
中國機械工程學刊第四十五卷第六期第 517~531頁(民國一百一十三年) 

Journal of the Chinese Society of Mechanical Engineers, Vol.45, No.6, pp517~531 (2024) 

 -517- 

Generation, Modeling, and Analysis of 

Curvilinear Cylindrical Gear Drive Featuring 

Predesigned Fourth-Order Transmission Error 

and Cosine Tooth Profile 

 
 

 

 

Cheng-Kang Lee* and Yung-Chang Cheng** 
 

 

 

Keywords： curvilinear cylindrical gear, cosine 

tooth profile, fourth-order 

transmission error, CAD/CAM, 

four-axis computer numerical control 

(CNC) machining. 

 

ABSTRACT 
 

This study proposes an innovative curvilinear 

cylindrical gear drive characterized by a predesigned 

fourth-order transmission error and a cosine tooth 

profile. The predesigned fourth-order transmission 

error not only absorbs linear transmission errors but 

also contributes to a smoother overall motion curve. 

The cosine tooth profile helps reduce the minimum 

number of teeth without undercutting. This research 

begins by establishing the generation methods and 

mathematical models for both the curvilinear pinion 

and gear. A set of nonlinear simultaneous equations, 

consisting of fifteen unknowns and fifteen equations, 

is then formulated based on tooth contact conditions 

and the predesigned fourth-order transmission error 

condition. The differential evolution algorithm and 

Newton's method are subsequently employed to 

conduct a global search and local refinement of the 

unknowns, leading to precise design solutions for the 

generating motion parameters. Tooth Contact 

Analysis (TCA) theory is applied to verify that the 

actual transmission error aligns perfectly with the 

predesigned fourth-order transmission error and to 

confirm that the contact ellipses and bearing contacts 

are centrally located on the tooth surface. Finally, to 

further validate the theoretical accuracy, CAD/CAM 

technology and a four-axis computer numerical 

control (CNC) machine are used to fabricate a 

curvilinear cylindrical gear drive. After inspecting the 

bearing contact positions using red ink, it is 

confirmed that the actual contact situation 

corresponds with the theoretical results.  

 

INTRODUCTION 
 

Curvilinear cylindrical gears are cylindrical 

gears with arcuate tooth traces, featuring convex 

arcuate tooth traces on one side of the tooth surface 

and concave arcuate tooth traces on the other. Koga's 

patent (1975) introduced a method for cutting paired 

gears with arcuate tooth traces, employing face 

milling cutters with male and female cutting blades 

for simultaneous and precise tooth thread formation. 

Liu (1988) explored the historical and practical 

aspects of curvilinear cylindrical gears, tracing their 

ancient origins to the Warring States period and 

detailing successful modern production since 1980, 

overcoming technical challenges with specialized 

machinery. Tseng and Tsay (2001) laid the 

foundation for understanding cylindrical gears with 

curvilinear-shaped teeth, employing a mathematical 

model and rack cutter methodology grounded in 

gearing theory, facilitating profile generation, and 

providing crucial insights into tooth undercutting for 

field advancements. Tseng and Tsay (2004) 

investigated the contact characteristics of cylindrical 

gears with curvilinear-shaped teeth, revealing 

minimal transmission errors and concentrated bearing 

contacts in the central region of the gear pair, even 

under axial misalignments. Arafa (2005) explored 

cylindrical gears with lengthwise curved teeth, known 

as C-gears, highlighting their geometrical features, 

cutting methods, and potential applications. Tseng 

and Tsay (2005) proposed a mathematical model for 

cylindrical gears with curvilinear-shaped teeth cut by 
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a CNC hobbing machine, investigating tooth surface 

deviations and offering insights into the 

manufacturing process. Tseng and Tsay (2006) 

