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Abstract 
 

In cylindrical plunge grinding process, the wheel 
wear affects the form accuracy and surface quality of 
the workpiece. Therefore, monitoring the grinding 
wheel condition plays a key role in the quality of 
workpiece being manufactured. In this study, different 
typical sensors in grinding machines such as the 
dynamometer, acceleration, motor current and 
Acoustic Emission (AE) are in use for monitoring. The 
time constants of force, AE and power signals and the 
Mean Square Deviation (MSD) of accelerometer 
signals, are first acquired to study the grinding wheel 
wear process. Considering that it is not always easy to 
measure the wheel topography and the grinding 
surface roughness in real grinding process, the Least 
Square Support Vector Machine (LS-SVM) is 
introduced to monitor the grinding wheel wear in time 
to satisfy the grinding stringent requirements. A series 
of experiments was performed to verify that the 
monitoring method of wheel wear is effective and 
repeatable in grinding process control.  

 
INTRODUCTION 

 
Compared with other machining methods, high-

performance plunge grinding process becomes one of 
the most complicated and important cutting processes 
as final machining stage. During a plunge grinding 
process, the grinding wheel rotating at a high speed 
moves only in a normal direction towards the 
workpiece that rotates at a much lower speed and such 

action results in a rapid reduction of workpiece size. 
Gao et al. [1] (1999) discussed that the grinding wheel 
performance condition affected the form accuracy and 
surface quality of the workpiece. It was suggested that 
the system monitoring and automation technology was 
much more necessary in order to supervise the process 
and detect the wheel conditions.  

Due to the development of computer and sensing 
technology, many studies have been conducted to 
develop automated grinding wheel condition 
monitoring technologies to realize full automation of 
grinding operations. Couey et al. [2] (2005) 
incorporated non-contact displacement sensors into an 
aerostatic spindle that are calibrated to measure 
grinding forces from changes in the gap between the 
rotor and stator. The results indicate that the 
measurement method is capable of providing useful 
feedback in precision grinding with excellent contact 
sensitivity, resolution, and detection of events 
occurring. However, a direct measurement of the 
grinding force is limited due to the difficult installation 
of measuring instrument at the point of cylindrical 
plunge grinding. Liao et al. [3] (2007) presented a 
wavelet- based methodology for grinding wheel 
condition monitoring based on acoustic emission (AE) 
signals. The test results indicate that the proposed 
methodology can achieve 97% clustering accuracy for 
the high material removal rate condition, and 86.7% 
for the low material removal rate condition. Liao et al. 
[4] (2008) found that the best average classification 
accuracy of 91.9% was obtained using Adaptive 
Boosting-Minimum distance classifier. Liao et al. [5] 
(2010) used ant colony optimization-based method 
and the sequential forward floating selection method 
to choose the best feature subsets. It was found that the 
lowest classification error of 7.81% was achieved 
using center-based nearest neighbor for the dataset of 
wavelet energy feature, while the lowest classification 
error was 6.875% using the dataset of AR coefficients. 
Denkena et al. [6] (2014) found a new monitoring 
method for cylindrical plunge grinding wheel wear, 
which the recursive estimation can reduce noise. From 
above studies, typical sensors in grinding machines 
such as the displacement, acceleration, motor current 
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and acoustic emission are in use for monitoring. Nakai 
et al. [7] (2015) presented that acoustic emission and 
power signals were acquired during the tests, and the 
combination of signals and statistics along with the 
intelligent systems brings an innovative aspect to the 
grinding process. CHI et al. [8] (2016) found the 
relationship between the time constant and the 

grinding wheel performance. The increase of the time 
constant value with three consecutive grinding cycles 
could indicate that wheel surface deterioration occurs 
in the process represented by the wheel loading. These 
results indicate that the models are highly successful 
in estimating tool wear. A summary of grinding wheel 
condition monitoring is reported in Table.1. 

