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ABSTRACT

This study proposes an innovative curvilinear
cylindrical gear drive characterized by a predesigned
fourth-order transmission error and a cosine tooth
profile. The predesigned fourth-order transmission
error not only absorbs linear transmission errors but
also contributes to a smoother overall motion curve.
The cosine tooth profile helps reduce the minimum
number of teeth without undercutting. This research
begins by establishing the generation methods and
mathematical models for both the curvilinear pinion
and gear. A set of nonlinear simultaneous equations,
consisting of fifteen unknowns and fifteen equations,
is then formulated based on tooth contact conditions
and the predesigned fourth-order transmission error
condition. The differential evolution algorithm and
Newton's method are subsequently employed to
conduct a global search and local refinement of the
unknowns, leading to precise design solutions for the
generating motion parameters. Tooth Contact
Analysis (TCA) theory is applied to verify that the
actual transmission error aligns perfectly with the
predesigned fourth-order transmission error and to
confirm that the contact ellipses and bearing contacts
are centrally located on the tooth surface. Finally, to
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further validate the theoretical accuracy, CAD/CAM
technology and a four-axis computer numerical
control (CNC) machine are used to fabricate a
curvilinear cylindrical gear drive. After inspecting the
bearing contact positions using red ink, it is
confirmed that the actual contact situation
corresponds with the theoretical results.

INTRODUCTION

Curvilinear cylindrical gears are cylindrical
gears with arcuate tooth traces, featuring convex
arcuate tooth traces on one side of the tooth surface
and concave arcuate tooth traces on the other. Koga's
patent (1975) introduced a method for cutting paired
gears with arcuate tooth traces, employing face
milling cutters with male and female cutting blades
for simultaneous and precise tooth thread formation.
Liu (1988) explored the historical and practical
aspects of curvilinear cylindrical gears, tracing their
ancient origins to the Warring States period and
detailing successful modern production since 1980,
overcoming technical challenges with specialized
machinery. Tseng and Tsay (2001) laid the
foundation for understanding cylindrical gears with
curvilinear-shaped teeth, employing a mathematical
model and rack cutter methodology grounded in
gearing theory, facilitating profile generation, and
providing crucial insights into tooth undercutting for
field advancements. Tseng and Tsay (2004)
investigated the contact characteristics of cylindrical
gears with curvilinear-shaped teeth, revealing
minimal transmission errors and concentrated bearing
contacts in the central region of the gear pair, even
under axial misalignments. Arafa (2005) explored
cylindrical gears with lengthwise curved teeth, known
as C-gears, highlighting their geometrical features,
cutting methods, and potential applications. Tseng
and Tsay (2005) proposed a mathematical model for
cylindrical gears with curvilinear-shaped teeth cut by
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a CNC hobbing machine, investigating tooth surface
deviations and offering insights into the
manufacturing process. Tseng and Tsay (2006)
explored the undercutting and contact characteristics
of cylindrical gears with curvilinear-shaped teeth
generated by hobbing, analyzing kinematic errors and
contact ellipses under different assembly conditions
and design parameters. Wu et al. (2009) proposed
circular-arc curvilinear tooth gear drives, analyzing
kinematical errors and contact patterns using
complemented circular-arc rack cutters with
curvilinear tooth traces, providing insights into the
system's  behavior under different assembly
conditions. Chen and Gu (2011) examined a modified
curvilinear  gear  set, revealing  continuous
transmission errors and localized bearing contact,
with insights into the impacts of assembly errors and
design parameters on contact characteristics. Fuentes
et al. (2014) proposed two circular-arc
curvilinear-shaped teeth gear geometries generated by
face-milling  cutters, employing computerized
processes to simulate meshing, tooth contact analysis,
and finite element analysis and revealing the
advantages and disadvantages of the designs. Zhang
et al. (2016) proposed a unique method for processing
curvilinear tooth gears with a single blade cutter,
examining meshing and contact characteristics and
demonstrating potential advantages, including a
higher contact ratio and suitability to replace spur
gears in specific applications. Chen and Lo (2015)
conducted a comprehensive study employing finite
element analysis to investigate the loaded tooth
contact analysis, contact stress, and transmission
errors of a modified curvilinear gear set with
localized bearing contact, providing valuable insights
into the performance under different design
parameters and loads. Chen et al. (2017) aimed to
enhance the meshing characteristics of a
complementary curvilinear gear set generated by
complementary rack cutters, utilizing mathematical
modeling, tooth contact analysis (TCA), and finite
element analysis (FEA) to improve contact patterns,
reduce sensitivity to assembly errors, and calculate
contact stress. Zhang and Liang (2021) conducted a
comprehensive study on curvilinear cylindrical gears
with  line contact, employing fixed-setting
face-milling cutters and addressing mathematical
modeling, tooth contact analysis, and stress analysis,
highlighting insights into ideal and error conditions,
as well as the effectiveness of tip relief in mitigating
contact stresses. Wei et al. (2022) explored the
contact characteristics of variable hyperbolic
circular-arc-tooth-trace (VH-CATT) cylindrical gears,
establishing a tooth surface contact analysis (TCA)
model that considered installation errors and analyzed
the influence of different errors and design
parameters on geometric contact characteristics and
sensitivity of the gear pair. Wu et al. (2023)
conducted a thorough analysis of loaded meshing

