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ABSTRACT 

The goal of this work is to achieve path-tracking 
of a differential driven mobile robot (DDMR) in the 
presence of uncertainties, saturated input, and external 
disturbances. To reach this goal, hierarchical 
decentralized fuzzy sliding-mode control (HDFSMC), 
including a nonlinear position control (NPC), is used 
to generate the desired velocity inputs of the nominal 
system. A decentralized fuzzy sliding-mode control 
(DFSMC) is also used to deal with the existence of 
uncertainties, saturated input and external disturbance 
in addition to velocity tracking. The error dynamics 
between the actual DDMR and the virtual reference 
DDMR (or the desired velocity inputs) with respect to 
the world frame is first established to asymptotically 
track the planned trajectory. Usually, the performance 
and stability of the closed-loop system often 
deteriorate because of mentioned uncertainties and 
exogenous inputs. A DFSMC is designed to obtain 
good performance including accuracy of path tracking 
and smoothness of the control input by exploiting 
some of the features of the sliding-mode control 
technique, e.g., excess robustness, fast convergence. 
First, a suitable rule table for the ith subsystem is 
obtained using if-then rules. Then, based on Lyapunov 
stability criterion, the output scaling factor is then 
determined. To validate the theoretical developments, 
computer simulations are conducted which prove the 
effectiveness, efficiency and robustness of the 
proposed scheme. 
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INTRODUCTION 

 
Motion planning of mobile robots has always 

been a research topic of high interests. The reasons lie 
in high mobility and obvious relevance in applications 
for mobile robots. Much research has been carried out 
in mechanical design, path planning and obstacle 
avoidance, etc. A representative few are discussed 
herein about derivation of the dynamic model or 
motion control of mobile robots. In 2010, Yue et al. 
(2010) presented a new dynamic model for a class of 
two-wheeled mobile robots and a sliding mode 
controller based on the adaptive gain technique to 
overcome the disturbances. A backstepping-based 
tracking control design for uncertain mobile robot 
systems with non-holonomic constraints is developed 
in (Huang, 2009). Kim and Kim (2011) solved a 
minimum-time trajectory planning problem for three-
wheeled omnidirectional mobile robots and presented 
a systematic way to construct the optimal control input 
vector. Rubagotti et al. (2011) proposed a control 
strategy, which included online trajectory generation, 
based on harmonic potential fields and the design of 
sliding-mode controller for tracking both the velocity 
and the orientation. Chwa (2010, 2012) represented a 
fuzzy adaptive tracking control and a backstepping-
like feedback linearization for tracking control of a 
wheeled mobile robot with dynamic disturbances. 
Moreover, in (Hou et al., 2009), a robust adaptive 
controller is proposed for the tracking control of an 
electrically driven nonholonomic mobile robot with 
model uncertainties that employs adaptive control 
approaches to attain velocity control and make use of 
fuzzy logic systems to learn the behavior of the 
unknown dynamics of the robot and the wheel 
actuators. Recently, smart and intelligent control 
technologies have been developed (see for example 
(Fei and Ding, 2012). In (Wai and Muthusamy), fuzzy 
control and neural-network techniques have been 
applied for robots and lead to good results. Motivated 
by the previous works, an intelligent control scheme 
with excess robustness is developed here for the path-
tracking of DDMRs. 
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There are two types of mobile robots: differential 
driven (see Figure 1.) and car-like (Hwang and Chang, 
2007). In the differential driven robot case, the 
differential velocities cause the wheels to move and/or 
change direction; whereas, in the car-like case, the 
back wheels cause the motion and the front ones 
change the direction. Moreover, both types have 
nonholonomic constraints which means they cannot 
move arbitrarily i.e., only move in the direction normal 
to the axis of the active wheels. Furthermore, most of 
the models used are based on laboratory scale mobile 
robots and only kinematics is considered that may 
cause part of significant dynamic behaviors missing 
(Kanayama et al., 1990). Hence, to establish richer and 
more complete mathematic model, kinematic and 
dynamic models with friction under nonholonomic 
constraints need to be taken into consideration 
explicitly in this study via Euler-Lagrange formulation 
(Fierro and Lewis, 1997).  

It is known that hierarchical control architecture 
has been successfully applied to formation control of 
mobile robots (e.g., Mehrjerdi et al., 2011; Kwon and 
Chwa, 2012), large-scale systems (Sadati and 
Ramezani, 2010), manipulators (Goulet, 2001), etc. 
Generally speaking, hierarchical structure is suitable 
for the control of interconnected dynamic systems 
whose behaviors are affected by the dynamics among 
its various subsystems. Furthermore, the subsystems at 
both the upper and lower levels can work concurrently. 
On the basis of these characteristics, hierarchical 
architecture is utilized to achieve the path-tracking of 
mobile robots under prescribed trajectories. To the 
best of our knowledge, DFSMC with hierarchical 
control structure never been applied to the problem of 
path tracking of mobile robots in the presence of 
uncertainties and frictions. In this paper, the upper 
level generates a virtual reference input via NPC to 
attain the path-tracking of the DDMR. Then, the lower 
level reaches the velocity control through DFSMC 
based on the virtual reference input generated by the 
upper level. Certainly, control of the upper level 
affects the stability and performance of the lower level. 
Finally, each subsystem must be examined 
individually for the stability of the closed-loop system 
(e.g. Qian et al., 2008; Drakunov and Reyhanoglu, 
2010; Darvishzadeh et al., 2012; Wang et al., 2007).  

Motivated by the work described above, 
hierarchical decentralized fuzzy sliding-mode control 
laws (HDFSMC) for the path-tracking control of a 
DDMR in the presence of uncertainties, saturated 
input, and external disturbance are developed here. 
The proposed closed-loop control system includes 
both the kinematic and dynamic models of the DDMR. 
Based on the system characteristics and task, the direct 
and indirect states and outputs are first separated. The 
indirect outputs (and states) include translational and 
rotational velocities of the DDMR; the direct outputs 
(or states) are the 2D position coordinates, and 
orientation. Moreover, the path-tracking problem for a 

DDMR can be viewed as tracking a virtual reference 
DDMR. According to the planned task, the indirect 
reference input is designed via an NPC so that direct 
tracking error converges asymptotically to zero. 
Subsequently, the sliding surface using the indirect 
tracking error is employed to construct the DFSMC 
such that under appropriate conditions the asymptotic 
tracking of indirect output is achieved. Finally, the 
asymptotic tracking of both direct and indirect outputs 
is achieved. In short, the contributions of this study are 
summarized as follows: (i) the concept of virtual 
reference DDMR is integrated such that the desired 
velocity input asymptotically tracks the planned 
trajectory; (ii) the proposed controllers with a 
hierarchical structure are respectively designed based 
on the kinematic and dynamic models; (iii) the 
proposed control technique scheme (i.e., HDFSMC) 
has excess robustness to deal with uncertainties, 
saturated input, and sudden external disturbances; (iv) 
the stability and performance of the closed-loop 
system are verified via the Lyapunov stability criterion. 