explored the undercutting and contact characteristics 

of cylindrical gears with curvilinear-shaped teeth 

generated by hobbing, analyzing kinematic errors and 

contact ellipses under different assembly conditions 

and design parameters. Wu et al. (2009) proposed 

circular-arc curvilinear tooth gear drives, analyzing 

kinematical errors and contact patterns using 

complemented circular-arc rack cutters with 

curvilinear tooth traces, providing insights into the 

system's behavior under different assembly 

conditions. Chen and Gu (2011) examined a modified 

curvilinear gear set, revealing continuous 

transmission errors and localized bearing contact, 

with insights into the impacts of assembly errors and 

design parameters on contact characteristics. Fuentes 

et al. (2014) proposed two circular-arc 

curvilinear-shaped teeth gear geometries generated by 

face-milling cutters, employing computerized 

processes to simulate meshing, tooth contact analysis, 

and finite element analysis and revealing the 

advantages and disadvantages of the designs. Zhang 

et al. (2016) proposed a unique method for processing 

curvilinear tooth gears with a single blade cutter, 

examining meshing and contact characteristics and 

demonstrating potential advantages, including a 

higher contact ratio and suitability to replace spur 

gears in specific applications. Chen and Lo (2015) 

conducted a comprehensive study employing finite 

element analysis to investigate the loaded tooth 

contact analysis, contact stress, and transmission 

errors of a modified curvilinear gear set with 

localized bearing contact, providing valuable insights 

into the performance under different design 

parameters and loads. Chen et al. (2017) aimed to 

enhance the meshing characteristics of a 

complementary curvilinear gear set generated by 

complementary rack cutters, utilizing mathematical 

modeling, tooth contact analysis (TCA), and finite 

element analysis (FEA) to improve contact patterns, 

reduce sensitivity to assembly errors, and calculate 

contact stress. Zhang and Liang (2021) conducted a 

comprehensive study on curvilinear cylindrical gears 

with line contact, employing fixed-setting 

face-milling cutters and addressing mathematical 

modeling, tooth contact analysis, and stress analysis, 

highlighting insights into ideal and error conditions, 

as well as the effectiveness of tip relief in mitigating 

contact stresses. Wei et al. (2022) explored the 

contact characteristics of variable hyperbolic 

circular-arc-tooth-trace (VH-CATT) cylindrical gears, 

establishing a tooth surface contact analysis (TCA) 

model that considered installation errors and analyzed 

the influence of different errors and design 

parameters on geometric contact characteristics and 

sensitivity of the gear pair. Wu et al. (2023) 

conducted a thorough analysis of loaded meshing 

characteristics in cylindrical gear transmission with 

curvilinear-shaped teeth, providing insights into 

contact distribution, stress, load, and transmission 

errors, along with discussions on the impact of design 

parameters, serving as a theoretical tool for related 

analyses and modifications. 

Gear drives are essential components in power 

transmission systems, serving a diverse range of 

applications. Transmission errors and localized 

bearing contact play pivotal roles in shaping the 

design and performance of gears, influencing factors 

such as noise, vibrations, and overall efficiency. 

Numerous studies have been undertaken to 

comprehend and manage these phenomena, 

particularly in gears featuring modified geometries. 

Several investigations have been conducted on spur, 

helical, worm, bevel, and face gears. Litvin et al. 

(1988) proposed modifications to tooth surfaces, 

introducing parabolic transmission errors to address 

linear transmission errors arising from misalignments 

and to obtain localized bearing contact. Litvin and Lu 

(1995) performed computerized simulations for 

double circular-arc helical gears, investigating the 

influence of gear misalignment on transmission errors 

and demonstrating the practical application of 

modified geometries through numerical examples. 

Seol and Litvin (1996) concentrated on worm-gear 

drives, suggesting the application of computerized 

methods to simulate meshing and contact in 

misaligned drives, along with proposing geometry 

modifications for localized and stabilized bearing 

contact. Litvin and Kim (1997) introduced 

modifications to spur gear geometry, with the goal of 

achieving localized bearing contact and reduced 

transmission errors, showcasing the advantages 

through computer programs and numerical examples. 