Table.1 Summary of grinding wheel condition monitoring 

Reference Sensor(s) 
Signal 

analysis 
Features Algorithm Test results 

Couey et al. [2] 
(2005) 

Displacement 
Force-based 

solution 
 

Deflection FFT Below 1μm 

Liao et al. [3] 
(2007) 

AE 
Wavelet 
analysis 

Wavelet 
energy 

Adaptive 
genetic 

clustering 

97%(high MRR) 
86.7%(low 

MRR) 

Liao et al. [4] 
(2008) 

AE 
AR 

modeling 
AR order 

 
Boosted 

classifiers 
 

91.9% 

Liao et al. [5] 
(2010) 

AE 
AR 

modeling 
and Wavelet 

AR order 
and 

wavelet 
energy 

NM,KNN,F
KNN, 

CBNN and 
KMNP 

92.19%(wavelet 
features), 

94.125%(AR 
coefficient) 

Denkena et al.[6] 
(2014) 

 
Displacement, 
acceleration, 
motor current 

and AE 

Adaptive 
filter 

Tool 
defects 

The 
recursive 

estimation 
Implement easily 

Nakai et al. [7] 
(2015) 

AE and power 
signals 

Intelligent 
systems 

      
Training 

and 
validating 

 

Neural 
networks 

highly successful 

CHI et al. [8] 
(2016) 

Power signal 
Least-mean-

squares 
The time 
constant 

Material 
removal rate 

Not available 

Our study differs from those above-reviewed 
studies in the following aspects: (1) A direct 
measurement of grinding force, AE, power and 
accelerometer signals were conducted to online 
monitor the cylindrical plunge grinding wheel 
conditions, which the grinding force was measured by 
the developed rotating dynamometer installed on the 
headstock of machine tool, the AE and accelerometer 

sensors on the tailstock center, and the power sensor 
installed in the electrical cabinet. (2) The time constant 
is an important parameter of grinding material removal 
system and is related with the grinding wheel 
conditions, so the force, AE and power signals are first 
analyzed by the time constant to study the grinding 
wheel wear process. And, the MSD of accelerometer 
signal is also used as parameter to evaluate the 



Y.L Chi et al.: Grinding Wheel Wear Monitoring Based on the Support Vector Machine. 
 

- 343 - 
 

grinding wheel wear process. (3) To further study the 
analysis results of different monitoring signals, the 
grinding wheel topography and the workpiece surface 
roughness were directly measured to classify the 
wheel wear state by using the handled three-
dimensional microscope and the laser-check scattered 
laser light sensor. (4) Due to the fact that it is not 
always easy to measure the wheel topography and the 
grinding surface roughness in real grinding process, 

the LS-SVM is introduced to monitor the grinding 
wheel wear in time to satisfy stringent requirements of 
surface roughness. The experimental results show the 
LS-SVM tool with input the parameters of signals is a 
feasible method with which to monitor grinding wheel 
wear condition. The overall structure of grinding 
wheel wear monitoring system is shown in Fig.1. In 
the following, a leading study was performed to 
monitor the grinding wheel conditions.  

Eliminate 
idle 

running 
signals

Low-pass 
filter

Signal pre-processing

Grinder

Experiment setup 
& Data acquisition

MSD

AE

Power

Force

VIB
τ
τ
τ

Signal prediction Parameters

Feature Extraction

Scaling

SVM

Classification

Sharp 
or 

worn

 

Fig.1 Structure of grinding wheel wear monitoring system 

  
THE TIME CONSTANTESTIMATION 

 
With the development of grinding monitoring 

system, sensors for process monitoring and control 
have been a technology which is used to provide 
efficient information on the grinding wheel conditions. 
Different sensors and parameters are described below. 

 
The time constant 

As confirmed by Chen et al. [10] (1996), the time 
constant of the plunge grinding system τ  is a 
measure of the relationship between the system overall 
effective stiffness ek  and the grinding coefficient 

ck . The time constant τ  is expressed by: 

we

c

nk
k

=τ                      (1)  
                     

The above equation shows that the time constant τ  is 
related to the overall effective stiffness 

ek , the 

workpiece rotational speed 
wn  and the grinding 

force coefficient 
ck . CHI et al. [8, 9] (2016) showed 

that the increase of the time constant value with 
consecutive grinding cycles could indicate that wheel 
surface deterioration. Therefore, it is possible to 
evaluate the wheel performance based on the time 
constant τ . In the following, different sensor signals 
are introduced to be used in monitoring grinding wheel 
wear process. 
 
Sensors and parameters 

In cylindrical plunge grinding process, the grinding 
forces of the tangential component, tF , and a normal 

component, nF  can be acquired by using a 

developed tool dynamometer. The time constant τ  
can be calculated by following earlier work CHI et al. 
[9] (2016). 

)>>-(= 1-
' τttK

n
uvk

FF nS
w

nsc
nn ≡≈



                
(2)

 -1 -1-1
-1

-1 -2( - , - )

c s S n
n n n

w n

n n

k v K uF u u e e
n u

t t t t
τ τ

τ τ

=

= >>

  


( - ) ≡ ( 1- )                                      

(3)
 

where, nF is the steady-state force, nF  the rate of 

force change, sv  the grinding wheel speed, u  the 
commanded infeed rate and n  the order of the infeed 
stage. According to the Eqs. (2) and (3), the time 
constant τ  can be expressed by: 

-1-1

-1 -2( - , - )

n n
Force

n n

n n

F u e
F u

t t t t

τ

τ τ

=

= >>


 
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     (4)          
 

Lee et al. [11] (2003) reviewed that the grinding 
spindle power consumption provides an  
indication of grinding torque and therefore, indirectly, 
of tool condition. The grinding power P  associated 
with the normal grinding force nF  can be written as:  

nt

snp

k
vFk

P =          (5) 

where pk
 

is the coefficient of power, which depends 

on the grinding conditions, and ntk  the 
proportionality coefficient of the normal force and the 
tangential force. The time constant τ  can be 
expressed by: 

http://xueshu.baidu.com/s?wd=author%3A%28Jose%20Vicente%20Abellan-Nebot%29%20Department%20of%20Industrial%20Systems%20Engineering%20and%20Design%2C%20Universitat%20Jaume%20I%2C%20Av.%20de%20Vicent%20Sos%20Baynat%20s%2Fn.%2C%2012071%2C%20Castell%C3%B3n%2C%20Spain&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
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An AE sensor sensitive to changes of the grinding 
state was selected for monitoring process. Tawakoli et 
al. [12] (2008) have found that a relationship exists 
between the AE RMS signal and the grinding process. 
Jiang et al. [13] (2014) supposed that the average AE 
RMS signal is proportional to the normal grinding 
force. 

naeAE FkV =             (7) 

where AEV  is the averaged AE RMS, and aek  is 
the proportionality coefficient. The time constant τ  
can be expressed by: 

)>>-,=-(= 2-1-
1-1- τttτtte

u
u

V
V

τ nn
n

n

AE

AE
AE )-(1




            

(8) 
The aim of vibration monitoring is to found a 

deterioration process of the grinding wheel and a 
malfunction of the machine tool from the 
accelerometer signal. For this purpose, an acceleration 
sensor was adhered to machine tool tailstock center. 
The tailstock center amplitudes of acceleration signal 
by a Mean Square Deviation（MSD） were analyzed 
by Kang et al. [14] (2001). 

1-
)-(

= 1=
2
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xx
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Where ix  is the extraction data, x  the mean value 

and N  the number of data satisfying the condition. 
 
LEAST SQUARE SUPPORT VECTOR 
MACHINES 

 
  Using SVMs to judge the grinding wheel wear 
condition during grinding, would provide a rational 
test in developing a reliable tool for grinding process 
monitoring. An original SVM, may not be suitable in 
practice, due to its time consumption during the 
computation of quadratic programming. A least square 
SVM, was developed by Suykens and Vandewalle [15] 
(2002) for solving pattern recognition and non-linear 
function estimation problems. In this case, the LS-
SVM is used to analyze different grinding monitoring 
signals and parameters. Once LS-SVM contains all 
needed information, the result can be predicted. The 
SVM equation modification developed by Suykens, is 
as follows: 

Minimize:
∑

l

i
iξCω 22

2
1

+
2
1

          (10)
 

Subject to: 

iii bxy ξ-1=)+)•ω(( ， .,,1=,0ξ lii ≥                                  

(11) 
Where iξ  a non-negative slack variables. C  is the 
coefficient, which is chosen by user. The weighting 
vector ω  defines the direction of the separating 
hyperplane )(xf  as shown in Eq. (12). 

}+•{=)( bxωsignxf          (12) 
Where the bias b  defines the distance of the 
hyperplane from the origin. The application of conditions for optimality yields 
the following linear KKT (Karush-Kuhn-Tucker) 
system: 
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                                   (14) 
By applying the kernel to the Ω  matrix, classifier 

function estimation becomes: 

}+),({=)(
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bxxKyαsignxf
l

i
jiii∑  

            (15)                     
Where ),( ji xxK  is the kernel function, which is 
shown as: 

)()(=),( jiji xΦxΦxxK         (16) 

Where Φ  is an actual mapping function. The study 
mainly focuses on the grinding wheel wear monitoring 
in this case. Then, the unknown data example is 
classified in the following way: 

( ) 1
( ) 1

Class I if f x
x

Class II if f x
=

 = −
 (17)                       

 
EXPERIMENTS 

 
In this study, a series of experiments were 

performed using a computer numerically controlled 
(CNC) cylindrical grinding machine to study the 
grinding wheel wear process. 

 
Machine tool conditions 

Fig.2 shows a STUDER K-C33 multi-purpose CNC 
cylindrical grinding machine with an air-bearing 
workpiece spindle, and C45 steel with radius of 60mm 
was selected as the experimental material. The 
experiment was conducted to monitoring the wheel 
wear process by using four different sensor signals 
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which are the force, the AE, the power and the 
accelerometer signals. The monitoring signals are 
filtered and digitised using a DATAQ 
INSTRUMENTS DI-148U data acquisition card. In 

the following sub-sections, different sensors setup is 
introduced in the grinding monitoring system. The 
parameters of the grinding wheel and workpiece are 
shown in Table.2. 

Dynamometer sensor

workpiece

AE sensor

Grinding wheel

Accelerometer sensor

The Stator

The rotating part  

Fig.2 Experiment setup and the monitoring sensors 
Table.2 the parameters of the grinding wheel and workpiece 

Parameter Property 
Worpiece material C45 
Wheel material Vitrified aluminum oxide 
Workpiece dimension(mm) Φ 75.2(diameter)×200(length) 
Wheel dimension(mm) Φ 600(diameter)×56(width)× Φ 220(bore) 
Worpiece speed(r/min) 120 
Wheel speed(m/s) 33 

 

Sensors and measurement 

The detailed specification of the dynamometer 
instrument is given in Fig.2. A dynamometer sensor 
KISTLER 9123C which consists of a four component 
sensor fitted under high preload between a baseplate 
and top plate , is especially suitable for installing on 
the spindle stock to measure the grinding force. The 
type 8395A  triaxial capacitive accelerometer is 
installed on the machine tool tailstock and utilizes a 
silicon Micro-Electro-Mechanical System (MEMS) 
variable capacitance sensing element to test the 

grinding workpiece vibration. The type SBS AE-1000 
which consists of a custom designed electronic control 
system is used to detect high frequency acoustic 
emissions generated in the machine structure resulting 
from the grinding or grinding process. The electric 
spindle power was measured using a power sensor 
LOAD CONTROL PH-3A installed in a machine tool 
electrical cabinet as shown in Fig.3. 
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Power sensor

 
Fig.3 The power sensor setup 

The grinding wheel surface microtopography is 
conveniently tested by using handled three-

dimensional microscope as shown in Fig.4. The 
KENYCE VHX 3000 is an all-in-one microscope that 
incorporates observation, image capture, and 
measurement capabilities. As shown in Fig.5, the 
laser-check scattered laser light sensor is easy used to 
test the workpiece surface roughness by hand after 
grinding. In high volume surface finishing operations 
such as grinding, laser-check 6212B can quickly and 
easily check product surfaces, ensuring process and 
quality control. As shown in Fig.5, the laser-check 
scattered laser light sensor is easy used to test the 
workpiece surface roughness by hand after grinding. 
In high volume surface finishing operations such as 
grinding, laser-check 6212B can quickly and easily 
check product surfaces, ensuring process and quality 
control. 

