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ABSTRACT

This paper examines the hydromagnetic
stability of a general viscous fluid film with weakly
nonlinear effects on a rotating vertical cylinder. The
power-law fluid model under an applied uniform
magnetic field is used to provide a mathematical
description instead of the rheology of polymer resist
films. Long-wave perturbation techniques are used to
derive the dimensionless generalized nonlinear
kinematic equation to represent the physical coating
flow. The Ginzburg-Landau equation is applied to
numerically calculate pattern formation and illustrate
necessary threshold conditions of the critical flow
states. The influences of polymer resist films with
hydromagnetic stability are studied in terms of the
Hartmann constant, m, Rossby number, Ro and flow
index, n on weakly nonlinear stability with a small
Reynolds number. Moreover, The enhanced magnetic
effects are found to the material flows as a dilatant
fluid is more stable than a pseudo plastic fluid with
the same coating flow.

INTRODUCTION

Using magnetic fields to stabilize film flows
avoids the need for mechanical or electrical contact
with the fluid, and allows for easy control of the
coating film thickness and other properties. However,
achieving hydromagnetic stability in a coating flow is
subject to a range of possible influences such as
centrifugal forces, magnetohynamic forces, inertia
and viscous film stress. In recent years, considerable
interest has focused on the use of hydromagnetic
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effects in rotating coating processes for a range of
industrial applications (VeeraKrishna, Sravanthi &
ReddyGorla, 2020; Garmroodi, Ahmadpour & Talati,
2019; Jiang, Shen, Xu, Wang & Tian, 2019; Khan,
Islam, Shah, Khan, Bonyah, Jan & Khan, 2017; Perez,
Laroze, Diaz & Mancini, 2014; Singh, 2000).

Linear stability theory can be used to identify
instability in a film flow but cannot be used to predict
disturbances just exceeding the threshold, and weak
nonlinear theory describes the evolution of the most
unstable linear mode. Relatively simple amplitude
evolution equations such as the Ginzburg-Landau
equation (GLE) can be used to analyze the
spatial-temporal dynamics of complex flows. GLE
governs the finite amplitude evolution of instability
waves in a large variety of dissipative systems close
to criticality. Due to its simplicity and completeness,
GLE has been used in numerous investigations of
film flow in weakly stable or instable conditions for
different physical systems (Yildirim, Biswas, Jawad,
Ekici, Alzahrani & Belic, 2020; Kozitskiy, 2020; Xu,
Zou & Huang, 2019; Cipolatti, Dickstein & Puel,
2015; Schewe, 2013).

Several mathematical models have been used to
fit the characteristics of some non-Newtonian fluids
in terms of coating flow (Acrivos, Shah & Petersen,
1960; Burgess & Wilson, 1996; Liu, Chen & Wang,
2009). In general, polymer resist films such as photo
resists, dielectrics and protective coatings show that
viscosity is strongly correlated to the rate of coating
process deformation. Appropriate mathematical
models can be derived from general viscous fluids to
describe the actual film flow characteristics for the
rheology of new materials dependant on the rate of
deformation. The most widely used mathematical
model for general viscous fluids is the power-law
constitutive model (Chhabra & Richardson, 2008),
which is typically used to describe behaviors such as
the material flows of pseudo plastic fluids(n <1) for
shear thinning or as dilatant fluids (n >1)for shear
thickening characteristics. The simplicity of this
model has led to its increased use in experimental and
theoretical analysis (Zou, Hakansson & Cvetkovic,
2020; Mahmood, Bilal, Majeed, Khan & Sherif, 2019;
Sadigh, Paygozar, Silva & VakiliTahami, 2019;
Agassi, 2015).

