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ABSTRACT 

 
This paper examines the hydromagnetic 

stability of a general viscous fluid film with weakly 
nonlinear effects on a rotating vertical cylinder. The 
power-law fluid model under an applied uniform 
magnetic field is used to provide a mathematical 
description instead of the rheology of polymer resist 
films. Long-wave perturbation techniques are used to 
derive the dimensionless generalized nonlinear 
kinematic equation to represent the physical coating 
flow. The Ginzburg-Landau equation is applied to 
numerically calculate pattern formation and illustrate 
necessary threshold conditions of the critical flow 
states. The influences of polymer resist films with 
hydromagnetic stability are studied in terms of the 
Hartmann constant, m, Rossby number, Ro and flow 
index, n on weakly nonlinear stability with a small 
Reynolds number. Moreover, The enhanced magnetic 
effects are found to the material flows as a dilatant 
fluid is more stable than a pseudo plastic fluid with 
the same coating flow. 

   
INTRODUCTION 

 
Using magnetic fields to stabilize film flows 

avoids the need for mechanical or electrical contact 
with the fluid, and allows for easy control of the 
coating film thickness and other properties. However, 
achieving hydromagnetic stability in a coating flow is 
subject to a range of possible influences such as 
centrifugal forces, magnetohynamic forces, inertia 
and viscous film stress. In recent years, considerable 
interest has focused on the use of hydromagnetic   

 
 
 
 
 
 

 
effects in rotating coating processes for a range of 
industrial applications (VeeraKrishna, Sravanthi & 
ReddyGorla, 2020; Garmroodi, Ahmadpour & Talati, 
2019; Jiang, Shen, Xu, Wang & Tian, 2019; Khan, 
Islam, Shah, Khan, Bonyah, Jan & Khan, 2017; Perez, 
Laroze, Diaz & Mancini, 2014; Singh, 2000).       

Linear stability theory can be used to identify 
instability in a film flow but cannot be used to predict 
disturbances just exceeding the threshold, and weak 
nonlinear theory describes the evolution of the most 
unstable linear mode. Relatively simple amplitude 
evolution equations such as the Ginzburg-Landau 
equation (GLE) can be used to analyze the 
spatial-temporal dynamics of complex flows. GLE 
governs the finite amplitude evolution of instability 
waves in a large variety of dissipative systems close 
to criticality. Due to its simplicity and completeness, 
GLE has been used in numerous investigations of 
film flow in weakly stable or instable conditions for 
different physical systems (Yıldırım, Biswas, Jawad, 
Ekici, Alzahrani & Belic, 2020; Kozitskiy, 2020; Xu, 
Zou & Huang, 2019; Cipolatti, Dickstein & Puel, 
2015; Schewe, 2013). 

Several mathematical models have been used to 
fit the characteristics of some non-Newtonian fluids 
in terms of coating flow (Acrivos, Shah & Petersen, 
1960; Burgess & Wilson, 1996; Liu, Chen & