang, Q., et al. (2012)].

The adoption of an efficient supporting simulation
method is essential in any scenario, especially in the
era of Industry 4.0 and the capacity to produce digital
twins that are affordable and time-efficient [Baykaso
“glu, A, etal. (2020)]. An efficient decision algorithm
can be connected to a real-world production problem
or service process using the potential of a data driven
simulation methods that gathers vast amounts of data
in real time [Jemmali, M., et al. (2022)]. In the era of
Industry 4.0, where commercial tools are no longer the
only means of attaining satisfying operation, the
relevance of optimised dynamic production systems is
highlighted [Jemmali, M., et al. (2022)]. The
optimisation of crucial production parameters [Park, J.,
et al. (2018)], [Zhang, Q., et al. (2012)] highlights the
need for highly connectable and potent supporting
simulation environments [Torabi, S.A., et al. (2005)]
and goes well beyond the scope of candid simulation
interfaces [Sahraeian, R., Namakshenas, M. (2015)].

The presented study work's primary goal is to
illustrate how crucial it is to create a good decision-
making algorithm in order to address the FJSSP
optimisation challenge. The goal is to test the proposed
algorithm using data sets from a real-world
manufacturing system supported by a simulation
modelling method and to demonstrate its efficacy
using test data sets to allow efficient comparison of the
decision-making results of the proposed algorithm
with the existing solutions. We want to provide a
thorough optimisation system through the system's
compatibility and adaptability, making it easier for
users to plan their daily production in dynamic
situations with the main goal of making the
organisation competitive in terms of cost and time on
the worldwide market.

In order to reduce the overall weighted flowtime,
this study addresses the unique research topic of
flexible job shop scheduling tasks across identical
batch parallel machines. Numerous scholars have
tackled the issue of parallel batch machine scheduling
in various ways. Many sectors, like the production of
paint, plastics, semi-conductors, chemicals, and paper,
frequently use many resources with various capacities
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operating in parallel batch processing [Zhou, L., et al.
(2019)]. The Pre-heat treatment phase of the
production of automotive gears served as the
inspiration for this paper.

The scheduling problems faced by these gear
manufacturers during the Pre-Heat stage of gear
manufacturing are the main subject of this study. The
gear-shaving operation, which comes last in the Pre-
HT stage, is the bottleneck operation because it
requires a disproportionately longer processing time
than the other procedures. Because we are only
concentrating on the bottleneck operation in this study,
all other processes can be thought of as a black box.

PROBLEM DESCRIPTION AND
FORMULATION

An essential part of an automobile's gearbox system is
the "gear train," as it is known in automotive
terminology. Axles, a clutch system, oil seals, various
other housings (castings), etc. are further components
of the gearbox system, which is housed in a steel
casting commonly referred to as the gearbox case. The
gear train consists of a variety of gear types, couplings,
and shifter forks. The vehicle gears can be categorised
in a variety of ways. It can be categorised, for instance,
according to the kind of teeth (spur, helical, hypoid,
etc.), the geometry (module, diametric pitch, etc.), and
the shape (solid, hollow, simple, cluster, shoulder,
etc.). Steel forgings are used to make the gears and
they have very strong quality requirements for the
automobile (measured in terms of microns). Figure 1
shows the sample process' flow diagram of gear
manufacturing process.

Pre heating treatment (Pre-HT), Heating treatment
(HT), and post heating treatment (Post-HT) are the
three main stages of the gear manufacturing process.
Outsourcing a portion of the gear production process
to subcontractors is a modern practise seen among
companies that manufacture automobiles. Figure 1
shows the process' flow diagram

As a result, the Pre-HT and HT phases of gear
manufacturing are contracted out. The two steps are
carried out by the same subcontractor for a specific
kind of gear. The vehicle manufacturing companies
carry out the Post-HT stage internally because it is the
final stage and crucial from a quality standpoint. As a
result, subcontractors also known as gear
manufacturers perform a large percentage of the work
involved in making gears. The scheduling problems
faced by gear manufacturers during the Pre-HT stage
of gear manufacturing are the main subject of this
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paper. The gear-shaving operation, which comes last
in the Pre-HT stage, is the bottleneck operation
because it requires a disproportionately longer
processing time than the other procedures.
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Figure 1: Sample Automobile gear manufacturing
process

A gear manufacturer gets orders from various auto
manufacturing companies, which are referred to as
jobs in scheduling terminology. A specific quantity of
identical gear blanks makes up a job. These jobs must
be completed during the pre-HT and HT-stages of the
gear manufacturing process. Finding bottleneck
processes in the Pre-HT and HT stages is the main
research challenge. One can anticipate having a
competitive benefit among the gear makers and, in
turn, among the organisations that build automobiles
by addressing the bottleneck processes. Every gear
manufacturer always strives to accomplish both
throughput from their own company's perspective and
due date compliance from the customer's, i.e., vehicle
manufacturing organizations, perspective, as every
gear manufacturer is involved in both the Pre-HT stage
and the HT stage of gear manufacturing. These two
goals heavily rely on the Pre-HT stage since it
necessitates the best machine work assignment.
Therefore, the Pre-HT stage is the research challenge
in this paper for determining the best Cmax for
throughput compliance and due date compliance.

The gear shaving process, which takes a
comparatively longer time than other operations and is
therefore the bottleneck activity, is where the research
issue is found in the Pre-HT stage of gear manufacture.
For processing this task, more than one machine is

available. Jobs for this activity arrive dynamically,
with varying setup requirements, priorities (which are
typically determined depending on the type of jobs,
type of vehicle manufacturing organisations, etc.), and
schedule difficulty. Additionally, some machines
might not be able to do a certain kind of job, placing
additional restrictions on the job. From the perspective
of the gear manufacturer, since this is the initial stage
of the gear manufacturing process, increasing
throughput is crucial. This circumstance aided in the
definition of the study problem as the parallel batch
processing machines of flexible job shop scheduling
problem with Makespan(total completion time of the
job) minimization as the goal.

Development of the Mathematical Model

The nomenclature of FJSSP with parallel batch
machines processing model for the identified problem
in gear manufacturing is discussed as follows.

The main sets:

] be the number of jobs with numbers 1,2 ..n

M be the number of Machines with numbers 1,2 ..m

Parameters
1; be the Release time of a job j
w; be the weight of a job j
p; bethe Processing time of ajob j
s;j be the Setuptime from current setting of job i to
subsequent of job j
ejk
_ {1 if machine k is eligible to process job j
0 otherwise

Decision Variables

Xijk

_ {1 if job j is processed immediately after job i on machine k
0 otherwise

Dependent Variables
C; Completion time of a job j

Pij  Processing time of job j when it is processed
immediately after job i on machine k

Mathematical Model of the identified FJSSP with
parallel batch machines in gear manufacturing is

Minimize (max (C}.)) )
Subject to:
ViesWjed i2mhvkem (2)

3

VieJ;VjeJ/{1,2,...m}

Py =s;+p, +(]_ezk)+(l_e/k)
C +i(P,/kXM )J{i‘,X,,k - 1] <c,
k=1 k=1
i 4

4+Zi (BuX,)<C, V) eJ/{1,2,...,m)
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, \ (6)
DIRFED WD RIS Vj ed 1{1,2,..m},Vk €M
IR VjeJ/{1,2,...m} (7
J=m+1 k=1
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The goal of the under-consideration research
challenge is given in equation (1). The goal is to
reduce the considered problem's Makespan as much as
possible. The final job in the job sequence's
completion time can be the Makespan of Flexible job
shop scheduling problem.