While most photo resists such as non-Newtonian
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materials show shear thinning, some show shear
thickening due to concentrated suspensions. The
rheological properties of a coating liquid can affect
the nature of the flow and consequently alter the
performance of the coating system. Thickening often
induces flow instability and irreversibility. The
present study presents the hydromagnetic stability of
polymer resist films with weakly nonlinear effects on
a vertical rotating coating process. Several previous
works have examined the stability of cylindrical
rotating systems (Chen, Chen & Yang, 2004; Chen,
Chen & Yang, 2005), and the results of the present
study provide new modeling of multiphysics process
into general viscous fluid films with weakly
nonlinear effects on a rotating vertical cylinder.

The remainder of this paper is organized as
follows. Section 2 presents the generalized nonlinear
kinematic equation of an electrically conductive
polymer resist film flowing on a vertical rotating
coating process under an applied magnetic field.
Section 3 presents the stability analysis for coating
modeling for standard approaches using long-wave
perturbation techniques, the multiple scales method
and the Ginzburg-Landau equation. Section 4
presents several numerical examples to illustrate the
effectiveness of the proposed method.

GENERALIZED MATHEMATICAL
FORMULATION

Consider the axisymmetric flow of an electrically
conductive polymer resist film designated as a power
low model flowing on a vertical rotating coating
process with a constant angular velocity " under
an applied magnetic field. The external uniform
magnetic field is applied perpendicular to the plane of
the vertical cylinder (see Fig. 1).
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Fig. 1 Schematic diagram of a general viscous

magnetic fluid film flow traveling along a rotating
vertical cylinder
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This model entails certain assumptions including:
(1) the film flow is rotationally symmetrical, (2) the
film flow velocity is independent of ¢ and there is
a negligible circumferential flow given a very thin
physical coating flow (h* << r"), And (3) due to the
lack of phase change effects, all associated physical
properties are assumed to be constant (i.e.
time-invariant). A variable with a superscript “*”
represents a dimensional quantity. y* and " are
respectively the velocity components in the cylinder’s
radial direction " and the perpendicular direction

7. For the sake of simplicity, the only applied
magnetic field is B; when the imposed and
induced electric fields are negligible at a
magnetic Reynolds number much less than 1.
The electromagnetic force is o B,w™ (Attia, 1998;

Hayat, Javed & Sajid, 2008). The flow couples the

Navier-Stokes equations and Maxwell’s equations for
the magnetic field on a vertical rotating coating
process. The governing equations of continuity and
motion are as follows (Cheng & Chu, 2009)
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where v* is tangential velocity, p  is constant

fluid density, p*is fluid pressure, g* is acceleration

due to gravity and the individual stress components
are given as (Lin, 2014)
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o =—p 2 ()"
r ()
where n is the flow index of the power law model and

u, is the fluid dynamic viscosity of the polymer
resists. On the surface of the vertical cylinder at

r" =R", and the boundary conditions are treated as
no-slipas  follows
u =0 (8)
w=0 (©)

On the free surface r*"=R" +h", and the

boundary condition approximated by the vanishing of
shear stress is given as

27-1

Toe =T )
(10)

)]’

By solving the balance equation in the direction
normal to the free surface, the resulting normal stress
condition can be expressed as

e AN,
Tpp 8 —Tppr rzxz*(az*) ]
S{‘3 " e (_*)2],3,2_i*[1+(i)2]4,2} (11)
r 0z
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The kinematic condition that ensures the flow
does not travel across a free surface, it follows that

6h* " ah* W* _u* _ 0 (12)
ot oz
where Q" is the local film thickness, S: is the

surface tension and P, is the atmospheric pressure.