J. CSME Vol.45, No.6 (2024)

characteristics in cylindrical gear transmission with
curvilinear-shaped teeth, providing insights into
contact distribution, stress, load, and transmission
errors, along with discussions on the impact of design
parameters, serving as a theoretical tool for related
analyses and modifications.

Gear drives are essential components in power
transmission systems, serving a diverse range of
applications. Transmission errors and localized
bearing contact play pivotal roles in shaping the
design and performance of gears, influencing factors
such as noise, vibrations, and overall efficiency.
Numerous studies have been undertaken to
comprehend and manage these phenomena,
particularly in gears featuring modified geometries.
Several investigations have been conducted on spur,
helical, worm, bevel, and face gears. Litvin et al.
(1988) proposed modifications to tooth surfaces,
introducing parabolic transmission errors to address
linear transmission errors arising from misalignments
and to obtain localized bearing contact. Litvin and Lu
(1995) performed computerized simulations for
double circular-arc helical gears, investigating the
influence of gear misalignment on transmission errors
and demonstrating the practical application of
modified geometries through numerical examples.
Seol and Litvin (1996) concentrated on worm-gear
drives, suggesting the application of computerized
methods to simulate meshing and contact in
misaligned drives, along with proposing geometry
modifications for localized and stabilized bearing
contact. Litvin and Kim (1997) introduced
modifications to spur gear geometry, with the goal of
achieving localized bearing contact and reduced
transmission errors, showcasing the advantages
through computer programs and numerical examples.
De Donno and Litvin (1999) introduced a novel
approach for designing low-noise worm gear drives
with stable bearing contact, confirming the
effectiveness of the proposed oversized hob and
varied plunging of worm-gear generating tools
through computerized simulation. Litvin et al. (2000)
explored face worm-gear drives with methods for
localizing bearing contact and reducing transmission
errors, demonstrating the benefits of this approach
through double-crowning of the worm and a
dedicated computer program for simulation. Stadtfeld
and Gaiser (2000) introduced the ultimate motion
graph concept, which was employed to modulate
tooth surfaces and reduce gear noise in bevel and
hypoid gear drives. Lee and Chen (2004) proposed
mathematical models for cylindrical gear sets with
parabolic cutting edges, emphasizing their improved
robustness against assembly errors due to localized
bearing contact. Wang and Fong (2006) focused on
fourth-order kinematic synthesis for face-milling
spiral bevel gears, achieving a notable reduction in
loaded transmission error through numerical
simulations. Lee (2009) presented a manufacturing
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process for a cylindrical crown gear drive with a
controllable fourth-order polynomial function of
transmission error, and the design's effectiveness in
reducing gear running noise was validated through
mathematical models and simulations. Jiang and Fang
(2015) designed and analyzed modified cylindrical
gears with controllable higher-order transmission
error  using  particle  swarm  optimization,
demonstrating through numerical simulations a lower
amplitude of loaded transmission error. Lee (2018)
proposed a method for designing a face gear drive
with a predesigned fourth-order function of
transmission errors, aiming to reduce noise and
vibration. Lee (2019) introduced the cosine face gear
drive, which features a predesigned fourth-order
function of transmission errors and effectively
overcomes traditional undercutting issues.