The number restrictions in the problem under
consideration are given in equations (2) to (8). The
value of the dependent variable, which represents the
processing time including the setup time of a work that
immediately follows a specific job on a specific
machine, is obtained using the formula (2). This value
is calculated using the processing time, the setup time
between the two jobs, and the eligibility of the job. A
realistic value is only returned by the equation when
both of the jobs in the pair are eligible for the machine,
according to the structure of constraint (2).

To calculate a job's completion time and guarantee
that the jobs run concurrently on the machines, utilise
constraint (3). Constraint (4) makes sure that the sum
of the release time of the job and the processing time
with the setup time of the present job is not less than
the finishing time of a task on a machine. The
assignment constraint (constraint 5) makes sure that all
n existing jobs are handled on a single machine and are
immediately preceded by a single job. Limitation (6)
guarantees that there can only be one replacement for
each position. The restriction that if a task is available
and succeeds a work on a certain machine, it cannot
thereafter immediately precede a job on any other
machine is handled by constraint (7) and constraint (8)
then gives the choice variable binary values.

EXPERIMENTAL DESIGN

The goal of this study was to create an effective
scheduling algorithm to address the Flexible Job Shop
Scheduling Problem with batch parallel machines in
the manufacturing sector. In a changing and
continuous production setting, the Clonal Selection
Algorithm from the Artificial Immune System is seen
as a technique for resolving the Flexible Job Shop
Scheduling Problem with batch parallel machines. The
created scheduling method is an enhanced version of
the traditional Clonal Selection method, or
CLONALG in OR society, which is based on the
Artificial Immune System. improvements made in
CLONALG's initialization, mutation, termination, and
memory stages, among others. Positive Selection
based Modified Clonal Selection method (PSMCSA)
was the moniker given to the improved method. These
advancements were made possible by the ongoing
research that was done at every stage of CLONALG.
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There are two stages to the enhanced scheduling
algorithm. For initialising the first-generation
population of the Clonal Selection Algorithm, the first
stage comprises of a T-cell based Positive Selection
Algorithm. In most cases, initialization is carried out
using chaotic operation or random population. The
Modified Clonal Selection method, which generates
the Final Solution Library for the given problem,
builds the second stage of the method.

The standard Clonal Selection Algorithm has been
modified in the following ways:

1. Positive selection method inspired by the
immune system used for improved initialization of the
clonal selection algorithm to start the search for the
ideal solution from a better position.

2. Effective mutation with a fixed mutation rate
and the Log-Normal mutation operator

3. Society-based receptor editing, in which the
antibody society is first created from the antigen
families. This prevented the loss of numerous superior
antibodies produced by a single antigen. The
algorithm is compelled by this tweak to find the ideal
answer during the early iterations.

4. Modified the algorithm termination criteria such
that even while the algorithm finds the best answer in
the first few runs, it keeps looking for other,
individually optimum solutions for the predetermined
number of runs. Due to this, the method produces a
strong solution library that contains numerous optimal
solutions.

Gear manufacturing is the issue that is being
looked at to determine whether the proposed algorithm
is appropriate for a real-world scenario. As we've seen,
one of the sectors propelling the automotive industry
is gear production. Several auto manufacturing
businesses place job orders with a gear manufacturer.
The window for scheduling can be expressed in terms
of weeks, days, or hours. The systems should allow for
the collection of the necessary data while avoiding
delayed decision-making and expensive continual
monitoring. The hour unit appears to be the optimum
choice as a trade-off between complexity and efficacy
based on the industry's observed pattern of task
arrivals and processing. As a result, job characteristics
like release, processing, setup times, etc. are expressed
in hours. In this investigation, the hour is used as the
measurement unit. After this introduction, the
following part will describe the factors taken into
account in the suggested experimental design as well
as the various levels for each aspect.