By introducing a stream function ¢*, the
dimensional velocity components become

* *

w100 o 109 (13)
r oz r or

The following dimensionless quantities are used to
form the dimensionless governing equations and
boundary conditions

9 p - p, “"hy"
p=—rF » P= e Re, = .
Ughy” puy’ " v,
27h, s
= , - 14
a=T2 5 : B CE)
(2—3n2+3n+2p n+2V 493n—2)m
n n
where hg is the average film thickness, « is the

- - * - - -
dimensionless wave number, v, is the kinematic

viscosity, Re, is the Reynolds number, S’ is the

dimensionless surface tension, m is the Hartmann

number, A is the wavelength, and u; is the scale
of velocity defined as

1 g *1+.9 (15)
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where
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To investigate the effects of angular velocity, (3", on
the coating flow stability, the dimensionless Rossby
number, £, and the Hartmann number, m , are
defined as

ﬂ_Q h * *Zh$2)1/2

m= (
0 p Vn

For these non-dimensional variables, the governing

equations can be expressed as

(19)
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Using the non-dimensional variables, the boundary

conditions at the cylinder surface (r=R) are
reduced to
p=¢, =9, =0 (22)

and the boundary conditions at the free surface of the
cylinder (r=R+h) become
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Hence the term 2SS can be treated as a quantity of
the zeroth order (Lin, 2012; Lin, 2014). We use
long-wave perturbation techniques (Benney, 1974)
by expanding the stream function and flow pressure
in terms of some small wave number (o << 1) as

=@, +ap, +O(a2) (26)

p=p,+ap, +0(a?) 27)

We can obtain the coating film flow conditions by
inserting the above expressions into equations
(20)-(25) and then systematically solving the
resulting equations. The solutions of the zeroth order
and first order equations were obtained and are given
in Appendix A. The zeroth and first order solutions
are inserted into the dimensionless free surface
kinematic equation to yield the following generalized
nonlinear kinematic equation

h, + A(h, +B(h)h,, +C(h)h, , + D()h?

un

where A(h) , B(h), C(h) , D(h)
Appendix B.

E(h) 1 0 (28)

and E(h) are given in

STABILITY ANALYSIS

Some perturbations are unavoidable in any
coating process, thus we study the stability of a
steady state undisturbed liquid film. The thickness of
the dimensionless film can be expressed in terms of
the perturbation variables as

h(t,z) =1+n(t, z), n=0(a) (29)
where 77 is the perturbed quantity of the stationary
coating thickness. The wvalue of h(r,t) is
substituted into generalized nonlinear kinematic
equation (28) and all terms up to order 7° are
collected. The evolution equation of 77 is obtained
as

o+ X'n,+An, +Bn, +Cn,,

X, X A i
=G + )+ (An s n+ B+ -0y, (30)

. C . ‘
+(C '7+7'72)f7m +(D+Dn)y+ (E+En)nm,]+0(r")

where the wvalues of A~E and their
corresponding derivatives are all evaluated in terms
of the dimensionless height of the film h=1.
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Linearized stability analysis

The effect of perturbation on coating flow
instability is of particular interest and the perturbation
behavior can assume various forms. The present
analysis begins with linearized analysis. When the
nonlinear terms of equation (30) are neglected, the
linearized equation is given as

77t + A’]z + B’]zz +C77uzz = o (31)
To use the normal mode analysis, we assume that
n=aexp[i(z-dt)]+c.c. (32)

where a is the small perturbation amplitude, and
c.c. is its complex conjugate counterpart. The
complex wave celerity, d is given as

d=d, +id, = A+i(B-C) (33)

where d, and d; are respectively the linear wave
speed and linear growth rate of the disturbance. The
solution of the disturbance about h(r,t) =1 is
asymptic stability or instability depending on whether
d; <0 or d; >0.