De Donno and Litvin (1999) introduced a novel 

approach for designing low-noise worm gear drives 

with stable bearing contact, confirming the 

effectiveness of the proposed oversized hob and 

varied plunging of worm-gear generating tools 

through computerized simulation. Litvin et al. (2000) 

explored face worm-gear drives with methods for 

localizing bearing contact and reducing transmission 

errors, demonstrating the benefits of this approach 

through double-crowning of the worm and a 

dedicated computer program for simulation. Stadtfeld 

and Gaiser (2000) introduced the ultimate motion 

graph concept, which was employed to modulate 

tooth surfaces and reduce gear noise in bevel and 

hypoid gear drives. Lee and Chen (2004) proposed 

mathematical models for cylindrical gear sets with 

parabolic cutting edges, emphasizing their improved 

robustness against assembly errors due to localized 

bearing contact. Wang and Fong (2006) focused on 

fourth-order kinematic synthesis for face-milling 

spiral bevel gears, achieving a notable reduction in 

loaded transmission error through numerical 

simulations. Lee (2009) presented a manufacturing 
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process for a cylindrical crown gear drive with a 

controllable fourth-order polynomial function of 

transmission error, and the design's effectiveness in 

reducing gear running noise was validated through 

mathematical models and simulations. Jiang and Fang 

(2015) designed and analyzed modified cylindrical 

gears with controllable higher-order transmission 

error using particle swarm optimization, 

demonstrating through numerical simulations a lower 

amplitude of loaded transmission error. Lee (2018) 

proposed a method for designing a face gear drive 

with a predesigned fourth-order function of 

transmission errors, aiming to reduce noise and 

vibration. Lee (2019) introduced the cosine face gear 

drive, which features a predesigned fourth-order 

function of transmission errors and effectively 

overcomes traditional undercutting issues.  

This study presents an innovative application of 

a predesigned fourth-order transmission error and a 

cosine tooth profile to a novel curvilinear cylindrical 

gear drive. The paper includes the following tasks: (i) 

developing the generation method for the drive, (ii) 

establishing the mathematical model for tooth 

surfaces, (iii) formulating a system of constrained 

equations to introduce the predesigned fourth-order 

transmission error, (iv) executing the differential 

evolution algorithm and Newton’s root-finding 

method to determine the design values for the 

undetermined generating motion parameters, (v) 

conducting tooth contact analysis to validate real 

transmission error, (vi) using Recurdyn to simulate 

meshing and contact pressure, (vii) employing 

Siemens NX to generate machining programs, (viii) 

simulating the machining process using VERICUT 

and verifying the correctness of the program, (ix) 

machining the gear drive using a real four-axis CNC 

machine tool, and (x) inspecting the bearing contacts 

of the gear drive using red ink. 

 

GENERATION METHOD AND 

MATHEMATICAL MODEL 
 

As illustrated in Fig. 1, the novel curvilinear 

cylindrical gear drive consists of a pinion and a gear, 

represented by symbols 1, 11, and 12 for the gear 

drive, pinion, and gear, respectively. 

 

The Generation Method and Mathematical Model 

of the Pinion 

As shown in Fig. 2, pinion 11 is generated by 

the revolution surface, denoted by 111, which can be 

formed by either a cutting edge or a grinding wheel. 

As shown in Fig. 3, the axial section shape of the 

revolution surface 111 is a curve defined using a 

cosine function, denoted by 1111. The revolution axis 

of the revolution surface 111 is 1A . The radius 

parameter of the revolution surface 111 is 1 . Let 

the coordinate system 1 1 1 1( , , )S x y z  be rigidly 

connected to the axial section profile 1111. The 

position vector function of the axial section profile 

1111 can be represented in 1 1 1 1( , , )S x y z  by 1 1( )ur . 

 

 
 

Fig. 1  The novel curvilinear cylindrical gear drive. 

 

 

 
 

Fig. 2  Pinion 11 and revolution surface 111. 

 

 
 

Fig. 3  Profiles 1111 and 1211 are cosine function 

curves. 

 

1 1

1 1 1 1

1

( ) cos(2 / )

0

f

x u

u y h u m

z

  
  

= = −  
     

r  (1) 

 

To create the position vector function of the 

revolution surface 111, let the coordinate system 

3 3 3 3( , , )S x y z  be rigidly connected to the revolution 
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surface 111. The relationship between coordinate 

systems 1 1 1 1( , , )S x y z  and 3 3 3 3( , , )S x y z  is shown 

in Fig. 4.  