The major goal of the experimental design is to
produce adequate test data for evaluating PSMCSA's
applicability to real-world scenarios. One needs to be
aware of a variety of elements that may influence
scheduling decisions in order to produce appropriate
test results. Additionally, distinct levels of each
element must be defined. These standards must be
based on the commonplace procedures seen in the
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sector. As a result, the following seven variables are
noted:

The term "number of jobs" (N) refers to how many
jobs we run into within the scheduling window.
According to the industry, depending on the size of the
gear manufacturer, seasonality, and other factors, the
number of jobs inside the scheduling window may
range from approximately 25 to 150. However, a small
size is assumed for the factor number of jobs n and
three tiers for the same based on the knowledge gained
in validating the suggested model. The three levels
have values of n=8, n=10, and n=12, respectively.

Machine count (M): A total of 12 jobs are possible.
As a result, two levels for this component with the
values m=2 and m=3 are chosen in connection to that.
With this, the system is balanced between being
overloaded and being underutilised.

Machine eligibility (e): This element determines if a
machine is qualified to carry out a specific task. This
variable has two facets. The first is the number of
machines that can process a job. The next is whether or
not the job can be processed on a certain machine. A
maximum of three machines may be present. This factor
will have two levels as a result. The first level will have
distribution V{1,2} eligibility, meaning that a job can
only be processed on a maximum of two machines.
With a distribution of V{1, number of machines}, the
second level will be eligible. Here, the selection
probabilities for all machines will be equal. The uniform
distribution was chosen because, due to its relatively
high variation, it enables the testing of problem-solving
approaches in challenging environments.

Job release time (r): It was noted that orders (jobs)
come in steadily and at regular intervals. However,
there is no preference for the rate of task arrival during
the scheduling window. Therefore, it is expected that
the times of job release are evenly spread over the
entire scheduling window. As a result, there is just one
level of release times with a uniform distribution of
V{0,23}. This period was calculated using the 24 hour
scheduling window as the basis.

Job weight (w): Three sub-factors that affect the
weight (or "priority") of a job have been established in
practise:

a. The history of interactions with the auto industry
to assess how significant it is to the gear manufacturer.

b. The cost of the job, which varies depending on
the processes involved, the level of precision needed,
the raw materials used, etc.

c. The task's urgency for the next operation

Each of the three sub-factors may have a maximum
of two values (low and high). The weight can therefore
vary from 1 to 8 (2x2x2). For this component, two
levels are taken into account. Weights for the first level
will come from the V{1,8} distribution. The second
level will depict a situation that is more accurate. It
was noted from the sector that there is a strong
likelihood for the weight's central figures. As a result,

weights in the second level will often come from the
distribution V{3,6} in 70% of the cases. Additionally,
weights will come from either V{1,2} or V{7,8} for
the remaining 30% of the period.

Job Processing Time (p): As previously
established, a job's processing time is determined by
the number of gears in the job (lot size), the processing
time of each gear in the job, and other factors. It was
found that processing a lot often requires 2 to 5 work
shifts of 8 hours each. That is, typically, processing
takes 16 to 40 hours each process. As a result, two
levels of processing time are taken into account (in
hours). Processing time for the first level will come
from a distribution of V{16,40}. The second level will
typically capture a situation that is more realistic. The
distribution V{24,32} accounts for 60% of the
processing times at this level, whereas V{16,23} and
V{33,40} each account for 40% of the processing
times.

Job setup time (s): Sequence setup time is
dependent on the pair of jobs that make up the
predecessor and successor. The actual setup time
ranges from two to eight hours. Two levels for the
setup time are taken into consideration in this impact.
The setup time for the first level will come from a
distribution of V{2,8}. The second level will be like
the real world. When it comes to setup time, it has been
noted that each given pair of jobs is typically either
nearby or far away from another pair. V{2,3} or V{7,8}
will thus provide 70% of the preparation time for this
scenario in the second level, and V {4,6} will provide
the remaining 30% of the setup time at the appropriate
moments. A MATLAB programme is created in
MATLAB 2020a to produce a variety of problem
situations according to the setup made by the above-
mentioned parameters.