Weak stability effects

To derive the nonlinear behaviors of the thin
film flows, we use the same procedure (Cheng et al.,
2009; Lin, 2012) and apply the multiple scales
method (Krishna & Lin, 1977)
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where & is a small perturbation parameter, slow
scales t, =&t , r =&, the additional time scale

t, = £’t Then, equation (30) becomes
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Equation (37) is solved order by order. After
collecting the order O(¢) and solving for the

equation Ly77, = 0, the solution of 7, is

n, =a(r, —c,,t,t,)expli(r—d,t)]+c.c. (43)
After collecting the orderO(s?)and solving for the
secular equation, the solution of 77, is

n, =ea’exp[2i(r —d t)]+cc. (44)
By plugging both 7, and 7, into the equation of

order O(s?) ,the Ginzburg-Landau equation
(Ginzburg & Landau, 1950) is given as

oa o%a . -

an Dlﬁ—g ’d,a+ (E,+iF)a’a=0 (45)
where

e=e, +ie, = (B ~C +D—E)/(L6C —4B) +iA /(4B ~16C) (46)

D,=B-6C 47
E,=(-5B +17C +4D-10E)e, - A, +(-3B /2+3C /2+D -E) (48)
(49)

F, =(-5B +17C"+4D -10E)e, + Ae, + A" /2
The overhead bar in Eq. (45) represents the complex
conjugate of the same variable. Equation (45) can be
used to assess the weak nonlinear behavior of the
fluid film flow. To solve for Eq. (45), we assume a
filtered wave with no spatial modulation, so the
filtered wave can be expressed as

a = a, exp[-ib(t,)t,] (50)

After substituting Eq. (50) into Eq.(45), we obtain

d
B _ (o7, - Ead)a, (51)
a,
ofb(t,)t

[ étz) o _ Fal (52)

2
The associated wave amplitude &a, in the
supercritical stable region is derived and given as
d

g, = _

o= (63)
Ne =d. +d ()

T Yr i E1 (54)

If E, =0, then Eq. (51) is reduced to a linear

equation. The second term on the right-hand side of
Eq. (51) results from nonlinearity and may moderate
or accelerate the exponential growth of the linear

disturbance according to di and E, . Equation (51)

modifies the perturbed wave speed caused by
infinitesimal disturbances in the nonlinear system.
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The Ginzburg-Landau equation can be used to
characterize various flow states.

NUMERICAL EXAMPLES

To demonstrate the effectiveness of the proposed
mathematical models, numerical examples are
presented to verify the solutions. The general viscous
fluid considered in the present study represents the
rate of deformation, and should be designated as a
“power-law model” (valid only for high shear rate
regions such as those in polymer process models). In
fact, a power-law model represents each polymer
resist film as unique, requiring the direct evaluation
of its rheological behavior. The practical fluid used
here (Chhabra et al., 2008) includes a certain mixture
of polymethyl methacrylate in pyridine with a density
0=0.98 x 103 kg/m3 and a fluid dynamic viscosity
un =0.79 N s/m2 to create a film with thickness of the
order h; =107m. The physical parameters and the

range of their values for the numerical experiments
are based on previous findings (Lin, 2014). To study
the effects of magnetohynamic forces, rotational
motion and flow index on coating flow stability, we
performed numerical experiments using randomly
selected physical parameters within specified ranges
based on previous works (Lin, 2014; Cheng et al.,
2009), including: (1) Reynolds number (0 to 10); (2)
dimensionless perturbation wave numbers (0 to 0.12);
(3) Hartmann number (0, 0.1 or 0.2) ; (4) Rossby
number (0.1 or 0.2) and (5) flow index (0.95, 1, or
1.05). The remaining parameters are treated as
constants  for all numerical computations.
Furthermore, to simplify the analysis, the
dimensionless surface tension S=6173.5 and the
dimensionless radius R=20.