 

 
 

Fig. 4  Relationship between 1 1 1 1( , , )S x y z  and 

3 3 3 3( , , )S x y z . 

 

In 3 3 3 3( , , )S x y z , the position vector function of the 

revolution surface 111 is 3 1 1( , )u r . 
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In 3 3 3 3( , , )S x y z , the normal vector function of the 

revolution surface 111 is 3 1 1( , )u N , and the unit 

normal vector function is 3 1 1( , )u n . 
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3 1 1 3 1 1 3 1 1( , ) ( , ) ( , )u u u  =n N N  (4) 

 

Let the coordinate system ( , , )p p p pS x y z  be rigidly 

connected to the pinion 11. When the revolution 

surface 111 generates the pinion 11, the relative 

motion relationship between 3 3 3 3( , , )S x y z  and 

( , , )p p p pS x y z  is shown in Fig. 5. The coordinate 

system 3 3 3 3( , , )S x y z  undergoes a linear translation 

along the 3( )x−  direction with the parameter ps , 

and the coordinate system ( , , )p p p pS x y z  rotates 

counterclockwise about the pz  axis with the 

parameter p . The relationship between the 

parameters ps  and p  can be expressed as a 

fourth-order polynomial function ( )p ps  . 
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where m  is the module, pT  is the number of teeth 

of the pinion 11, and 2C , 3C , and 4C  are the 

undetermined coefficients for generating the 

predesigned fourth-order transmission error. 

 

 
 

Fig. 5  Relationship between 3 3 3 3( , , )S x y z  and 

( , , )p p p pS x y z . 

 

In the coordinate system ( , , )p p p pS x y z , the 

revolution surface 111 forms a family of surfaces 

 p , the position vector function of which is 
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The unit normal vector function of the family of 

surfaces  p  is (3)
1 1( , , )p pu  n . 

 
(3)

1 1 3 3 1 1( , , ) ( ) ( , )p p p pu u   =n L n  (7) 

 

where 
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The necessary condition for the existence of the 

envelope of the family of surfaces  p  is as 

follows: 
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The position vector function of the pinion 11 can be 

mathematically represented as 
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The unit normal vector function of the pinion 11 can 

be mathematically represented as 
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The Generation Method and Mathematical Model 

of the Gear 

As shown in Fig. 6, gear 12 is generated by the 

revolution surface, denoted by 121, which can be 

created by either a cutting edge or a grinding wheel. 

 

 
 

Fig. 6  Gear 12 and revolution surface 121. 

 

As shown in Fig. 3, the axial section shape of the 

revolution surface 121 is the cosine function curve, 

denoted by 1211. The revolution axis of the 

revolution surface 121 is 2A . The radius parameter 

of the revolution surface 121 is 2 . Let the 

coordinate system 2 2 2 2( , , )S x y z  be rigidly 

connected to the axial section profile 1211, then the 

position vector function of the axial section profile 

1211 can be represented in 2 2 2 2( , , )S x y z  by 

2 2( )ur . 
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To create the position vector function of the 

revolution surface 121, let the coordinate system 

4 4 4 4( , , )S x y z  be rigidly connected to the revolution 

surface 121. The relationship between coordinate 

systems 2 2 2 2( , , )S x y z  and 4 4 4 4( , , )S x y z  is shown 

in Fig. 7. 

 

 
 

Fig. 7  Relationship between 2 2 2 2( , , )S x y z  and 

4 4 4 4( , , )S x y z . 
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In 4 4 4 4( , , )S x y z , the normal vector function of the 

revolution surface 121 is 4 2 2( , )u N , and the unit 

normal vector function is 4 2 2( , )u n . 
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4 2 2 4 2 2 4 2 2( , ) ( , ) ( , )u u u  =n N N  (14) 

 

Let the coordinate system ( , , )g g g gS x y z  be rigidly 

connected to the gear 12. When the revolution surface 

121 generates the gear 12, the relative motion 

relationship between 4 4 4 4( , , )S x y z  and 

( , , )g g g gS x y z  is shown in Fig. 8. The coordinate 

system 4 4 4 4( , , )S x y z  undergoes a linear translation 

along the 4( )x−  direction with the parameter gs , 

and the coordinate system ( , , )g g g gS x y z  rotates 

about the gz  axis with the parameter g . The 

relationship between the parameters gs  and g  is 

a first-order polynomial function ( )g gs  . 
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where m  is the module and gT  is the number of 

teeth of the gear 12. 

 

 
 

Fig. 8  Relationship between 4 4 4 4( , , )S x y z  and 

( , , )g g g gS x y z . 
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The unit normal vector function of the family of 

surfaces  g  is (4)
2 2( , , )g gu  n . 
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The necessary condition for the existence of the 

envelope of this family of surfaces  g  is as 

follows: 
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The mathematical model of the position vector 

function of the gear 12 can then be represented by 
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The mathematical model of the unit normal vector 

function of the gear 12 can then be represented by 
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The Method for Generating the Predesigned 

Fourth-Order Transmission Error 

The next step is to accurately design the tooth 

profile parameters of the pinion, namely 2C , 3C , 

and 4C , to achieve the predesigned fourth-order 

transmission error. As illustrated in Figure 9, when 
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the pinion meshes with the gear, the pinion rotates 

clockwise about the pz  axis with the parameter p , 

while the gear rotates counterclockwise about the gz  

axis with the parameter g . The coordinate system 

( , , )f f f fS x y z  is a fixed coordinate system rigidly 

connected to the gearbox. The constraint conditions 

for any contact point between the pinion and the gear 

are as follows: 
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Fig. 9  Relationship between ( , , )p p p pS x y z  and 

( , , )g g g gS x y z . 

 

The pinion and gear rotation angles are p  and g , 

respectively. The transmission error of the gear drive 

is determined by 

 

( )
p

g g p p
g

T

T
    = −  (22)  

 

The slope of the transmission error is determined by 

 

( )
( )

( ) ( ) ( )

( ) ( ) ( )

( )g g p

p p g

p p p
f f f p

p g g
gf f f

d d T
h

d d T

T

T

 

 



= = −

 
= −

 

n e R
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 (23) 

 

where 

 
( ) ( ) ( )

( ) ( )

, ,

{0,0,1} , {0,0, 1}

p p g
fp p fp p fg gf f f

p gT T
f f

= = =

= = −

n L n R L r R L r

e e
  

 

The desired shape of the predesigned fourth-order 

transmission error is as shown in Fig. 10. Assuming 

that the pinion and the gear make contact at point R, 

the following conditions hold: 

 

1 1R 1 1R

2 2R 2 2

,  ,  ,  ,
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p pR g gR
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u u
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= = = =


= = = =

 (24) 

 

Assuming further that the pinion and the gear make 

contact at point L, the following conditions hold: 

 

1 1L 1 1L
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Fig. 10  Desired shape of the predesigned 

fourth-order transmission error. 

 

At contact point R the following constraint conditions 

hold: 
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 (26) 

 

At contact point L, the following constraint 

conditions hold: 
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 (27) 

 

At contact point L, there is also a condition where the 

transmission error slope is zero. 

 

1L 1L 2L 2( , , , , , , , ) 0pL L gL pL gLh u u      =  (28) 

 

According to the desired shape of the predesigned 

fourth-order transmission error shown in Fig. 10，the 

values of pL , pR , gL , and gR  are known as 

follows: 

 

2
,  ( ) ,  

2
,  ( )

pL gL p g pL
p

pR pL gR p g pR
p

T T
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T T
T


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
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−
= = − +
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 (29) 

 

As 
( ) ( )

1
p g

f f= =n n , there are a total of fifteen 

independent nonlinear algebraic equations, while 

there are only twelve unknowns: 1Lu , 1L , pL , 

2Lu , 2L , gL , 1Ru , 1R , pR , 2Ru , 2R , and 

gR . The additional three equations can be used to 

solve for the three undetermined coefficients, 2C , 

3C , and 4C , which are the tooth profile parameters 

of the pinion. In other words, considering the three 

undetermined coefficients as unknowns, Eqs. 