This study presents an innovative application of
a predesigned fourth-order transmission error and a
cosine tooth profile to a novel curvilinear cylindrical
gear drive. The paper includes the following tasks: (i)
developing the generation method for the drive, (ii)
establishing the mathematical model for tooth
surfaces, (iii) formulating a system of constrained
equations to introduce the predesigned fourth-order
transmission error, (iv) executing the differential
evolution algorithm and Newton’s root-finding
method to determine the design values for the
undetermined generating motion parameters, (V)
conducting tooth contact analysis to validate real
transmission error, (vi) using Recurdyn to simulate
meshing and contact pressure, (vii) employing
Siemens NX to generate machining programs, (viii)
simulating the machining process using VERICUT
and verifying the correctness of the program, (ix)
machining the gear drive using a real four-axis CNC
machine tool, and (x) inspecting the bearing contacts
of the gear drive using red ink.

GENERATION METHOD AND
MATHEMATICAL MODEL

As illustrated in Fig. 1, the novel curvilinear
cylindrical gear drive consists of a pinion and a gear,
represented by symbols 1, 11, and 12 for the gear
drive, pinion, and gear, respectively.

The Generation Method and Mathematical Model
of the Pinion

As shown in Fig. 2, pinion 11 is generated by
the revolution surface, denoted by 111, which can be
formed by either a cutting edge or a grinding wheel.
As shown in Fig. 3, the axial section shape of the
revolution surface 111 is a curve defined using a
cosine function, denoted by 1111. The revolution axis
of the revolution surface 111 is A;. The radius

parameter of the revolution surface 111 is p;. Let

the coordinate system S;(X;,V;.Z;) be rigidly
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connected to the axial section profile 1111. The
position vector function of the axial section profile
1111 can be represented in S, (X, ¥;,2;) by r(u).

Fig. 2 Pinion 11 and revolution surface 111.
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Fig. 3 Profiles 1111 and 1211 are cosine function

curves.
X U

r(u) =y, |=|-hs cos(2u, / m) 1)
4 0

To create the position vector function of the
revolution surface 111, let the coordinate system

S3(X3,Y3,23) be rigidly connected to the revolution



surface 111. The relationship between coordinate
systems S;(X,¥1.Z) and S3(X5,Y3,Z3) is shown
in Fig. 4.

Fig. 4 Relationship between S;(X,¥;.z;) and

S3(X3!y3123)'

In S3(X3,Ys,23) , the position vector function of the
revolution surface 111 is r3(u;,6,) .

—p+ (U + py)cos G
—h¢ cos(2u, /m) )

(U +p1)sin 6y

r3(Uy,6) =

In S;(%3,Y3,23), the normal vector function of the
revolution surface 111 is Nj3(u;,6;), and the unit
normal vector function is ns(u;,6;) .

ors(uy, ) y ory(uy, )
06, au,

N3 (U, 6) = (3)

Ng(uy, 6) = N3(U1791)/|N3(U1-91)| (4)

Let the coordinate system Sp(xp,yp,zp) be rigidly

connected to the pinion 11. When the revolution
surface 111 generates the pinion 11, the relative
motion relationship between S;(X3,Y3,2Z3) and

Sp(Xp,Yp,2p) s shown in Fig. 5. The coordinate
system S;(Xs,Y3,Z3) undergoes a linear translation

along the (—x3) direction with the parameter S,
and the coordinate system Sp(xp,yp,zp) rotates
counterclockwise about the z, axis with the
parameter ¢, . The relationship between the

parameters S, and ¢, can be expressed as a
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fourth-order polynomial function Sp(¢p) .

Sp (¢p) = pp¢p + CZ¢p2 + C3¢p3 + C4¢p4

5
=(mT, /2)¢, +Cyp,” +Cap,> +Cyg,” ©)

where m is the module, Ty is the number of teeth

of the pinion 11, and C,, C;, and C, are the

undetermined  coefficients for generating the
predesigned fourth-order transmission error.