Weakly nonlinear stability analysis

The effects of rotation number and cylinder size
on the film flow linear stability are well established
(Chen et al. 2004; Chen et al. 2005). This paper
studies the weakly nonlinear effects of the evolution
equation with consideration of many potential
mechanisms including centrifugal forces,
magnetohynamic forces, inertia and film viscous
stress. Figures 2(a) to (d) show various conditions for

sub-critical instability (d;<0,E; <0) , sub-critical
stability — (d; <0,E;>0) , supercritical stability
(d,>0,E,>0) and the supercritical explosion
(d, >0,E, <0).
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n=0.95, and R=20

0.127 >
d, <0 7
7
0.09 E, <O i
Phd E =0
(24 -7 -==-d=0

0.06 -

0.034

0

Fig. 2(b) Neutral stability curves for m=0.2, 5 =0.1,
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Fig. 2(d) Neutral stability curves for m=0.1, 5 =0.1,
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Figure 3(a) shows the threshold amplitude in the
sub-critical instability region for various wave
numbers with different m values at Rel=5, R=20,
n=0.95, and B =0.1. The results show that the
threshold amplitude ¢€a, decreases with the
Hartmann number (m) value due to the
magnetohynamic forces, en external force in the
governing equation. Increasing the Hartmann number
can inhibit the growth of the linear disturbance due to
the Lorentz forces, thereby contributing to flow
stabilization. Figure 3(b) shows the threshold
amplitude in the sub-critical instability region for
various wave numbers with different n values at
Rel=4, R=20, m=0.2 and B=0.1. The results show
that the threshold amplitude £a, decreases with the
flow index (n) value because of the viscous stresses
term, an internal force in the governing equation. The
microstructure characteristic of a polymer resists
dissipates the energy of the linear disturbance due to
effective viscosity increasing with n and thus
contributing to flow stabilization.
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Fig. 3(a) Threshold amplitude in subcritical unstable
region for three different values of m. Note

that Re, =5, R=20, n=0.95, and # = 0.1
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Fig. 3(b) Threshold amplitude in subcritical unstable
region for three different values of n. Note
that Re, =4, R=20, #=0.1, and m=0.2

Figure 4(a) shows the threshold amplitude in the
supercritical stability region for various wave
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numbers with different m values at Re;=4, £=0.1,

n=0.95, and R=20. Increasing the m value decreases
the maximum threshold amplitude. Figure 4(b) shows
the nonlinear wave speed in the supercritical stable
region for various wave numbers with different m
values for the same film flow. The nonlinear wave
speed is inversely correlated to the mvalue . Figure
4(c) shows the threshold amplitude in the
supercritical stability region for various wave
numbers with different n values at Re;=6,
m=0.2, # =0.1, and R=20. The n is inversely

correlated to the maximum threshold amplitude.
Figure 4(d) shows the nonlinear wave speed in the
supercritical stable region for various wave numbers
with different n values for the same film flow. The
nonlinear wave speed is inversely correlated to the n
value. In the above cases, the wave amplitudes
fluctuate with the nonlinear terms resulting in energy
transfers between different waves, thus changing
their amplitudes.
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Fig. 4(a) Threshold amplitude in supercritical stable
region for three different values of m. Note

that Re, =4, #=0.1, n=0.95, and R=20
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Fig. 4 (b) Nonlinear wave speed in supercritical
stable region for three different values of m.
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Fig. 4(c) Threshold amplitude in supercritical stable
region for three different values of n. Note that

Re,=6, m=0.2, £ =0.1, and R=20
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Fig. 4(d) Nonlinear wave speed in supercritical stable
region for three different values of n. Note

that Re,=6, m=0.2, #=0.1, and R=20
CONCLUDING REMARKS

To simplify analysis and computations, a number
of assumptions are made regarding the flow of matter:
(1) the dimensions of the general viscous fluid
consistency coefficient are assumed to depend on the
numerical value of the flow index n. (2) The present
study is limited to the higher shear rate region (i.e., n
approaching 1). Based on numerical modeling results,
several conclusions can be drawn as follows.

1. Due to t the viscous stresses term, the
microstructure characteristics of a polymer resist
dissipate the energy of a linear disturbance due to
the effective viscosity increasing with n, thus
contributing to film flow stabilization with the
rotation effect due to centrifugal forces.