(26)-(29) form a system of fifteen nonlinear 

equations with fifteen unknowns. 
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X
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 (30) 

 

In order to solve the roots of the system of nonlinear 

equations, this study uses the differential evolution 

algorithm for global search. The convergent results 

obtained from the search are then passed to the 

Newton method as initial guesses, and the exact 

solution of the roots is obtained using the Newton 

method. Through the above method, the exact design 

values of the three undetermined coefficients, 2C , 

3C , and 4C , can be obtained. 

 

TOOTH CONTACT ANALYSIS 
 

This study presents a numerical example of 

tooth contact analysis, evaluating the actual 

transmission error, contact points, contact ellipses, 

and bearing contacts. The parameter settings used in 

the example are shown in Table 1, where 2C , 3C , 

and 4C , are obtained by solving the system of 

equations in Eq. (30). 

 

Table 1. Parameter settings of the numerical example. 

Parameter Symbol Value Unit 

Module m  10 mm 

Number of 

teeth of the 

pinion 11 

pT  20 -- 

Number of 

teeth of the 

gear 12 

gT  33 -- 

Radius 

parameter of 

the revolution 

surface 111 

1  90 mm 

Radius 

parameter of 

the revolution 

surface 121 

2  108 mm 

Dedendum 
fh  1.25 m  mm 

Pitch radius of 

the pinion 11 
p  /2pmT  mm 

Pitch radius of 

the gear 12 
g  /2gmT  mm 

Generating 

motion 

parameter 

2C  0.61646 2mm/rad  

Generating 

motion 

parameter 

3C  -2.59776 3mm/rad  

Generating 

motion 

parameter 

4C  2.48605 4mm/rad  

Range of the 

predesigned 

fourth-order 

transmission 

error 

  10 arcsec 

Proportion of 

the left side of 

the 

predesigned 

fourth-order 

transmission 

  0.7 -- 
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error 

 
According to Litvin (1994), solving the following 

system of nonlinear equations enables the execution 

of tooth contact analysis. This analysis provides the 

numerical values of the parameters of the contact 

points, the coordinates of the contact points, and the 

actual transmission error values when the pinion and 

the gear are in actual contact. 
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1 1 2 2
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 − =

 − =


=


=

r r 0

n n 0
 (31) 

 

Table 2 presents the relationship between the angle of 

the pinion and the real transmission error. Fig. 11 

illustrates the real motion curve generated by the real 

transmission error over three cycles. 

 

Table 2. Angle of pinion versus real transmission 

error. 

p  

Angle of pinion (rad) 

g  

Real transmission error 

(arcsec) 

-0.21991 -10.00000 

-0.18425 -9.43400 

-0.14859 -7.88678 

-0.11293 -5.67348 

-0.07727 -3.23029 

-0.04160 -1.11813 

-0.00594 -0.02684 

0.02945 -0.76448 

0.06480 -4.24611 

0.09425 -10.00000 

 

 
Fig. 11  Real motion curve. 

 

Through polynomial regression analysis, the 

following regression equation is derived. The 

R-squared value for this equation is 1, confirming 

that the real transmission error precisely adheres to a 

fourth-order polynomial function. 
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 (32) 

 

By substituting the numerical values of the 

parameters of the contact points into the principal 

curvatures and directions of the tooth surfaces of both 

the pinion and the gear, the major and minor axes, as 

well as the orientation of the contact ellipses, can be 

determined. Figure 12 illustrates the contact ellipses 

and bearing contacts on the pinion and gear. It can be 

observed that the bearing contacts on both the pinion 

and gear are located in the central region of the tooth 

surfaces, indicating the absence of edge contact and 

edge stress concentration issues. In Fig. 13, the 

application of the multibody dynamics analysis 

software Recurdyn to simulate the meshing and 

contact pressure of the gear drive is depicted. The 

angular velocity applied on the pinion is set to 60 

RPM, the torque applied on the gear is set to 5000 

N-mm, and the material is set to steel. This analysis 

allows for checking whether the pinion and gear are 

in proper contact or if interference occurs where it 

should not. A video showcasing the entire simulation 

has been uploaded to the YouTube platform, and the 

video's URL is https://youtu.be/ujLZIHW5vW4. 