03

Fig. 5 Relationship between S;(X3,Y;,2Z3) and

Sp(xprypyzp)'

In the coordinate system S,(x,,Y,,z,) , the
revolution surface 111 forms a family of surfaces
{ZD}, the position vector function of which is

r® (. 6.4,) .

rS (U, 61 y) = M s (6,)13 (U, ) (6)
where
M p3(¢p)
cosg, —sing, 0 —s,(4,)cosd, +p,sing,
_ sing, cosg, 0 -s,(d,)sing,—p,cosd,
0 0 1 0
0 0 0 1

The unit normal vector function of the family of
surfaces {Zp} is n®(u,6,.4,).

n(;?) (U, 61, 6,) = L p3(d)n3(uy, 6) )

where
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cosg, -—sing, 0

Lp3(¢p) = Sin¢p 0
0 1

cos ¢,
0

The necessary condition for the existence of the
envelope of the family of surfaces {Ep} is as
follows:

(U, 61, 85) = g (uy, 6) - VP (g, 4,) = 0
—Y1+Pp —Sp(#,)
Vs(sp) (U, @) =| =Sp(dp) — o+ (X + p1) COS G
0
®)

The position vector function of the pinion 11 can be
mathematically represented as

|

The unit normal vector function of the pinion 11 can
be mathematically represented as

|

The Generation Method and Mathematical Model
of the Gear

As shown in Fig. 6, gear 12 is generated by the
revolution surface, denoted by 121, which can be
created by either a cutting edge or a grinding wheel.

ro (U, 6, 8,) =P (uy, 6, ¢,)

(3p) ©)
fi (U, 6, dp) =n3(Uy, ) - V37 (U, 4,) =0

N, (U, 6.¢,) =n® (U, 6,4,)

. (10)
(U, 6. 8) =N (Uy, 6,) - VS (uy, 4,) =0

Fig. 6 Gear 12 and revolution surface 121.

As shown in Fig. 3, the axial section shape of the
revolution surface 121 is the cosine function curve,
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denoted by 1211. The revolution axis of the
revolution surface 121 is A, . The radius parameter

of the revolution surface 121 is p, . Let the
coordinate  system  S,(X,,Y,.Z,) be rigidly

connected to the axial section profile 1211, then the
position vector function of the axial section profile

1211 can be represented in  S,(X,,Y,,Z,) by
r(uy) .
Xy u,
r,(Uy) =| Y, |=| —hs cos(2u, /m) |, 11)
2 0

—rm/2<u, <zm/2

To create the position vector function of the
revolution surface 121, let the coordinate system
S4(X4.Y4,24) be rigidly connected to the revolution
surface 121. The relationship between coordinate
systems S,(Xy,Y,,2;) and S,(X4,Y4.24) is shown
in Fig. 7.

04
X4

[

9

Fig. 7 Relationship between S,(X,,Y,.Z,) and

S4(X41Y4:24) .

In S4(X4,Y4,24), the position vector function of the
revolution surface 121 is r,(u,,6,).

=Py +(Uy + p;) C0S 6,
—h¢ cos(2u, /m)

(Uz + p7)sin 6,

1y Uy, 6,) = (12)

In S;(X4,Y4,24), the normal vector function of the
revolution surface 121 is N,(u,,6,), and the unit
normal vector function is n,(u,,6,) .



or,(uy, ;) « or,(uy, 0,)

N, (u,,6,) =
4(Uy,6;) 20, o,

(13)

Ny (Uy,60;) = N4(U216’2)/|N4(U2192)| (14)

Let the coordinate system S (Xy,Yq,24) be rigidly

connected to the gear 12. When the revolution surface
121 generates the gear 12, the relative motion
relationship between Sy (X4, Y4,24) and

S¢(Xg:Yg:12g) is shown in Fig. 8. The coordinate
system S,(X4,Y4,2,) undergoes a linear translation
along the (—X,) direction with the parameter Sg s
and the coordinate system Sg(X4,Yq,24) rotates
about the z, axis with the parameter ¢, . The
relationship between the parameters s, and ¢y is
a first-order polynomial function s (¢,) .