2. Material flows as dilatant fluid are more stable
than pseudo plastic fluid with the same coating
flow.

3. Enhancing the magnetic effects enhances the
stabilization of the polymer resist films as
general viscous fluids using a spin cylinder at a
low Reynolds number due to the Lorentz forces.

4. Using appropriate operating conditions such as a
low Reynolds number (Rel<6) or a slow rotation

effects (/3 <0.2), the necessary conditions of the
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various critical flow states can be determined by
the Ginzburg-Landau equation in practical
polymer resist films.
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APPENDIX A
Zeroth-ordersolution:

@, = n(40)* ( — R) {60nAR? (h— 2R) — 20(» — R)RD / n+ 5(r — R [4nR’
+3h*(n+mR*) —2hR(n+ mR*)] —8(r — R)’[#R + h(n+mR>)]} (12002)

(A1)
where
® =2nR? —4nhR + (3n + mR?)h?
Q =2nR? - 2nhR + (2n + mR?)h?
and
¢, =K, (r = R)? +k; (r —=R)® +k, (r —=R)* +ks(r —R)*(A.3)
where

(A2)

k, =

&R? (2R - h)(h, +a?gh,,)(qQ) + Re #7h,h(h — 2R)R* /(24Q)

(A4)

22

k, = RO(h, +a’gh,,)(q°Q) + 4" Re, R*T"h[R?h(3n + mR?) + 8nR® + 2n + 2mR?]
hy, /(2Q°) + Re £%h, R*® /(6ngQ2)
(A5)

k, =—Re,R°T2'h?h, {16" h[L6nR® + (n+MR?)h*] + 2-16" R[4nR® + h? (3R
—2mR® + (N + 2MR2)N)]H(2Q*) + E[4NR? + h(n + mMR2)](=2R + 3h)
(h, +&*gh,,) /(12ng°Q) — 4" R’T"Qh,, [4nR? — 2nRh + (3n + 2mR?)h?]
[2nR? - 2nhR + (n + mR*)h?]/(6nQ*) + Refh,R*[4nR? + h(3h — 2R)
(n+mR?)]/(24ngQ)
(A.6)

k; =16" Re, hh,R*T*"(2R —h)[2nhR - 2nR? + (n + MR*)h?]/(6nQ?) - 2&[nR
+(n+mR*)h](h, +a’gh,, ) /(15ng*Q) + 4" R’T""h,, [N(3n + MR?)/ 2 + 4nR®
+(n+mR*)h*1/(12nQ%) + Re £2h,R*[n(R + h) + hmR?)]/(15nq<2)

(A7)
where
-2n (3n-2)n

q=R+h, =S Rep?(2r) »1, hy=r"(p,h,+¢,)(A8)

Appendix B

A(h) =-4"*h’T"[160n°hR* — 240nR°® + 2nh°R? (=630 + MR?) +14h® (n + mR?)
(2n +mR?) +10h*R*(13n + mR?) + h*(91n?R +58nmR* +15m*R*®)]/(15nqQ?)

(B.1)

B(h) = &h*a[80nR*® — 7h*(n + mR?) + 2h? (21nR + 5mR*)]/(60nq°Q) + 16" Re, h®R3al*"
{-6664n°mh®R® + 6080n°hR™ —3840n*R™ —96n°h*R® (97n —19mR?) +1120n°h?R®
(7n+ 2mR?) +14h™ (n + mR?)?(2n + mR?)(n + 3mR?) + 8nmh®R’ (183n% + 5m?R*)
—8n?h*R7(684n? + 677nmR? +15m°R*) + 2nmh°R* (522n? +188nmR? + 62m*R*)
+8n”h"R*(141n? +158m*R*) + 2nmh'°R*(526n° + 575nmR? + 222m°R*) — 2h*R®
(-258n* +n*mR? —85n°m?R* +95nm°R® +15m*R®) + h°R[287n*h® +591n*h*R
+60n*hR* +4n°R®(745mh? + 219n) + m?hR®(59m?h* —988n%) — m?R°(13m*h*
+12nmh? +1716n2)1}/(720n%q°Q°) + Re ¢f2h*R?[80nR® — 7h*(n + mR?) — 2h?R
(21n +5mR?)]/(120ng*QY)