The paper is organized as follows. In the next 
section, system description and problem statement are 
given. In section III, path-tracking, the virtual 
reference input and sliding surface are designed. The 
controller development of DFSMC is constructed in 
section IV. Simulation results and corresponding 
discussions are given in section V. Finally, the 
conclusions are drawn in section VI.  

 
SYSTEM DESCRIPTION AND 

PROBLEM STATEMENT 
 
System Description 

Assume to be of the unicycle type, the kinematic 
model of a DDMR shown in Figure 1 under 
nonholonomic constraints (i.e., rolling without 
slipping) is expressed as follows: 

     
( ) ( ) cos( )
( ) ( )sin( )

( ) ( )

w w w

w w w

w w

x t v t
y t v t

t t

θ
θ

θ ω

=

=

=







                   (1) 

where the triple ( )( ), ( ), ( )w w wx t y t tθ denotes the 
position and heading angle of the vehicle with respect 
to two-dimensional world coordinate w wX Y− , and 

( ) and ( )w wv t tω are the linear and angular velocities 
of the DDMR with respect to world coordinate. 
Moreover, through Euler-Lagrange formulation the 
dynamic model of a DDMR is expressed as follows 
(Fierro and Lewis, 1997, 1998): 
   ( ) ( ) ( ) ( ),R L R f RA t B t t K tτΩ + Ω = − Ω         (2) 
   ( ) ( ) ( ) ( ),R L L f LB t A t t K tτΩ + Ω = − Ω            (3) 

where ( )2 2 2
04

gcA Mr I r L I= + +  and 

( )2 2 24 ;
gcB Mr I r L= −  and 

gcM I are respectively 

the mass and the moment of inertia of the entire 
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vehicle considering point gc ; 0I  is the moment of 

inertia of the rotor/wheel system;  and L r are 
respectively the distance between left wheel and right 
wheel, and the radius of the wheel; ( ) and ( )R Lt tτ τ
are the right and left actuation torques; and fK  is the 
viscous friction constant. Furthermore, the relation 
between ( ) and ( )w wv t tω  and ( ) and ( )R Lt tΩ Ω  are 
expressed as follows: 

[ ]( ) ( ) ( ) 2,w R Lv t r t t= Ω +Ω            (4) 

   [ ]( ) ( ) ( ) .w R Lt r t t Lω = Ω −Ω           (5) 

wX

wY

wθLτ

Rτ

wv

wω

L

r

Active
Wheel

Idle
Wheel

wx

wy gc

 
 

Fig. 1. Schematic description of a DDMR 
 

To express the system (1)~(3) in a matrix form, 
the following states 1( ) ( ),wx t x t=  2 ( ) ( ),wx t y t=

3 ( ) ( ),wx t tθ=  4 ( ) ( )Rx t t= Ω and 5 ( ) ( )Lx t t= Ω  are 
defined. Then, the system in matrix form is given as 
follows: 

1 1( ) ( ) ( ),X t G X V t=  

2 2( ) ( , ) ( , ) ( ),X t F X t G X t U t= +  

[ ]
[ ]

1 1 1 1

2 2 2 2

( ) ( ) ( ) ,

( ) ( ) ( )

Y t H X t X t

Y t H X t X t

= + ∆

= + ∆
           (6) 

where [ ]1 1 2 3( ) ( ) ( ) ( )TX t x t x t x t=  and 

[ ]2 4 5( ) ( ) ( )TX t x t x t=  are the position and velocity 
states, respectively; the state 

5
1 2( ) ( ) ( ) ;

TT TX t X t X t = ∈ℜ   

11 12 13

3
1 1 1 1( ) ( ) ( ) ( )

T
Y t y t y t y t = ∈ℜ  is denoted as 

the direct position output; 

11 12

2
2 2 2( ) ( ) ( )

T
Y t y t y t = ∈ℜ  stands for the indirect 

velocity output; [ ] 2( ) ( ) ( ) T
w wV t v t tω= ∈ℜ is the 

virtual velocity input,

[ ] [ ] 2
1 2( ) ( ) ( ) ( ) ( )T T

R LU t u t u t t tτ τ= = ∈ℜ  is the 

control input; and 3 3
1H ×∈ℜ and 2 2

2H ×∈ℜ are the 
output gain matrices; 

[ ] 3 1
1 1 2 3( ) ( ) ( ) ( )TX t x t x t x t ×∆ = ∆ ∆ ∆ ∈ℜ and 

[ ] 2 1
2 4 5( ) ( ) ( )TX t x t x t ×∆ = ∆ ∆ ∈ℜ are the 

measurement noises. It is assumed that 
1 1 2 2( ) ( ) , ( ) ( ) .X t X t X t X t t∆ < ∆ < ∀  
The corresponding nominal and uncertain vector 

functions are described as follows: 

   ( , ) ( ) ( , )
( , ) ( ) ( , ), 1, 2.i i i

F X t F X F X t
G X t G X G X t i

= + ∆
= + ∆ =

    (7a) 

where the normal system vector functions are 
expressed as follows: 

     1 2( ) ( ) ( ) ,
T

F X f X f X =    

( ) ( )
( ) ( )

2 2
1 4 5

2 2
2 4 5

( ) ( ) ( ) ,

( ) ( ) ( ) ;
f f

f f

f X AK x t BK x t A B
f X BK x t AK x t A B

= − + −

= − −
 

1

cos 0
( ) sin 0 ,

0 1

w

wG X
θ
θ

 
 =  
  

   

( ) ( )
( ) ( )

2 2 2 2

2 2 2 2 2
.