Sq (¢g) = Py ¢g = (ng /2)¢g (15)

where m is the module and Ty is the number of
teeth of the gear 12.

V4

Sg(Pg)

0y ¢

Fig. 8 Relationship between S,(X4,Y,,Z,) and

Sg(Xg:Yq:2g) -

In the coordinate system Sg(X4,Y¥q.24) , the
revolution surface 121 forms a family of surfaces
{Zg} , the position vector function of which is

r{? (uy, 6;.4y) .

r{ (Uy, 60y, 85) = M g4 (¢ )14 (Uy, 6,) (16)
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where
cosg, singg 0 pg(—¢, cosd, +sing,)
Myq = -sing, cosg, 0 py(dysing, +cosd,)
0 0 1 0
0 0 0 1

The unit normal vector function of the family of
surfaces {Zg} is n{Y(u,,0,.4,).

né‘” (Uz,6;.04) = Lg4(dg)n,(Uy, 6;) (7)
where
cosg, sing, 0O
Lga(gg) =| —sing, cosg, O
0 0 1

The necessary condition for the existence of the
envelope of this family of surfaces {Zg} is as
follows:

f)(Up, 0. 4y) =Ny Uz, 6,) - V' (U, 6,) =0 (18)

where
Yo

VD Uy, 8) =| Py + Py — (Xo + py) COS G,
0

The mathematical model of the position vector
function of the gear 12 can then be represented by

{rg(uz,ez,qﬁg)=r§4>(u2,92,¢g) )

fz(uzv‘927¢g):n4(U2:‘92)'V§4g)(U2:¢g)=0

The mathematical model of the unit normal vector
function of the gear 12 can then be represented by

{ng(uz,ez,qﬁg)=n§;‘>(u2,92,¢g) 0)

f)(Uy, 6y, dy) =Ny (Up, 6) - VS (Uy, ) =0

The Method for Generating the Predesigned
Fourth-Order Transmission Error

The next step is to accurately design the tooth
profile parameters of the pinion, namely C,, C,,
and C,, to achieve the predesigned fourth-order

transmission error. As illustrated in Figure 9, when
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the pinion meshes with the gear, the pinion rotates
clockwise about the z, axis with the parameter ¢,

while the gear rotates counterclockwise about the z
axis with the parameter ¢, . The coordinate system
S;(Xg,Y¢,2z¢) s a fixed coordinate system rigidly

connected to the gearbox. The constraint conditions
for any contact point between the pinion and the gear
are as follows:

ri (U3,60,65,05) =112 (U2.0.6,00) =0
n(fp)(u11911¢pl¢p)_n(fg)(u2102|¢gi¢g) =0

f1 (U1, 6, 4,) =0
f5(Uy,0,,4,) =0

(1)

where

rP Uy, 01, 8p.0p) = M gy (0, )7, (U1, 61, )
P (U1, 6, 85.95) = L (90 (0,6, 6,)
rgg)(Uzﬂz!% Pg) =M (991 (U3, 6,,64)
N (Ug,05. 44, 04) = L 1g (94 )N (Uz,6,,6,)

Fig. 9 Relationship between S,(x,,y,,z,) and

Sg(Xg:Yq:2g) -

The pinion and gear rotation angles are ¢, and ¢, ,

respectively. The transmission error of the gear drive
is determined by

-523-

T
A(pg =@y ((op)_.l._p(/)p (22)
9

The slope of the transmission error is determined by

d(Agg) dog T,
hA =

dp,  de, T,
) n(P) ,(e(fp) ><R(fp)) T
n(P) ,(e(fg) ><R(fg)) T,

(23)

where

n® =Lyn, R =Lgr, RP =L
el® ={0,0,13" e{ ={0,0,-1}

fg¥g

The desired shape of the predesigned fourth-order
transmission error is as shown in Fig. 10. Assuming
that the pinion and the gear make contact at point R,
the following conditions hold:

{ul:ulR' leﬁlR, ¢p:¢pR’ ¢g :¢gR’ (24)

Uy =Upr, 6, =6, @y =P, Py =Pgr

Assuming further that the pinion and the gear make
contact at point L, the following conditions hold:

{Ul =Uy , 91 = HlL’ ¢p = ¢p|_v ¢g = ¢gL (25)

Uy =Uy, G =65, @p=0p, g =g

Ap,

Fig. 10 Desired shape of the predesigned

fourth-order transmission error.