 

 

 
(a) 

https://youtu.be/ujLZIHW5vW4
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(b) 

 

Fig. 12  Contact ellipses and bearing contacts on the 

(a) pinion and (b) gear. 

 

 
 

Fig. 13  Meshing and contact pressure simulation. 

 

COMPUTER NUMERICAL CONTROL 

MACHINING 

 
This study employs a four-axis computer 

numerical control (CNC) machine for machining the 

gear drive. Owing to the dimensional limitations of 

this CNC machine on workpieces, the geometric 

models are proportionally reduced by one-fourth. 

Computer-aided design and manufacturing software, 

Siemens NX, is utilized to generate the CNC program 

for the machining process. Initially, the toolpath for 

machining a single tooth space is planned, as 

illustrated in Fig. 14. Subsequently, the process for a 

single tooth space is extrapolated to encompass all 

tooth spaces, as shown in Fig. 15. After obtaining the 

toolpaths for all tooth spaces, a simulation of all 

processes is conducted to confirm the correctness of 

the procedures, as depicted in Fig. 16. Finally, the 

toolpaths are post-processed to generate the CNC 

program, as illustrated in Fig. 17. 

 

 
 

Fig. 14  Toolpath planning for a single tooth space. 

 

 
 

Fig. 15  The result after extending the process of a 

single tooth space to all tooth spaces. 

 

 

 

 

Fig. 16  Simulating all processes to confirm the 

correctness of the procedures. 

 

 

Fig. 17  The CNC program generated by 

post-processing of toolpaths. 
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This study also incorporates numerical control 

machining simulation verification software 

VERICUT to simulate the entire machining process. 

Firstly, a complete CNC machine model, including 

geometric and controller models, must be established 

in VERICUT. The CNC machine used in this study is 

a four-axis machine with XYZ translation axes and 

one A rotational axis. Secondly, geometric models of 

the machining tool and gear workpiece are created in 

VERICUT. Finally, by importing the CNC program, 

the entire machining process can be simulated. As 

shown in Fig. 18, during the simulation process, the 

motion of the machine, tool, and workpiece can be 

clearly observed. VERICUT automatically detects 

any collisions and issues an immediate alert in case 

of occurrence. Upon completion of the machining 

process, an automated comparison analysis is 

performed to check for issues such as over-cutting or 

remaining material, as illustrated in Fig. 19. 

 

 
 

Fig. 18  Using VERICUT software to simulate the 

entire process of numerical control 

machining. 

 

 
 

Fig. 19  Utilizing automated comparative analysis to 

inspect for issues such as over-cutting or 

remaining material. 

 

After simulating the machining process on the 

computer and confirming that there are no issues, the 

final step involves actual gear machining on the real 

four-axis CNC machine. Figure 20 illustrates the 

rough machining of the gear workpiece, while Figure 

21 shows the finishing process. A video showcasing 

the entire CNC machining process has been uploaded 

to the YouTube platform, and the video's URL is 

https://youtu.be/JuRLsDACgjY. Figure 22 displays 

the finished pinion and gear. Figure 23 presents using 

red ink to analyze bearing contacts. The result 

indicates that the bearing contacts are concentrated in 

the central regions of tooth surfaces, with no edge 

contact, consistent with the results of tooth contact 

analysis. 

 

 
 

Fig. 20  Conducting rough machining of the 

workpiece. 

 

 
 

Fig. 21  Conducting precision machining of the 

workpiece. 

 



 
J. CSME Vol.45, No.6 (2024) 

 -528- 

 
 

Fig. 22  The finished pinion and gear. 

 

 
 

Fig. 23  Using red ink to analyze bearing contacts. 

 

CONCLUSIONS 

 
This study has introduced and analyzed a 

promising curvilinear cylindrical gear drive with a 

predesigned fourth-order transmission error and 

cosine tooth profile, offering potential benefits such 

as smoother operation, compactness, and reduced 

stress concentration. The research meticulously 

explored various aspects, including developing 

mathematical models for both the pinion and gear and 

implementing a system of constraint equations to 

achieve the predesigned transmission error. 