A A B B A B
G

B A B A A B

 − − −
 =  − − −  

  (7b) 

The uncertain system functions are defined as follows: 
[ ]1 2( , ) ( , ) ( , ) ,TF X t f X t f X t∆ = ∆ ∆  

11 12

21 22

31 32

1 1

1 1 1

1 1

( , ) ( , )

( , ) ( , ) ( , ) ,

( , ) ( , )

g X t g X t

G X t g X t g X t

g X t g X t

 ∆ ∆
 

∆ = ∆ ∆ 
 
∆ ∆  

 

11 12

21 22

2 2
2

2 2

( , ) ( , )
( , ) .

( , ) ( , )

g X t g X t
G X t

g X t g X t

∆ ∆ 
∆ =  

∆ ∆  
 (7c) 

In addition, the output gain matrices are given as 
follows: 

1 3 2
2 2

, .
r r

H I H
r L r L
 

= =  − 
          (8a) 

The nominal system outputs are as follows: 

    [ ]
[ ]

1

2

( ) ( ) ( ) ( ) ,
( ) ( ) ( ) .

T
w w w

T
w w

Y t x t y t t
Y t v t t

θ
ω

=
=

        (8b) 

The first line of (6) with uncertainty can be written as 
follows: 

 ( ) ( ) ( ) ( ) ( , )X t A X B X U t C X t= + +      (8c) 

where 5( )A X ∈ℜ  and 5 2( )B X ×∈ℜ  denote the 

nominal system; [ ] 2( ) ( ) ( ) T
R LU t t tτ τ= ∈ℜ is the 

control torque; 5( , )C X t ∈ℜ denotes the nonlinear 
time-varying uncertainties caused by parameter 
variations, e.g., ( , )if X t∆ and ( , )iG X t∆ for 1, 2,i =
saturated input, and external disturbance. The system 
(8c) is employed to design the DFSMC. 
Remark 1: The uncertain control gain matrix, i.e., 

( , ), 1, 2.iG X t i∆ = can be considered as input 
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disturbances, e.g., dead-zone, backlash and hysteresis, 
or external disturbance. In this paper, the states, i.e., 

( ),X t are assumed to be available. The outputs are 
chosen from the corresponding states. Hence, the 
measurement noise affects to the state not the output. 
This is the reason for the description of the 2nd line of 
(6). Furthermore, unknown friction is considered as 
uncertainties shown in the first line of (7c). 
 
Problem Statement 

Before discussing the problem statement, 
tracking errors are defined as follows: 

    ( ) ( ) ( ),  1, 2.i i iE t R t Y t i= − =            (9) 
The objective is to design the control input for the 
DDMR system (1)~(5) or (6)~(8) such that the system 
output 1( )Y t  tracks a reference input 

[ ]1( ) ( ) ( ) ( ) T
r r rR t x t y t tθ= and 2 ( )Y t  also tracks 

the virtual reference input [ ]2 ( ) ( ) ( ) T
r rR t v t tω=  

(refer to Figure 2). At the beginning, the virtual 
reference input 2 ( )R t  is designed by a nonlinear 
position control such that the system output of velocity 

2 ( )Y t asymptotically drives the system output of 
position 1( )Y t  to converge to the reference input 

1( )R t  as close as possible. Due to the existence of 
uncertainties, saturated input, and external disturbance, 
the decentralized fuzzy sliding mode control 
(DFSMC), i.e., ( ),U t is also designed such that under 
suitable conditions the system output of position 

1( )Y t  asymptotically tracks the virtual reference input 

1( ).R t  In summary, the approach of 2 ( )Y t  to 2 ( )R t  
makes the output 1( )Y t  approach 1( ).R t  Finally, the 
simulations for the system in the presence of 
uncertainties is applied to evaluate the effectiveness 
and robustness of the proposed control. 
 

Kinematics of 
DDMR (1)

Dynamics of 
DDMR (2)~(5)

1X

1X∆

+

+

U
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 1
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( )d dt⋅
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1

2

s
s
 
 
 




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2

s
s
 
 
 

−

+

HDFSMC DDMR in the Presence of 
Uncertainties and Fictions

pT
1Y

2X+

+
2H

1H

2X∆

Sliding 
Surfaces

 (14), (15)

dt∫

Nonlinear Position 
Control (12), (13)

−

1R
2E

pE

2Y

2R

Kinematics of 
virtual reference 

DDMR

rv rω

 
Figure 2. Control block diagram of the overall 

DDMR system. 
 

PATH-TRACKING, VIRTUAL 
REFERENCE INPUT AND SLIDING 

SURFACES 
 

The path-tracking problem for a DDMR is 
equivalent to the path-tracking problem of the virtual 
reference input (Kanayama, 1990; Egerstedt, 2010). 
The tracking position error between the virtual 
reference DDMR and the actual DDMR with respect 
to the world frame is expressed as follows (cf. Figure 
3): 

     

1

2 1

3

( )
( ) ( ) ( )

( )

cos sin 0 ( )
sin cos 0 ( )

0 0 1 ( )

p p

w w x

w w y

e t
E t e t T E t

e t

e t
e t

e tθ

θ θ
θ θ

 
 = = 
  

  
  = −   
     

   (10) 

where 1( ) ( ) ( ) ( )
T

x yE t e t e t e tθ =    is denoted as 

the path-tracking error of the DDMR, and pT  is the 
transformation matrix between the virtual reference 
DDMR and the actual DDMR. Hence, time derivative 
of the position error (10) with the relations 

( ) ( ) cos( ),r r rx t v t θ=  ( ) ( )sin( )r r ry t v t θ=  and

( ) ( )r rt tθ ω= can be obtained as follows: 

  
1 2 3
2 1 3
3

( ) ( ) ( ) ( ) cos ( ) ( )
( ) ( ) ( ) ( )sin ( )
( ) ( ) ( )

w r w
w r

r w

e t t e t v t e t v t
e t t e t v t e t
e t t t

ω
ω

ω ω

= + −
= − +
= −





  (11) 

where ( )rv t  and ( )r tω  are linear and angular 
velocities of the virtual reference DDMR that are 
assumed to be bounded and have bounded derivatives. 
If we consider only the kinematic model (1) with a 
velocity input, the kinematic model is asymptotically 
stable with respect to a virtual reference trajectory. 
Based on Lyapunov stability theory, a velocity control 
input (i.e., virtual reference input 2 ( )R t in Figure 3) is 
designed as follows. 

wY

wy

ry

wX

wθ

wv

wω

wx

rθ

rx

rv

rω

Reference Path

DDMR

Virtual DDMR

 
Figure 3. Path-tracking of a virtual reference DDMR 
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Lemma 1: The virtual reference input 

[ ]2 ( ) ( ) ( ) T
w wR t v t tω= is designed as follows:  

3 1 1( ) ( ) cos ( ) ( )w rv t v t e t e tγ= +            (12)
2

2 2 2 3( ) ( ) ( ) ( ) ( )sin ( )w r rt t v t e t e t e tω ω γ= + + (13) 
where 1 2 and γ γ  are positive constants which are 
related to the system performance. Then, 1 2( ),  ( )e t e t
and 3( ) 0,e t →  as .t →∞  
Proof: See Appendix A. 

Then, a decentralized fuzzy sliding-mode 
controller (DFSMC) is designed and discussed so that 
virtual reference input 2 ( )R t  is tracked by 2 ( )Y t  as 
shown in the next section. However, before discussing 
the DFSMC, the sliding surfaces are defined as 
follows: 

  
1 11( ) ( ) ( )p v i vs t k e t k e t dt= + ∫           (14) 

2 22 ( ) ( ) ( )p is t k e t k e t dtω ω= + ∫          (15) 

where ( ) ( ) ( )v r we t v t v t= −  and 
( ) ( ) ( ),r we t t tω ω ω= −  

1 2 1 2
,  ,   and 0p p i ik k k k >  are 

assigned such that sliding surfaces 1 2( ) and ( )s t s t are 
stable. 
Then, the derivatives of these two sliding surfaces are 
expressed as follows: 

( )

1 1

1

1

1

4 5 41 51 1

42 52 2 4 5

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( , ) ( , )2

( )                                                              6 1 

p v i v

p r

i v

s t k e t k e t

a X a X b b

a

u trk v t
b b u t c X t c X t

k e t

= +

 + + +  
= −  + + + +  
+

 



                     

( )

2 2

2

2

2

4 5 41 51 1

42 52 2 4 5

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( , ) ( , )

( )                                                               6 1

p w i w

p r

i w b

s t k e t k e t

a X a X b b u trk t
b b u t c X t c X tL

k e t

ω

= +

 − + −  
= −  + − + −  
+

 



 
The following property about “uniform ultimate 

boundedness (UUB)” is given: 
Definition 1 (Khalil, 1996): The solutions of a 
dynamic system are said to be UUB if there exist 
positive constants  and ,υ κ  and for every 

( )0,δ κ∈  there is a positive constant ( ),T T δ=  

such that 0( ) ( ) ,x t x tδ υ< ⇒ ≤ 0 .t t T∀ ≥ +  
Remark 2: In this paper, 1 2( ) and ( )s t s t  are 
respectively substituted by

( ) ( )1 1 1( ) ( 1)s s ss t s kT s k T T = − −   and 

( ) ( )2 2 2( ) ( 1) ,s s ss t s kT s k T T = − −  where sT  
denotes the sampling time. In general, the smaller the 
sampling time sT  is, the more accurate these time 

derivatives are. The approximation error between 
them is regarded as part of the uncertainties. 
 

FUZZY SLIDING MODE CONTROL 
 

Using fuzzy logic systems for control 
applications has many advantages e.g., flexible, 
model-free and excess robustness, etc. One important 
contribution of fuzzy systems theory is to provide a 
systematic procedure for transforming a set of 
linguistic rules into a nonlinear mapping. The fuzzy 
logic subsystem i for the DFSMC in Figure 4 performs 
a mapping from 2  to .iX ∈ℜ ℜ  There are l fuzzy 
control rules and the upper script k denotes the kth 
fuzzy rule: 
IF ( )is t  is 1i

kF  and ( )is t  is 2 ,
i

kF THEN ( )iu t is k
iG  

                                       (17) 

where 2( ) ( ) ( ) ,
T

i i i ix t s t s t X = ∈ ⊂ ℜ 
  with 

( ) ( ),
ii s is t g s t=  ( ) ( ),

ii s is t g s t= 
   and ( )i iu t V∈ ⊂ ℜ

are the input and output of the fuzzy logic subsystem 
i, respectively; (1 , 2,1 )

i

k
jF i j k l≤ ≤ ≤ ≤ and k

iG  are 

labels of sets in iX  and ,iV  respectively. The 
parameters 

isg  and 
isg   are chosen such that 

[ ]( ) and ( ) 1,1 .i is t s t ∈ −  The fuzzy inference engine 

performs a mapping from fuzzy sets in 2
iX ⊂ ℜ  to 

fuzzy sets in iV ⊂ ℜ , based on the fuzzy IF-THEN 
rules in the fuzzy rule base and the compositional rule 
of inference. Let 

ixA  be an arbitrary fuzzy set in 

.iX  The fuzzifier maps a crisp point ( )iX t  into a 
fuzzy set 

ixA  in .iX  The center-average 

defuzzifier maps a fuzzy set in iV  to a crisp point in 
.iV  

The output of the DFSMC is then designed as 
follows: 

[ ] 1 2

( ) ( )
( ) ( )sgn( ) sgn( ( , )),  1, 2.

i

i

i u i

u i i i i

u t g u t
g s t t s b s s i

=
= + ∆ =

                                       (18) 
where ( )iu t is the fuzzy variable of ( )u t  and 

( ) 0,  1, 2 .i t i t∆ > = ∀  Also 

( ) ( )
1 21 1 2 1 41 51 2 41 51( , ) 2 ,p pb s s s k r b b s k r b b L= + + −

( ) ( )
1 22 1 2 1 42 52 2 42 52( , ) 2 .p pb s s s k r b b s k r b b L= + + −  

Moreover, it is assumed that the output scaling factors 
satisfy the following inequalities: 

     1

2

1 1 1 1 2 1

2 2 2 1 2 2

( , ) ( , ) ( ) ,
( , ) ( , ) ( ) .

u

u

g h X t b s s t
g h X t b s s t

l
l

澺澺? D蕫錵 錵
澺澺? D蕫錵 錵

%
%    (19) 
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where   
( )

1

1

1 4 5 4 5( , ) ( ) ( ) ( ) ( , ) ( , ) 2

( ),                                                                              ( )20
p r

i v

h X t k v t r a X a X c X t c X t

k e t

 ≥ − + + + 
+



( )
2

2

2 4 5 4 5( , ) ( ) ( ) ( ) ( , ) ( , )