At contact point R the following constraint conditions
hold:

ri? (g e VPR Ppr) — r{ (Uyg O ' Pgr Pgr) =0
”(fp) (R, OR PR Ppr) — n(fG) (Ur Oor Pgr: Pgr) =0

fi(Ur, g, Ppr) =0
f,(Uzr, Oor ., Pgr) =0



(26)

At contact point L,
conditions hold:

the following constraint

riP (uy 60y, PoL PpL) — r$ (Uyy Oy, Py Pg) =0
n{? (Uy O B PpL) _n(fg)(UZL!92L7¢gL1¢gL) =0
fi(Uy 6 B ) =0
fZ(UZL'92L1¢gL) =0

(27)

At contact point L, there is also a condition where the
transmission error slope is zero.

by (U, O B Uar Oo s By, PpL L) =0 (28)

According to the desired shape of the predesigned
fourth-order transmission error shown in Fig. 10 - the

values of @y, @R, @q, and @ are known as
follows:

27

T m Py :_§+(Tp/Tg)§DpL’
P (29)

2
Ppr = PpL +T_v Pyr :_§+(Tp/Tg)§0pR
p

PpL =

As ‘n(fp)‘:‘n(fg)‘:l, there are a total of fifteen

independent nonlinear algebraic equations, while
there are only twelve unknowns: U, , 6, ¢y ,

U, oLy Sgs Wr, Or, Ppr, U, br, and
#4r - The additional three equations can be used to

solve for the three undetermined coefficients, C,,
C,, and C,, which are the tooth profile parameters

of the pinion. In other words, considering the three
undetermined coefficients as unknowns, Egs.
(26)-(29) form a system of fifteen nonlinear
equations with fifteen unknowns.

F(X)=0,i=12,15
X={uy, O, o UpLs OoL, Ggs Uk, Giry Ppro

Upr, bor, dgr: Coi G5, Cu}
(30)

In order to solve the roots of the system of nonlinear
equations, this study uses the differential evolution
algorithm for global search. The convergent results
obtained from the search are then passed to the
Newton method as initial guesses, and the exact
solution of the roots is obtained using the Newton
method. Through the above method, the exact design

J. CSME Vol.45, No.6 (2024)

values of the three undetermined coefficients, C,,
C;,and C,, can be obtained.

TOOTH CONTACT ANALYSIS

This study presents a numerical example of
tooth contact analysis, evaluating the actual
transmission error, contact points, contact ellipses,
and bearing contacts. The parameter settings used in
the example are shown in Table 1, where C,, Cj,

and C,, are obtained by solving the system of
equations in Eq. (30).

Table 1. Parameter settings of the numerical example.

Parameter Symbol Value Unit
Module m 10 mm
Number of Ty 20 --
teeth of the
pinion 11
Number of T, 33 --
teeth of the
gear 12
Radius ol 90 mm

parameter of
the revolution
surface 111
Radius 05 108 mm
parameter of
the revolution
surface 121
Dedendum h;

1.25m mm

Pitch radius of Pp

mT,/2 mm
the pinion 11

Pitch radius of Py

mT, /2 mm
the gear 12

Generating
motion
parameter
Generating
motion
parameter
Generating C,

motion
parameter
Range of the 4 10
predesigned
fourth-order
transmission
error
Proportion of n 0.7 --
the left side of
the
predesigned
fourth-order
transmission

arcsec
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error

According to Litvin (1994), solving the following
system of nonlinear equations enables the execution
of tooth contact analysis. This analysis provides the
numerical values of the parameters of the contact
points, the coordinates of the contact points, and the
actual transmission error values when the pinion and
the gear are in actual contact.

ri (U3,60,65,05) =112 (U2.0.6,05) =0
n(fp)(u]_1911¢pl¢p)_n(fg)(u2192|¢g!¢g) =0

f1(U1191:¢p):0
f2(Uz.6,.04) =0

(1)

Table 2 presents the relationship between the angle of
the pinion and the real transmission error. Fig. 11
illustrates the real motion curve generated by the real
transmission error over three cycles.