Differential evolution and Newton's method were 

employed to precisely determine the unknown design 

parameters. Furthermore, the study validated the 

actual transmission error and contact patterns through 

comprehensive tooth contact analysis (TCA) and 

multibody dynamics simulation. It successfully 

demonstrated the practical feasibility of machining 

the gear drive using CAD/CAM and a four-axis CNC 

machine. Key findings confirmed that the designed 

gear drive achieved the intended fourth-order 

transmission error, with bearing contacts strategically 

located in the central regions of the tooth surfaces. 

The flawless execution of the CNC machining 

process showcased the design's manufacturability, 

and the red ink inspection validated the TCA results, 

confirming proper bearing contact location. Further 

research to explore its behavior under various 

operating conditions and optimize for specific 

applications has the potential to unlock its full 

capabilities and significantly contribute to advancing 

gear technology. 
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NOMENCLATURE 
 

1  the curvilinear cylindrical gear drive 

 

11  the curvilinear cylindrical pinion 

 

111  the revolution surface for the generation of 11 

 

1111  the axial section shape of 111 

 

12  the curvilinear cylindrical gear 

 

121  the revolution surface for the generation of 12 

 

1211  the axial section shape of 121 

 

1A   the revolution axis of 111 

 

2A   the revolution axis of 121 

 

2C , 3C , 4C   the generation motion parameters  

 

h   the slope of the transmission error 

 

ijL   the coordinate transformation matrix of unit 

normal vector from jS  to iS  

 

ijM   the coordinate transformation matrix of 

position vector from jS  to iS  

 

m   the module of the gear drive 

 

3 1 1( , )u N   the normal vector function of 111 

 

4 2 2( , )u N   the normal vector function of 121 

 

3 1 1( , )u n   the unit normal vector function of 111 

 

4 2 2( , )u n   the unit normal vector function of 121 

 
(3)

1 1( , , )p pu  n   the unit normal vector function of 

 p  

 
(4)

2 2( , , )g gu  n   the unit normal vector function of 

 g  

 

1 1( )ur   the position vector function of 1111 

 

2 2( )ur   the position vector function of 1211 

 

3 1 1( , )u r    the position vector function of 111 

 

4 2 2( , )u r   the position vector function of 121 

 
(3)

1 1( , , )p pu  r   the position vector function of 

 p  

 
(4)

2 2( , , )g gu  r   the position vector function of 

 g  

 

pT   the number of teeth of 11 

 

gT   the number of teeth of 12 

 

X   the fifteen unknows to be determined 

 

g   the transmission error of the gear drive 

 

   the proportion of the left side of the predesigned 

fourth-order transmission error 

 

   the range of the predesigned fourth-order 

transmission error 

 

1   the radius parameter of 111 

 

2   the radius parameter of 121 

 

p   the pitch radius of 11 

 

g   the pitch radius of 12 

 

 p   the family of surfaces formed by 111 

 

 g   the family of surfaces formed by 121 
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李政鋼 
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摘 要 

本研究提出了一種創新的曲線齒圓柱齒輪傳

動，其特點是具預設之四階傳動誤差和餘弦齒形。

預設之四階傳動誤差不僅可以吸收線性傳動誤

差，還能使整體的運動曲線更加平滑；而餘弦齒形

則有助於降低無根切現象發生的最小齒數。研究首

先建立了曲線齒小齒輪和大齒輪的創成方法及數

學模式。接著依據齒面接觸條件與具預設四階傳動

誤差條件建立了一組有十五個未知數與十五個方

程式的非線性聯立方程組。之後應用差分進化算法

與牛頓法對未知數進行全域搜索與局部精煉以便

求得創成運動參數的精確設計解。然後應用齒面接

觸分析（TCA）理論驗證了真實傳動誤差與預設之

四階傳動誤差完全相符，同時也驗證了接觸橢圓和

承壓接觸位於齒面中央部位。最後，為進一步確認

理論分析結果的正確性，再應用 CAD/CAM技術和四

軸電腦數值控制工具機製作一組曲線齒圓柱齒輪

傳動，經過紅丹檢查承壓接觸位置後，確認真實接

觸情形與理論分析的結果相符。 

 