( ).                                                                               ( )21
p r

i w

h X t k t r a X a X c X t c X t L

k e t

ω ≥ − − + − 
+


 

The following theorem discusses the properties 
of the DFSMC. 
Theorem 1: Consider the DDMR system (6) with the 
known upper bounds (19) together with inequalities 
(20) and (21). Applying (18) to the system (6), gives 
the finite time to reach the sliding surfaces (14) and 
(15), and leads to the asymptotical tracking stability. 
Proof: See the Appendix B. 
Corollary 1: If the inequalities (19), (20) and (21) are 
satisfied outside of the following convex set: 
     { }( ) ( ) , 1, 2

ii i sD s t s t d i= ≤ =           (22) 

where 
isd  are positive constants dependent on the 

upper bound of uncertainty, then the operating point 
reaches a convex set (22) in a finite time and 
{ }( ), ( ) , 1, 2,i is t u t i =  are UUB. 

The corresponding three scaling factors (or 
control parameters) ,   and 

i i is s ug g g are discussed as 
follows. Inequality (19) implies that the output scaling 
factor should be greater than the upper bound of the 
system gains, control gains, and uncertainty. In the 
beginning, the scaling factor is chosen from a suitable 
small set of values. A larger value is then applied to 
improve the system performance based on the system 
response. When a larger output scaling factor is chosen, 
smaller tracking error is achieved. Moreover, transient 
(or unstable) response may occur due to the constraints 
on the rate of the control input. It is worth noting that 
oscillatory response often occurs after transient period.  

 Based on the input-output data, it is assumed 
that ( )is t  increases as ( ) ( )

ii u iu t g u t=  decreases, 

and if ( ) 0is t >  then increasing ( )iu t  will result in 
decreasing ( ) ( )i is t s t  and if ( ) 0is t <  then 
decreasing ( )iu t  will result in decreasing ( ) ( ).i is t s t  
That is, the control input ( )iu t  is designed in an 
attempt to satisfy the inequality ( ) ( ) 0, 1, 2,i is t s t i< =

which results in decrease of Lyapunov function 
2 2

1
( ) ( ) 2,ii

V t s t
=

=∑  i.e., ( ) 0.V t <   

The fuzzy variables ( ) ( )
ii s is t g s t=  and 

( ) ( ), 1, 2
ii s is t g s t i= =

  are quantized into the following 

eleven qualitative fuzzy variables (i.e., 11l = ): (i) 
Positive Huge (PH), (ii) Positive Big (PB), (iii) 
Positive Medium (PM), (iv) Positive Small (PS), 
(v)Positive Infinitesimal (PI), (vi)Zero (ZE), (vii) 
Negative Infinitesimal (NI), (viii) Negative Small 
(NS), (ix) Negative Medium (NM), (x) Negative Big 

(NB), and (xi) Negative Huge (NH). It is not necessary 
that all eleven fuzzy rules are selected. A smaller 
fuzzy rule set (e.g., 7l = ) may lead to acceptable 
performance (e.g., Hwang, 2007). There are many 
types of membership functions, some of which are bell 
shaped, trapezoidal shaped, and triangular shaped, etc. 
The triangular type in Figure 5 is used in this paper. In 
summary, the linguistic rule of the ith DFSMC is 
shown in Table 1 by which the center of gravity 
method is employed to form a look-up Table 2 that 
directly relates the inputs ( ) and ( )i is t s t to the output 

( ).iu t  The control actions of the diagonal terms in 
Table 1 are ZE. This arrangement is similar to a 
sliding-mode controller that has a sliding surface. In 
addition, the control actions of the upper triangle 
terms are from NI to NH, and those of the lower 
triangle terms are from PI to PH; therefore, it is skew-
symmetric. 

Inference 
Engine Defuzzifier

Rule Base

× ×× iuiug
iu

isg

isg 

is

is

is

is

Fuzzifier

 
Figure 4. Basic configuration of the ith fuzzy logic 

system 
 

   
 

Figure 5. Membership functions with triangular type 
 

Finally, the proposed HDFSMC is summarized as 
follows: 
Step 1: Obtain the nominal model of a DDMR with 
kinematic constraint through Euler-Lagrange 
formulation, i.e., ( )F X and ( ), 1, 2.iG X i =  
Step 2: Assign the linear and angular velocity of a 
virtual reference DDMR (i.e., ( ) and ( )r rv t tω ) and 
then determine the direct reference input 1( )R t . 
Step 3: Design the indirect reference input 2 ( )R t  (i.e.,

( ) and ( )w wv t tω ) with proper control parameters 1γ  
and 2γ  by NPC from the error dynamics between 
virtual reference DDMR and actual DDMR.  
Step 4: Assign the appropriate coefficients 

1 2 1 2
,  ,   and p p i ik k k k  of the sliding surfaces (14) and 

(15). Then, select two input scaling factors (i.e.,
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1 2
and s sg g ) such that values of the sliding surfaces are 

located in[-1,1].  
Step 5: Obtain the difference between the sliding 
surface values to substitute in the derivative of the 
sliding surface. Also, assign two suitable input scaling 
factors (i.e.,

1 2
and s sg g  ) such that the values are located 

between -1 and 1. 
Step 6: Establish appropriate Look-up table as in Table 
2 based on l fuzzy control rules of (17). 
Step 7: Properly select output scaling factors 

1 2
and u ug g which meet inequality (19)~(21) for the 

upper bound of the system gains. 
Step 8: Go back to Step 3 and Step 4 to tune the control 
parameters again if performance is not acceptable.  

Table 1. Rule table of the ith DFSMC. 
     

                                     

 
PH PB PM PS PI ZE NI NS NM NB NH 

NH ZE NI NS NM NM NB NB NB NH NH NH 
NB PI ZE NI NS NM NM NB NB NB NH NH 
NM PS PI ZE NI NS NM NM NB NB NB NH 
NS PM PS PI ZE NI NS NM NM NB NB NB 
NI PM PM PS PI ZE NI NS NM NM NB NB 
ZE PB PM PM PS PI ZE NI NS NM NM NB 
PI PB PB PM PM PS PI ZE NI NS NM NM 
PS PB PB PB PM PM PS PI ZE NI NS NM 
PM PH PB PB PB PM PM PS PI ZE NI NS 
PB PH PH PB PB PB PM PM PS PI ZE NI 
PH PH PH PH PB PB PB PM PM PS PI ZE 

 
Table 2. Look-up table of the ith DFSMC. 