Table 2. Angle of pinion versus real transmission

error.
Pp Agy
Angle of pinion (rad) | Real transmission error
(arcsec)
-0.21991 -10.00000
-0.18425 -9.43400
-0.14859 -7.88678
-0.11293 -5.67348
-0.07727 -3.23029
-0.04160 -1.11813
-0.00594 -0.02684
0.02945 -0.76448
0.06480 -4.24611
0.09425 -10.00000

Transmission error (arcsec)

-0.4 -0.2 0 0.2 0.4
Angle of pinion (rad)

Fig. 11 Real motion curve.
Through polynomial regression analysis, the
following regression equation is derived. The

R-squared value for this equation is 1, confirming

that the real transmission error precisely adheres to a
fourth-order polynomial function.

Apy =ag +ayp, + 32(0,23 + 33502 + a4¢3
a, =0.00107286
a, =—-0.0643894

a, = -780.423 (32)
a, = -3341.15
a, =-3339.95

-0.21991< ¢, £0.09425

By substituting the numerical values of the
parameters of the contact points into the principal
curvatures and directions of the tooth surfaces of both
the pinion and the gear, the major and minor axes, as
well as the orientation of the contact ellipses, can be
determined. Figure 12 illustrates the contact ellipses
and bearing contacts on the pinion and gear. It can be
observed that the bearing contacts on both the pinion
and gear are located in the central region of the tooth
surfaces, indicating the absence of edge contact and
edge stress concentration issues. In Fig. 13, the
application of the multibody dynamics analysis
software Recurdyn to simulate the meshing and
contact pressure of the gear drive is depicted. The
angular velocity applied on the pinion is set to 60
RPM, the torque applied on the gear is set to 5000
N-mm, and the material is set to steel. This analysis
allows for checking whether the pinion and gear are
in proper contact or if interference occurs where it
should not. A video showcasing the entire simulation
has been uploaded to the YouTube platform, and the
video's URL is https://youtu.be/ujL ZIHW5v\WA4.
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Fig. 12 Contact ellipses and bearing contacts on the
(a) pinion and (b) gear.

Fig. 13 Meshing and contact pressure simulation.

COMPUTER NUMERICAL CONTROL
MACHINING

This study employs a four-axis computer
numerical control (CNC) machine for machining the
gear drive. Owing to the dimensional limitations of
this CNC machine on workpieces, the geometric
models are proportionally reduced by one-fourth.
Computer-aided design and manufacturing software,
Siemens NX, is utilized to generate the CNC program
for the machining process. Initially, the toolpath for
machining a single tooth space is planned, as
illustrated in Fig. 14. Subsequently, the process for a
single tooth space is extrapolated to encompass all
tooth spaces, as shown in Fig. 15. After obtaining the
toolpaths for all tooth spaces, a simulation of all
processes is conducted to confirm the correctness of
the procedures, as depicted in Fig. 16. Finally, the
toolpaths are post-processed to generate the CNC
program, as illustrated in Fig. 17.
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Fig. 15 The result after extending the process of a
single tooth space to all tooth spaces.

Fig. 16 Simulating all processes to confirm the
correctness of the procedures.
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Fig. 17 The CNC program generated by

post-processing of toolpaths.
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This study also incorporates numerical control
machining  simulation  verification  software
VERICUT to simulate the entire machining process.
Firstly, a complete CNC machine model, including
geometric and controller models, must be established
in VERICUT. The CNC machine used in this study is
a four-axis machine with XYZ translation axes and
one A rotational axis. Secondly, geometric models of
the machining tool and gear workpiece are created in
VERICUT. Finally, by importing the CNC program,
the entire machining process can be simulated. As
shown in Fig. 18, during the simulation process, the
motion of the machine, tool, and workpiece can be
clearly observed. VERICUT automatically detects
any collisions and issues an immediate alert in case
of occurrence. Upon completion of the machining
process, an automated comparison analysis is
performed to check for issues such as over-cutting or
remaining material, as illustrated in Fig. 19.