Microscope
Grinding wheel

 
Fig.4 Grinding wheel surface test 

The measuring head

Workpiece

 
Fig.5 Grinding surface roughness measurement 

 
To test the validity of the experimental results, a lot 

of consecutive grinding cycles, with infeed rate of 
12µm/s and 8µm/s after the wheel dressing, were 
performed to study the wheel topography and the 
grinding workpiece surface roughness in terms of 
grinding wheel wear. In each whole grinding cycle, the 

spark-out stage lasted 10s as shown in table.3, and four 
different sensor signals which are the force, the AE, 
the power and the accelerometer signals were 
measured by using the method of Fig.2 and Fig.3. At 
the end of each grinding cycle, the grinding wheel 
topography and the workpiece  

surface roughness were recorded by using the equipment of Fig.4 and Fig.5. After consecutive 
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grinding cycles, the monitoring signals were 
analysed for the grinding wheel wear process. 

Table.3 The experiment grinding parameters 
Infeed allowance

（mm） 
Infeed speed
（µm/s） 

Spark-out 
time（s） 

0.1 12 10 
0.1 8 10 

EXPERIMENT RESULTS AND 
DISCUSSION 

 
  This discussion is divided into three parts based on 
the experimental work. First, the experimental 
procedure is introduced to acquire the measurement 
data in terms of grinding wheel wear process. The 
monitoring signals of different sensors were collected 
to study the relationship between the signal parameters 
and the grinding wheel wear process during the 
consecutive grinding cycles. From the signal analysis 
results, it found that these parameters contain the 
grinding wheel wear information. Second, to classify 
the grinding wheel sharp or worn more accurately, the 
grinding wheel topography and the workpiece surface 
roughness were measured to further analyse the results 
of the section 5.1. At last, the LS-SVM is introduced 
to monitor the grinding wheel wear in time to satisfy 
the grinding stringent requirements. The input 
parameters of the SVM were the time constants of 
force, power and AE signals, and the MSD of 

accelerometer signals. The classification results 
indicate that the LS-SVM tool with input parameters 
of signals is a feasible method with which to monitor 
grinding wheel wear condition. 
 
Results of signal analysis in wheel wear process 

After redressing, the grinding wheel is sharp during 
the first grinding cycle as shown in Fig.6. It can be 
seen that the infeed stage of signals (force, AE and 
power) can be divided into the rising stage and the 
steady state. This is because that the elastic deflection 
between the wheel and workpiece are generated at the 
beginning of the infeed grinding, and the grinding 
force is rising at this stage. When the infeed grinding 
reaches a steady state, the deflection and the grinding 
force do not change.  Due to different sensor 
characteristic, the rising stage time St  is also 
different for force, AE and power signals, which are 
3.8s, 2.2s and 4.7s. During the first grinding cycle, the 
vibration signal is not obvious, and the maximum of 
accelerometer signal maxVIB  is about 0.548m/s2.  
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Fig.6 The monitoring signals during the first grinding cycle: (a) force, (b) AE, (c) power, (d) accelerometer  
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To reduce the effect of measuring noise, the least-
mean-squares (LMS) estimation method is applied to 
power signal sample as shown in Fig.7. A portion of 
the infeed LMS power data was selected to calculate 
the time constant of power signal by using Eq. (4), and 
thus, the predicted power curve can be acquired with 
the previous studied model [9]. Through the 
comparison between the predicted and the measured 
power curves, it demonstrates that the time constant 
τ  can be estimated exactly. For the twenty-one 
grinding cycles, the time constants of force, AE and 
power infeed stage signals can be separately estimated 
[10, 13] with the similar methodby using above Eqs. (4), 
(6) and (8). And, the MSD of vibration signals is 
calculated by Eq. (9). These parameter changing 
curves for monitoring grinding wheel condition during 
twenty-one grinding cycles in both the sharp and the 
wear conditions were shown in Fig.8. 
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Fig.7 Comparison between the predicted and 

measured power curves 
With consecutive grinding cycles, the grinding 

wheel surface wears out more and more seriously. 
From the Fig.8 (a), (b) and (c), the different time 
constant changing curve trends were similar, and all of 
them have obvious increasing after about 9-12 
grinding cycles. From these results, it can be inferred 
that the cutting ability of the grinding wheel becomes 
weak, and the wheel abrasive wears more and more 
seriously. And, the MSD of accelerometer signal was 
also compared and illustrated in Fig.8 (d). Similar with 
the time constant results, there is also an obvious 
increasing after about 9-12 grinding cycles. From the 
signal analysis, the parameters of monitoring signals 
are increasing with the grinding time but are not 
proportional to the grinding cycles. In fact, the results 
show the parameters of monitoring signals increases 
with somewhat a change in the whole grinding process 
as show the green cycle in Fig.8. And, these 
parameters are impossible to predict the wheel wear 
accurately. Therefore, it is difficult to evaluate the 
wheel performance directly by setting the threshold 
line for different parameters
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automatically to assure the grinding quality well.  
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Fig.8 The parameters changing according to the 
wheel wear process: (a) the time constant of force 

signal, (b) the time constant of AE signal, (c) the time 
constant of power signal, (d) the MSD of 

accelerometer signal 
As shown in Fig.9, the monitoring signals of 

different sensors are presented during the last or 21th 
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grinding cycles. Due to the wheel wear seriously, these 
signals are different with the first grinding cycle’s. 
Compared with  Fig.6, it can be seen that the 
infeed stage only includes the rising stage for the force, 
AE and power signals as shown in Fig.9 (a), (b) and 
(c). This is because that the grinding wheel wears out 
seriously, the infeed grinding cannot reach a steady 

state. In the whole infeed stage, the grinding force does 
not reach the balance, and the grinding quality will be 
affected. Compared with Fig.6 (d), there is an intense 
vibration of machine stock for the Fig.9 (d), and the 
maximum of accelerometer signal maxVIB  is about 
6.02m/s2 more than ten times of the Fig.6 (d)’s result. 
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Fig.9 The monitoring signals during the last grinding cycle: (a) force signal, (b) AE signal, (c) power 
signal, (d) accelerometer signal 

 
From the result of signal analysis in the grinding 

wheel wear, it can be inferred that the different 
parameters of monitoring signals have similar trend 
with the grinding wheel wear process. These 
parameters contain the grinding wheel wear 
information. Due to the processing uncertainty, one of 
these parameters is very difficult to represent for the 
grinding wheel condition change. SVMs have been 
recognized as powerful machine learning tools, with 
good theoretical properties for convergence and 
generalization. Thus, the different parameters of 
monitoring signals are selected as input of SVM to 
predict the grinding wheel wear process more 
accurately. To classify the grinding wheel sharp or 
worn more accurately, the measurement results of 
grinding wheel topography and surface roughness 
would be studied in the following section. 

 
The wheel topography and the roughness analysis 

As shown in Fig.10 and Fig.11, the wheel surface 
topography and the grinding surface roughness during 
the twenty-one grinding cycles, were acquired to 
further analyse the results of the section 5.1. The 
situation with the wheel surface topography is 
changing for different grinding cycles. After new 
redressing, the grinding wheel surface is clear to keep 
cutting ability well as shown in Fig.10 (a). With 
consecutive grinding cycles, the stuck chips in the 
grinding wheel surface are increasing as shown in 
Fig.10 (b) and (c). After 12 grinding cycles, the stuck 
chips in the grinding wheel surface are very seriously 
and affecting the wheel performance as shown in 
Fig.10 (d). With more grinding cycles, the grinding 
wheel surface wears out completely as shown in 
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Fig.10 (e) and (f), and needs more grinding force to 
remove material. As can be seen in the Fig.10, the 

results are almost consistent with the analysis results 
of Fig.8. 

 
Fig.10 The wheel surface change with grinding cycles: (a) the wheel surface after dressing, (b) the wheel 
surface after the 4th cycle, (c) after the 8th cycle, (d) after the 12th cycle, (e) after the 16th cycle, (f) after 

the 21th cycle 
 

The grinding workpiece roughness is also changing 
with the performance of the grinding wheel. Because, 
the surface roughness result is different at each 
measurement position, the fitting surface roughness is 
calculated by the least square method in this 
experiment. The target surface roughness is that the 
fitting surface roughness reach the maximum. This 
part is mainly concerned with the fitting surface 
roughness curve during the 21 grinding cycles as 
shown in Fig.11. At the beginning, the fitting surface 
roughness is increasing with consecutive grinding 
cycles. When the grinding cycles is more than twelve 
times, it can be seen that the fitting results reach the 
maximum line and don’t change obviously, which can 
be observed clearly by the fitting curve. The 
explanation of this phenomenon is that the grinding 
wheel wears out completely after twelve grinding 
cycles. And, the fitting grinding surface roughness is 
not increasing with more grinding cycles.  

From the wheel topography and the grinding surface 
roughness analysis, the results of signals analysis in 
the section 5.1 are further verified. It further proved 
that different sensor signals in cylindrical plunge 
grinding are efficient in the condition monitoring of 
the grinding wheel wear. In the experiment, the wheel 
state is classified into two categories: sharp and worn, 
was observed in the 12 grinding cycles. After 12 
grinding cycles, the wheel is worn. 

 

Fig.11 The grinding workpiece surface roughness 
results 

For many practical applications, the reliability of 
the cycles is often critically dependent upon the 
surface quality by grinding. Due to the fact that it is 
not always easy to measure the wheel topography and 
the grinding surface roughness in real grinding process, 
the LS-SVM is introduced to monitor the grinding 
wheel wear in time to satisfy stringent requirements of 
surface roughness. 

 
The LS-SVM classification results 

The LS-SVM was used to predict grinding wheel 
wear, and analysis was carried out using a MATLAB 
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LS-SVM toolbox. The states of grinding wheel are 
classified into two categories: sharp and worn, which 
were designed as the output of our pattern recognition 
system. A Radial Basic Function (RBF) kernel was 
selected for classification, where the LS-SVM gives 1 
for wheel sharp and -1 for wheel worn. The input 
parameters of the SVM were the time constants of 
force, power and AE signals, and the MSD of 
accelerometer signals. Therefore, feature vector is 
constructed by [ ]MSDAEPowerForce VIBτττ ,,,  under 
two infeed rates and set as inputs for the SVM 
classification. Table.4 and table.5 show 10 sets of data 
about the input parameters of monitoring signals and 
the output wheel states with infeed rate of 8µm/s and 
12µm/s. 
  In this study, two groups of feature vectors extracted 

from different signals using above methods were input 
in the SVM classification system. According to the 
practical cylindrical plunge grinding process, the 
wheel wear is always supervised under the same 
grinding condition. So, the separated classifier is used 
for each infeed rate. In this experiments, the 104 
grinding cycles with infeed rate of 8µm/s and 12µm/s 
were carried out to collect the signals for testing the 
performance of the proposed methodology. The first 
feature vector had 30 records of sharp conditions and 
32 records of worn conditions with the infeed rate of 
8µm/s, while the other set had 18 records of sharp 
conditions and 24 records of worn conditions with the 
infeed rate of 12µm/s. Half records of each feature 
vector were taken out for training and the other half for 
testing.

 
Table.4 Parameters of monitoring signals, the infeed rate=8µm/s 

No. states Forceτ  Powerτ  AEτ  MSDVIB  

1 Sharp (1) 2.2744 0.80377 0.028167 4.2713 
2 Sharp (1) 2.5286 0.96756 0.091799 4.7934 
3 Sharp (1) 2.1952 0.96386 0.24359 4.1317 
4 Sharp (1) 2.4419 1.0418 0.41406 4.0371 
5 Sharp (1) 2.6407 1.1653 0.46055 5.077 
6 Worn (-1) 2.322 1.1638 0.48951 5.146 
7 Worn (-1) 2.4268 1.5063 0.50393 5.0614 
8 Worn (-1) 2.5999 1.4858 0.53687 4.9745 
9 Worn (-1) 2.7099 2.1125 0.55076 5.3696 
10 Worn (-1) 3.1623 2.1546 0.59974 5.6193 

 
Table.5 Parameters of monitoring signals, the infeed rate=12µm/s 

No. states Forceτ  Powerτ  AEτ  MSDVIB  

1 Sharp (1) 2.6142 0.8963 0.0147 4.8532 
2 Sharp (1) 2.7999 1.2318 0.0754 5.1372 
3 Sharp (1) 3.0353 1.0095 0.1608 5.3174 
4 Sharp (1) 2.8452 1.2341 0.4167 5.2271 
5 Worn (-1) 3.1369 1.2399 0.5 5.5691 
6 Worn (-1) 3.163 1.4072 0.5048 5.4064 
7 Worn (-1) 3.2528 1.5383 0.5172 5.7373 
8 Worn (-1) 3.3103 1.6115 0.5349 6.0275 
9 Worn (-1) 3.5031 2.1005 0.5316 6.0295 
10 Worn (-1) 3.4375 2.4542 0.6085 6.4433 

Table.6 shows the classification results under the 
two grinding conditions. The classification accuracy 
was 96.67% under the infeed rate of 8µm/s. With the 
infeed rate of 12µm/s, the accuracy is much higher, 

which was 100%. The classification results indicate 
that the LS-SVM tool with input feature vectors of 
signals is a feasible method with which to monitor 
grinding wheel wear condition. 
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Table.6 Classification results 

Infeed rate is 8µm/s 
 

Infeed rate is 12µm/s 
 States Prediction  

amount  
 

Target 
amount 

Result States Prediction  
amount  
 

Target 
amount 

Result 

Sharp 15 16 
96.67% 

Sharp 9 9 
100% 

Worn 16 14 Worn 12 12 
 

CONCLUSIONS 
 

 

For cylindrical plunge grinding process, different 
sensor signals and LS-SVM have been presented to 
monitor the grinding wheel wear process in this paper. 
The presented methodology involves collecting force, 
AE, power and accelerometer signals in grinding at 
different wheel states, taking the time constants from 
force, AE, and power signals, extracting the MSD 
from the accelerometer signals. To classify the 
grinding wheel sharp or worn more accurately, the 
grinding wheel topography and the workpiece surface 
roughness were also measured to put each signal 
feature into one of two wheel states: ‘sharp’ and ‘worn’. 
The LS-SVM was used to predict grinding wheel wear, 
and analysis was carried out using a MATLAB LS-
SVM toolbox.  

Grinding experiments were carried out to collect the 
signals for testing the performance of the proposed 
methodology. The test results show the classification 
accuracy was 96.67% under the infeed rate of 8µm/s. 
With the infeed rate of 12µm/s, the accuracy is much 
higher, which was 100%. It was confirmed that the LS-
SVM tool with input feature vectors of signals can 
identify the wheel condition with high accuracy under 
different grinding conditions. For many practical 
applications, this study can be used to evaluate the 
wheel performance for different signal parameters

 
to 

control dressing automatically to assure the grinding 
quality. Furthermore, more experiments will be 
necessary to optimise the grinding parameters in terms 
of the total grinding time or total grinding cost. The 
grinding optimisation process will be studied in detail 
in future work. 
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NOMENCLATURE 

 
τ   time constant of the plunge grinding 

system 

ek  system overall effective stiffness 

ck  grinding coefficient 

wn  workpiece rotational speed 

tF  grinding forces of the tangential 
component 

nF  steady-state force 

nF  rate of force change 

sv  grinding wheel speed  

u  commanded infeed rate 
n  order of the infeed stage 
P  grinding power 

pk  coefficient of power 

ntk  proportionality coefficient of the normal 
force and the tangential force 

AEV  averaged AE RMS 

aek  proportionality coefficient 

ix   the extraction data 

x  mean value  
N  number of data satisfying the condition 

 

iξ  non-negative slack variables 

C  coefficient, which is chosen by user  
ω  The weighting vector 
b  distance of the hyperplane from the origin 

),( ji xxK  kernel function 

Φ  an actual mapping function 
 

 

基於時間常數和支援向量

機的砂輪磨損監測 
 

遲玉倫  顧佳健 李郝林 
上海理工大學機械工程學院 

 

摘 要 

在外圓切入式磨削過程中，砂輪磨損會影響工

件的形狀精度和表面品質，線上監測砂輪磨損狀態

對於保證工件品質起著關鍵作用。本研究基於不同

的感測器信號，如，力、功率、加速度、電機電流

和聲發射（AE）等對數控磨床來進行線上監測。通

過計算磨削力、AE 和功率信號的時間常數以及加

速度信號的均方偏差（MSD）來研究砂輪磨損過程。

由於實際磨削過程中測量砂輪形貌和磨削表面粗

糙度反應砂輪磨損過程較為複雜且難以實施，本文

則採用最小二乘支持向量機（LS-SVM）結合採集信

號參數來即時監控砂輪磨損，以滿足磨削加工各項

指標要求。最後，通過大量實驗驗證了該砂輪磨損

監測方法在磨削程序控制中的有效性和可靠性。 

 

 
 
 
 
 
 
 
 
 
 
 
 