 
SIMULATIONS AND DISCUSSIONS 

 
To evaluating the performance of the proposed 

control, the simulations for a planned trajectory 
tracking of a DDMR are performed. First, 

( ) 0.8 srv t m= and ( ) 0.8cos( ) sr t t radω =  are 
selected so that a planned trajectory 1( )R t  is 
generated for the virtual reference DDMR. 
Furthermore, the initial position and heading angle of 
the virtual DDMR and actual DDMR are chosen as 

{ }0.5, 2.5, 3π−  and { }1, 2,0 ,− −  respectively. The 
system and suitable control parameters are given in 
Table 3. Direct output of position 1( ),Y t  indirect 
output of velocity 2 ( )Y t  and the corresponding 
responses in the absence of uncertainties are shown in 
Figure 6. From these responses, it is clear that the 
proposed control leads to excellent performances. 
Furthermore, Figure 7 shows the corresponding 
responses of the DDMR system with uncertainties 
presented in the system. In the simulations, the 
following multiplicative form of uncertainties for the 
system functions and the additive form for the 
measurement noises are considered to verify the 
robustness of the proposed controller.  

[ ]1 1 1 2( , ) ( ) 0.02cos(10 )sin(4 ) 0.06sin(20 ) 0.5sin(100 )f X t f X t x x t∆ = − +

[ ]2 2 2 4( , ) ( ) 0.04 sin(2 ) 0.3sin(50 )f X t f X x t tx∆ = − +  

3

1 1 2

0.02 sin( ) 0.4cos(80 ) 0
( , ) ( ) 0.2cos(5 ) 0

0 0.02sin(100 )

x t t
G X t G X tx

t

− 
 ∆ = − 
  

3
2 2

4 5

0.02cos(10 ) 0.06sin(20 ) 0.5sin(100 ) 0
( , ) ( )

0 0.04 sin(0.1 ) 0.3cos(50 )
t x t

G X t G X
x t tx

− + 
∆ =  − + 

[ ]1 5 2 5 2( ) 0.08cos(5 )sin(20 ) 0.04cos(5 )sin(10 ) 0.04cos(5 )sin(80 ) TX t x t x x x t∆ = −

2 5 4 5( ) [0.1cos(10 )sin(5 ) 0.06sin(5 )cos(10 )] .TX t tx x t x∆ = −
                                       (23) 
It is shown that the HDFSMC exhibits good level of 
robustness in spite of the relatively large uncertainties 
(refer to each last part of the multiplicative form). The 
responses for larger uncertainties are similar to that in 
Figure 7, however, for brevity, they are omitted. 
Furthermore, for practical consideration, the response 
for the saturated control inputs ( )R tτ  and ( )L tτ  of 
5 Nm is presented in Figure 8, which is still 
satisfactory. To further investigate the robustness of 
the proposed control scheme, sudden torques of 3 Nm 
are injected into the right and left wheels for a period 
of 0.5 seconds at 3st =  and 8st =  (i.e., the 
durations 3~3.5 and 8~8.5s). Under the same 
conditions described in Figure 8, the corresponding 
response is shown in Figure 9. It can be clearly seen 
that the responses of the path-tracking are still 
satisfactory which proves the robust performance of 
the proposed control scheme. 
 

Table 3. System and control parameters. 
Symbol Description Value 

M  Mass of the entire 
vehicle considering 

point gc  

10 kg  

gcI  Moment of Inertial of 
the entire vehicle 

considering point gc  

21 kgm  

L  Distance between left 0.35 m  

is

is

  

 
1.0 0.8 0.6 0.5 0.2 0 -0.2 -0.5 -0.6 -0.8 -1.0 

-1.0 0.0 -0.05 -0.2 -0.5 -0.7 -0.8 -0.9 -0.95 -1.0 -1.0 -1.0 
-0.8 0.05 0.0 -0.05 -0.2 -0.5 -0.7 -0.8 -0.9 -0.95 -1.0 -1.0 
-0.6 0.2 0.05 0.0 -0.05 -0.2 -0.5 -0.7 -0.8 -0.9 -0.95 -1.0 
-0.5 0.5 0.2 0.05 0.0 -0.05 -0.2 -0.5 -0.7 -0.8 -0.9 -0.95 
-0.2 0.7 0.5 0.2 0.05 0.0 -0.05 -0.2 -0.5 -0.7 -0.8 -0.9 

0 0.8 0.7 0.5 0.2 0.05 0.0 -0.05 -0.2 -0.5 -0.7 -0.8 
0.2 0.9 0.8 0.7 0.5 0.2 0.05 0.0 -0.05 -0.2 -0.5 -0.7 
0.5 0.95 0.9 0.8 0.7 0.5 0.2 0.05 0.0 -0.05 -0.2 -0.5 
0.6 1.0 0.95 0.9 0.8 0.7 0.5 0.2 0.05 0.0 -0.05 -0.2 
0.8 1.0 1.0 0.95 0.9 0.8 0.7 0.5 0.2 0.05 0.0 -0.05 
1.0 1.0 1.0 1.0 0.95 0.9 0.8 0.7 0.5 0.2 0.05 0.0 

is

is
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wheel and right wheel 
r  Radius of Wheels 0.035 m  
0I  Moment of Inertial of 

rotor/wheel system 
20.001 kgm  

fK  Viscous friction 
constant. 

0.0072
secNm rad⋅  

1 2,γ γ  Control parameters 2,10 

1 2
,p pk k
 

Proportional Gains 1,2 100,100 

1 2
,i ik k  Integration Gains 1,2 2.1,10.2 

1 2
,s sg g  Input scaling factors 0.001,0.001 

1 2
,s sg g   Input scaling factors 0.02,0.02 

1 2
,u ug g
 

Output scaling factors 20,20 
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        (b) ( )( ) and ( )(  ).w rt tθ θ− − −  

            (c) 1 2( )( ) and ( )(  ).s t s t− − −  
 

 
    (d) ( )(  ) and ( )( ).r wv t v t− − −  
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 (f) ( )( ) and ( )(  ).R Lt tτ τ− − −  

Figure 6. Responses of the path tracking for a DDMR 
in the absence of uncertainties. 
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     (f) ( )( ) and ( )(  ).R Lt tτ τ− − −  

Figure 7. Responses of the path tracking for a DDMR 
in the presence of uncertainties (23). 
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(f) ( )( ) and ( )(  ).R Lt tτ τ− − −  

Figure 8. Responses of the path tracking for a DDMR 
in the presence of uncertainties (23) and under the 

saturated control inputs 5Nm. 
 