NUMERICAL RESULTS AND
DISCUSSION

Sample instances are constructed using the settings
listed in the previous section in order to investigate the
applicability of the proposed scheduling algorithm
PSMCSA for the gear manufacturing sectors. To
accommodate the FJSSP with parallel batch
processing machines mathematical model used in the
gear manufacturing business, the established
scheduling programme has been changed. Tables 1
and 2 provide one numerical example. Table 3 lists the
PSMCSA simulation parameters and table 4 describe
the Optimal schedule for the numerical example of the
research problem.

Table 1: Data on job release time, weight, processing
time and machine eligibility for the numerical example

Releas i Eligibility for
Job o Weight Procgessm gibility
G | time | wp) |, & M M L
) Time(p;) /c1(ej1]/c2(ejz]/c3(ejs)
j1 9 3 32 1 0 1
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j2 23 4 24 1 1 0
Jj3 0 4 23 0 0 1
Jj4 22 1 35 1 1 1
Jj5 17 3 22 0 1 1
j6 15 2 33 1 1 1
j7 10 3 28 1 1 1
j8 4 4 24 1 1 1

Table 2:Data on setup time between pairs of jobs for
the numerical example

Jobj
Jobi
j1 j2 j3 j4 Jj5 j6 j7 j8
j1 0 3 2 8 4 4 7 5
j2 2 0 3 5 6 3 3 3
j3 3 2 0 4 5 8 6 4
j4 6 | 4| 70| 4] 6] 4] 2
Jj5 6 5 8 8 0 5 6 5
j6 8 6 6 7 5 0 5 2
j7 4 7 2 2 7 6 0 4
j8 2 3 6 4 4 5 1 0
Table 3: Simulation parameters of PSMCSA for the
sample problem
S. No. Parameters Values
1 Antibody Length ( 8*3) 24
2 Initial Population size 100
Makespan threshold for
3 PSA 200
4 Antigen library siz N
£° ty size = 5(an instance)
5 Number of clones per ne = 50
antigen
6 Number of mutation per mu = 10points
antibody
Antibody generation NC =N *nc
7 .
size =250
3 Number .of generations K =50
per iteration
9 Number of iterations M =10
10 Elnal Solution library N+M =50
size

Table 4: Optimal schedule for the numerical example of

research problem
Best Solution generated by
Releas PSMCSA and ILP
Job| e Weight |Machi|Sta Flo | Weigh

(J) | Time | (wj) ne | rt |{Complet| w | ted
() alloca |tim |ion time |tim| flow
ted | e e | time
jl 9 3 3 34 72 63| 189
j2 23 4 1 31 54 31| 124
i3 0 4 3 3 34 34| 136

j4 22 1 2 70 103 81 81
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js 17 3 2 40 70 531 159
j6 15 2 1 54 87 72| 144
i7 10 3 2 10 40 301 90
8 4 4 1 4 31 27| 108

Job

4
3
2
1

0 5 10 15

Job sequence

20 25

Figure 2: Antibody corresponds to an optimal
schedule

Table 5: Basic performance metrics for a sample
instance in gear manufacturing industry

SL Parameters Proposed
No. PSMCSA
1 Makespan of Best Solution produced 103
by ILP
) Makespan of Best Solution produced 103
by PSMCSA
3 | Mean of Makespan 130
Time taken to reach the first optimal
4 4s
schedule
5 | Algorithm run time 30s
6 Number of times the algorithm reached 7110
the best solution over 10 iterations
Number of unique optimal schedules in
8 FSL 28

Table 5 is an example of an ideal schedule created by
PSMCSA using the Final Solution Library. Figure 2
shows one of the antibodies from FSL. The horizontal
axis indicates the job's position in the job sequence,
while the vertical axis displays the job number. The
antibody has a length of 64 and a job number that
ranges from 1 to 8 depending on the problem at hand.
The length FJSSP is 8x8. In Table 6, the fundamental
performance indicators are listed. According to Table
6, PSMCSA can get at the best answer that Integer
Linear Programming method (ILP) came up with
Within 4 seconds, the first ideal solution is found, and
the procedure is completed in 30 seconds. 28 ideal
solutions are contained in the Final Solution Library
produced by PSMCSA. Table 6 lists the performance
results of PSMCSA for different situations together
with the outcomes produced by ILP. With the
exception of instances 16, 22, 45, 61, 63, 67, and 93,
practically all instances show that PSMCSA performs
better than the ILP.