174 View 1-Base (MachineiCut Stack)

Fig. 18 Using VERICUT software to simulate the
entire  process of numerical control
machining.

Fig. 19 Utilizing automated comparative analysis to
inspect for issues such as over-cutting or
remaining material.

After simulating the machining process on the
computer and confirming that there are no issues, the
final step involves actual gear machining on the real
four-axis CNC machine. Figure 20 illustrates the
rough machining of the gear workpiece, while Figure
21 shows the finishing process. A video showcasing
the entire CNC machining process has been uploaded
to the YouTube platform, and the video's URL is
https://youtu.be/JURLSDACgjY. Figure 22 displays
the finished pinion and gear. Figure 23 presents using
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red ink to analyze bearing contacts. The result
indicates that the bearing contacts are concentrated in
the central regions of tooth surfaces, with no edge
contact, consistent with the results of tooth contact
analysis.

Fig. 20  Conducting rough machining of the
workpiece.

Fig. 21 Conducting precision machining of the
workpiece.



Fig. 23  Using red ink to analyze bearing contacts.

CONCLUSIONS

This study has introduced and analyzed a
promising curvilinear cylindrical gear drive with a
predesigned fourth-order transmission error and
cosine tooth profile, offering potential benefits such
as smoother operation, compactness, and reduced
stress concentration. The research meticulously
explored various aspects, including developing
mathematical models for both the pinion and gear and
implementing a system of constraint equations to
achieve the predesigned transmission error.
Differential evolution and Newton's method were
employed to precisely determine the unknown design
parameters. Furthermore, the study validated the
actual transmission error and contact patterns through
comprehensive tooth contact analysis (TCA) and
multibody dynamics simulation. It successfully
demonstrated the practical feasibility of machining

J. CSME Vol.45, No.6 (2024)

the gear drive using CAD/CAM and a four-axis CNC
machine. Key findings confirmed that the designed
gear drive achieved the intended fourth-order
transmission error, with bearing contacts strategically
located in the central regions of the tooth surfaces.
The flawless execution of the CNC machining
process showcased the design's manufacturability,
and the red ink inspection validated the TCA results,
confirming proper bearing contact location. Further
research to explore its behavior under various
operating conditions and optimize for specific
applications has the potential to unlock its full
capabilities and significantly contribute to advancing
gear technology.
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NOMENCLATURE

1 the curvilinear cylindrical gear drive

11 the curvilinear cylindrical pinion

111 the revolution surface for the generation of 11

1111  the axial section shape of 111

12 the curvilinear cylindrical gear

121 the revolution surface for the generation of 12

1211 the axial section shape of 121

A the revolution axis of 111

A,  the revolution axis of 121

C,, C;, C, the generation motion parameters

h, the slope of the transmission error

L; the coordinate transformation matrix of unit
normal vector from S; to §;

M;  the coordinate transformation matrix of
position vector from S; to §;

m the module of the gear drive

N5(u;,6) the normal vector function of 111

N,(u,,6,) the normal vector function of 121

ny(u;,6;) the unit normal vector function of 111

n,(u,,8,) the unit normal vector function of 121

n®(u,6.¢4,) the unit normal vector function of
=0}
n{ (u,,6,.4,) the unit normal vector function of

(=}

r,(u) the position vector function of 1111
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r,(u,) the position vector function of 1211
r;(u;,6)  the position vector function of 111
r,(u,,6,) the position vector function of 121

r,()3) (U, 6, 9,)
{Zo}
r{ (uy, 6, 4,)

%o}

the position vector function of

the position vector function of

T, the number of teeth of 11

Ty the number of teeth of 12

X the fifteen unknows to be determined

Agy  the transmission error of the gear drive

n  the proportion of the left side of the predesigned
fourth-order transmission error

& the range of the predesigned fourth-order

transmission error

o1 the radius parameter of 111

P> the radius parameter of 121

pp  the pitch radius of 11

pg  the pitch radius of 12

{= p} the family of surfaces formed by 111

{Z,]  the family of surfaces formed by 121
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