  
      (a) ( ( ), ( ))( ) and ( ( ), ( ))(  ).w w r rx t y t x t y t− − −  
     

 
      (b) ( )( ) and ( )(  ).w rt tθ θ− − −  

 
(c) ( )( ) and ( )(  ).R Lt tτ τ− − −  

Figure 9. Responses of the path tracking for a DDMR 
in the presence of uncertainties (23), saturated control 

inputs 5Nm, and the sudden torques 3 Nm during 
3 ~ 3.5st =  and 8 ~ 8.5s.t =  

 
From the simulation results shown in Figures 6, 

7, 8 and 9, the following important observations are 
drawn. (i) Despite the absence (or presence) of 
uncertainties, saturated control input or sudden 
external disturbances, the proposed control technique 
leads to good path-tracking (cf. Figures 6(a), 7(a), 8(a) 
and 9(a)). (ii) The robustness of the proposed control 
is validated with different operating conditions (e.g., 
multiplicative and additive forms of uncertainties, 
saturated control input, and sudden external 
disturbances). (iii) To deal with these adverse effects, 
the larger output scaling factor (i.e.,

1ug and
2ug ) and 

the control parameters (i.e., 1 2 and γ γ ) are suggested 
to improve the system performance. Although 
saturation may occur in control input, reasonable 
amplitudes of the saturated input still lead to 
satisfactory performance. (iv) Even though linear and 
angular velocities are not perfectly tracked when the 
DDMR is subjected to all kinds of uncertainties, 
saturated input, and external disturbances (cf. Figures 
7(d), 7(e), 8(d), 8(e)), the proposed control still 
possesses good path tracking ability and satisfactory 
performance. (v)To cope with the larger uncertainties, 
saturated input or external disturbances, a fuzzy or 
neural-network model is suggested for the on-line 
compensation. However, this will lead to an increase 
in the corresponding computation load. 
 

C ONCLUSIONS 
 

An HDFSMC for path-tracking of a DDMR in the 
presence of uncertainties and friction is developed. 
This problem can be formulated as a virtual reference 
DDMR to be tracked. Based on the assigned task, 
direct reference input 1( )R t  is first planned and 
tracked by a NPC so that direct output of position 
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1( )Y t  can be followed. Then the indirect reference 
input 2 ( )R t  is derived by Lyapunov stability theory 
such that the direct output of position will force the 
indirect output of velocity to the indirect reference 
input. Subsequently, the sliding surface using linear 
dynamics of indirect tracking errors is constructed for 
the design of the DFSMC. The DFSMC will make the 
indirect output of velocity 2 ( )Y t  track the indirect 
reference input 2 ( ).R t  Furthermore, the stability of 
the closed-loop system is assured via Lyapunov 
stability criteria. Finally, the level of robustness and 
effectiveness of the proposed hierarchical control 
architecture (i.e., HDFSMC) is verified through 
computer simulations that demonstrate satisfactory 
performances in spite of the presence of uncertainties, 
saturated control inputs, and external disturbances. 

 
REFERENCES 

 
Yue, M., Hu, P. and Sun, W., ‘Path following of a class 

of non-holonomic mobile with underactuated 
vehicle body,’ IET Control Theory and 
Applications, Vol. 4, No. 10, pp. 1898–1904 
(2010). 

Huang, J.T., ‘Adaptive tracking control of high-order 
nonholonomic mobile robot systems,’ IET 
Control Theory and Application, Vol. 3, No. 6, 
pp. 681–690 (2009). 

Kim, K.B. and Kim, B.K., ‘Minimum-Time Trajectory 
for Three-Wheeled Omnidirectional Mobile 
Robots Following a Bounded Curvature Path 
With a Referenced Heading Profile,’ IEEE 
Transactions on Robotics, Vol. 27, No. 4, pp. 
800–808 (2011). 

Rubagotti, M., Della Vedova, M.L. and Ferrara, A., 
‘Time-optimal sliding-mode control of a mobile 
robot in a dynamic environment,’ IET Control 
Theory and Applications, Vol. 5, No. 16, pp. 
1916–1924 (2011). 

Chwa, D., ‘Fuzzy Adaptive Tracking Control of 
Wheeled Mobile Robots With State-Dependent 
Kinematic and Dynamic Disturbances,’ IEEE 
Transactions on Fuzzy Systems, Vol. 20, No. 3, 
pp. 587–593 (2012). 

Chwa, D., ‘Tracking Control of Differential-Drive 
Wheeled Mobile Robots Using a Backstepping-
like Feedback Linearization,’ IEEE Transactions 
on System, Man and Cybernetics part A, Vol. 40, 
No. 6, pp.1285–1295 (2010). 

Hou, Z.G., Zou, A.M., Cheng, L. and Tan, M., 
‘Adaptive Control of an Electrically Driven 
Nonholonomic Mobile Robot via Backstepping 
and Fuzzy Approach,’ IEEE Transactions on 
Control Systems Technology, Vol. 17, No. 4, pp. 
803–815 (2009). 

Fei, J.T. and Ding, H.F., ‘Adaptive sliding mode 
control of dynamic system using RBF neural 

network,’ Nonlinear Dynamics, Vol. 70, No. 2, 
pp. 1563–1573 (2012). 

Wai, R.J. and Muthusamy, R., ‘Fuzzy-Neural-
Network Inherited Sliding-Mode Control for 
Robot Manipulator Including Actuator 
Dynamics,’ IEEE Transactions on Neural 
Networks and Learning Systems, Vol. 24, No. 2, 
pp. 274–287 (2013). 

Hwang, C.L. and Chang, L.J., ‘Trajectory Tracking 
and Obstacle Avoidance of Car-Like Mobile 
Robots in an Intelligent Space Using 2H H∞

Decentralized Control,’ IEEE/ASME 
Transactions on Mechatronics, Vol. 12, No. 3, pp. 
345–352 (2007). 

Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, 
T., ‘A stable tracking control method for an 
autonomous mobile robot,’ In Proceedings of the 
Conference of IEEE ICRA, Cincinnati, USA, 
May 13-18, pp. 384-389 (1990) 

Fierro, R. and Lewis, F.L., ‘Control of a 
Nonholonomic Mobile Robot: Backstepping 
Kinematics into Dynamics using Neural 
Networks,’ Journal of Robotic System, Vol. 14, 
No. 3, pp. 149–163 (1997). 

Mehrjerdi, H., Saad, M. and Ghommam, J., 
‘Hierarchical Fuzzy Cooperative Control and 
Path Following for a Team of Mobile Robots,’ 
IEEE/ASME Transactions on Mechatronics, Vol. 
16, No. 5, pp. 907–917 (2011). 

Kwon, J.W. and Chwa, D., ‘Hierarchical Formation 
Control Based on a Vector Field Method for 
Wheeled Mobile Robots,’ IEEE Transactions on 
Robotics, Vol. 28, No. 6, pp. 1335–1345 (2012). 

Sadati, N. and Ramezani, M.H., ‘Novel interaction 
prediction approach to hierarchical control of 
large-scale systems,’ IET Control Theory and 
Applications, Vol. 4, No. 2, pp. 228–243 (2010). 

Goulet, J.F., De Silva, C.W., Modi, V.J. and Misra, 
A.K., ‘Hierarchical Fuzzy Logic Control of a 
Manipulator With Slewing and Deployable 
Links,’ Journal of Vibration and Control, Vol. 7, 
No. 7, pp. 1049–1086 (2001). 

Qian, D., Yi, J. and Zhao, D., ‘Control of a Class of 
Underactuated Systems with Saturation Using 
Hierarchical Sliding Mode,’ In Proceedings of 
the Conference of IEEE ICRA, Pasadena, CA, 
May 19-23, pp. 2429–2434 (2008). 

Drakunov, S.V. and Reyhanoglu, M., ‘Hierarchical 
sliding mode observers for distributed parameter 
systems,’ Journal of Vibration and Control, Vol. 
17, No. 10, pp. 1441–1453 (2010). 

Darvishzadeh, S., Rahmati, A. and Abrishamifar, A., 
‘Hierarchical sliding mode control of paralleling 
single-phase UPS inverters,’ In Proceedings of 
the 3rd Conference of IEEE PEDSTC. Tehran, 
February pp. 15-16, 164–169 (2012). 

Wang, W., Liu, X.D. and Yi, J.Q., ‘Structure design of 
two types of sliding-mode controllers for a class 
of underactuated mechanical systems,’ IET 



H.-M. Wu and M. Karkoub: Sliding-Mode Control. for Path-Tracking of Differential Driven Mobile. 

-285- 
 

Control Theory and Applications, Vol. 1, No. 1, 
pp. 163–172 (2007). 

Fierro, R. and Lewis, F.L., ‘Control of a nonholonomic 
mobile robot using neural networks,’ IEEE 
Transactions on Neural Networks, Vol. 9, No. 4, 
pp. 389–400 (1998). 

Egerstedt, M., Hu, X., and Stotsky, A., ‘Control of 
mobile platforms using a virtual vehicle 
approach,’ IEEE Transactions on Automatic 
Control, Vol. 46, No. 11, pp. 1777–1782 (2010). 

Khalil, H.K. Nonlinear Systems, Prentice-Hall 2nd Ed. 
(1996) 

Hwang, C.L., Chang, L.J. and Yu, Y.S., ‘Network-
based fuzzy decentralized sliding-mode control 
for car-like mobile robots,’ IEEE Transactions on 
Industrial Electronics, Vol. 54, No. 1, pp. 574-
585 (2007). 

APPENDIXES 
 

Appendix A (The proof of Lemma 1): 
Without ambiguity, the arguments of variable are 

omitted. At beginning, the following Lyapunov 
function ( ) ( )2 2

1 1 2 32 1 cos 0V e e e= + + − ≥ is defined. 

Taking its time derivative with the substitution of (11), 
(12) and (13) gives the following result: 

         
1 1 1 2 2 3 3

2 2 2
1 1 2 2 3

sin

sin
0

V e e e e e e

e e eγ γ

= + +

= − −

≤

   

          (A1) 

Consequently, it is concluded 1 2 3,  and e e e  are UUB. 
From (A1) and (11), it implies 

1 2 3 2,  and e e e L L∞∈ ∩  (i.e., bounded and square 
integrable) together with 1 2 3,  and .e e e L∞∈    Using 
Barbalat’s lemma, it is shown 1 2 3,  and e e e  will 
asymptotically converge to zero as .t →∞  

Q.E.D 
Appendix B (The proof of Theorem 1): 

Likewise, the Lyapunov function 

( )2 2
2 1 22 2 0TV S S s s= = + > 1 2as 0 or 0,s s≠ ≠  is 

defined. Taking its time derivative with substitution of 
(16), (18)-(21) yields the following result: 

1 1

2 2

1

2 1 1 2 2

4 5 41 51 1
1

42 52 2 4 5

4 5 41 51 1
2

42 52 2 4 5

1 1 1 1 2 2 2 2

1 1 1

( )
( )2

( )
( )

p r i v

p r i w

u

V s s s s
a a b b urs k v k e

b b u c c
a a b b urs k k e

b b u c cL
s h b u s h b u
s h b g s

ω

= +
  + + +   = − +   + + + +    
  − + −   + − +   + − + −    

≤ − + −
= −

  





 



( )

1

2 2

2
1 1 1 1

2
2 2 2 2 2 2 2

2 2
1 1 2 2 1 2 22        (B1)

u

u u

s b g
s h b g s s b g

s s s s Vλ λ λ λ

− ∆
+ − − ∆

≤ − + ≤ − + = −



 

where { }1 2min , .λ λ λ= Then, the solution of 

inequality (B1) for the initial time 0t  and the initial 
value 0( )S t  is described as follows: 

( )0 0t t S t λ− ≤                  (B2) 
where t  stands for the time that the operating point 
hits the sliding surfaces (i.e., ( ) 0S t = ), and 0t t−  
denotes the finite time to approach the sliding surface. 
Once the operating point reaches the stable sliding 
surfaces (14) and (15), the tracking error 
asymptotically converges to zero. 
                                      Q.E.D 
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