(B.2)
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C(h) = £a*h®[80NnR® — 7h®(n + mR?) — 2h?R(21n + 5mR?)]/(15nqQY)
(B.3)

D(h) = &*a[80n*hR® — 240n°R°® + 7h® (n + mR?)(2n + mR?) +10nh*R* (13n + mR?)
+8nh®R*(10n + 9mMR?) + h* (49n°R + 52nmR* +19m?R°®) + h*(35n°R? + 66nmR*
+15m?R®) /(30nq°022) +16" Re, h*R%aT™2"{-62080n°hR™ + 46080n°R™
+384n*h°R™(289n —133mR?) — 70h* (n + mR?)*(2n + mR*)*(n + 3mR?) — 640n*h°R*
(289n +80mR?) +32n°n*R™(8536n° + 4903nmR? + 215m?R*) + 8n°h°R® (2551n’
+28752nmR? +6157m*R*) —120n*h°R®(795n° + 372n’mR? — 323nm?R* + 8m°R°®)

— 2h™R(n +mR2)(2n + MR?)(532n° +1411nm?R? +840nm?R* + 265m°R®) —8nZh’R’
(5790n° +18627n°mR? + 5235nm?R* + 331m°R°®) — 6nh°R®(2343n* + 2802n°mR?
+2386n°m°R* +1074nm°R® —101m*R®) —8nh®R®(2388n* +12441n*mR? + 561nm°R°®
—95m*R®) — 2h°R*(5945n° + 24546n‘mR? + 21834n*m?R* +9006n°m°R®
+609nm*R® - 60m°R™) — 2h"'R*(596n° + 7058n*mR? +9726n°m”R* + 4839n’m°R®
+990nm*R® +118m°R™®) — 2h'R?(996n° +19n*mR? + 3264n*m?’R* + 3633n°m°R®
+1428nm‘R® +122m°R™®) — mh’R*[10716n*R°® — 4196n’m?R°® —12n°hR*(6493n*
—2608nmR? +865m?R*) + h*(4333n" + 7Im*R®) — h* (4853n°R + 361m*R°)]}
/(720n%q*Q°) + Re af*h?R?*{480n?R® — 21h° (n + mR?)(n + mR?) — 20h?R*(21n + mR?)
—6mh*R*(21n +5mR?) —84h*(R® + mR®) —8h°R[21n* + mR?(19n + 6mR*)]}/(120nq°Q2%)
(B.4)
E(h) = &a*h?[240n*R® —160n°hR* — 2nh*R?(MR? - 63n) —14h° (n+mR*)(MR? +2n)
—10nh?R*(mR? +13n) + h* (91n’R +58nmR® +15m”R°)]/(15nqQ2?)

(B.5)

»
“‘

FHER R Rokeg £ 1]
Fl g8 2 id e 37

AT

o =
FAPE S TR

#F&

A B R A TNALF LR E R 53 2Lt
et L8 Pl R FEHEr ¥
SERAIE RS Rty BEHEY T A7 R
A F RFERGERT A DI LA E P ITE
A k2 BEFSR AP D R RN
Ginzburg-Landau = #2.;% #* Sk #icid f2 45 & Bl 2 fA
o Bk BE 2 R iE 20 4R 3E 4§ fic(Hartmann
constant) ~ % #71¢ #rc(Rosshy number) % it #: 45 #ic
(flow index) & | & @it T ¥ 3 A F L e H e
REAEETH BT R J‘ﬁ B ARl B S S

E
d

7
.

®F °
RIRIE RIS R S IR ST =AY
(dilatant fluid)+“ $% % 4 ;= 48 (pseudo plastic fluid)
PEARTLITH o