Table 4 shows the machine sequence from top to
bottom on the vertical axis. The schedule begins with
machine 3 and ends with machine 1 in accordance with
the job sequence. Every machine has a strict schedule
that leaves idle time in either the front or back end.
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Multiple jobs can be rearranged to reach the best
solution because there is idle time at the end of the
schedule. However, no single job can be left shifted in
any machine without interfering with the order of other
Table 6:

machines. Thus, the schedule that has been provided is
both active and ideal.

Numerical results generated by ILP and PSMCSA for the designed test problems

Problem Best Makespan Problem Best Makespan Problem Best Makespan
instance ILP PSMCSA instances ILP PSMCSA instance ILP PSMCSA
1 1398 1245 33 5184 5008 65 3486 3245
2 1347 1301 34 5168 4968 66 3478 3354
3 1314 1298 35 4626 4509 67 3861 3898
4 1340 1305 36 4605 4569 68 3972 3308
5 2552 1895 37 3004 2994 69 5050 5014
6 2460 2210 38 3026 2896 70 4879 4783
7 2240 2078 39 3283 3276 71 4360 4230
8 2360 2740 40 3228 3045 72 4398 4349
9 2012 1806 41 1527 1456 73 3102 3011
10 2099 1733 42 1500 1250 74 3172 3035
11 2601 2243 43 1835 1560 75 3103 3089
12 2594 2256 44 1876 1866 76 3145 3124
13 2864 2690 45 3122 3126 77 6016 5904
14 2917 3001 46 3080 2988 78 5840 5760
15 3017 3007 47 3799 3699 79 2686 2567
16 2948 2698 48 4043 4004 80 5164 5126
17 3089 2907 49 2907 2897 81 3405 3398
18 3125 3123 50 2917 2864 82 3487 3384
19 3108 2968 51 3037 2987 83 3360 3209
20 3147 3042 52 3082 2988 84 3358 3254
21 1451 1243 53 2987 2973 85 3819 3818
22 1391 1401 54 2973 2893 86 3876 3878
23 1562 1478 55 2921 2845 87 3772 3767
24 1596 1467 56 2824 2698 88 3716 3674
25 2354 2254 57 1832 1802 89 4049 4005
26 2278 2179 58 1906 1845 90 3153 3045
27 2121 2012 59 1823 1783 91 4106 4056
28 2212 2111 60 1826 1820 92 3956 4016
29 1195 1004 61 2583 2840 93 4509 4458
30 1124 1015 62 1768 1698 94 3420 3246
31 1031 984 63 2189 2220 95 3379 3364
32 1037 964 64 2072 2034 96 2802 2796

CONCLUSION Baykaso “glu, A., Madeno “glu, F.S., Hamzadayi, A.,

To determine whether the suggested scheduling
algorithm, PSMCSA, is appropriate for use with real-
world issues, the scheduling problem in the
automobile gear manufacturing industry was chosen.
The Pre-HT stage bottleneck was discovered,
modelled as a Flexible Job Shop Scheduling Problem
with parallel batch processing machines, and resolved
with PSMCSA. Numerous instances of the modelled
FJSSP were given numerical results, and those results
were contrasted with those obtained using the Integer
Linear Programming (ILP) method. The combined
data revealed that PSMCSA performs better than ILP.
This study demonstrated PSMCSA''s ability to resolve
FJSSP in the context of the automotive manufacturing
industries.
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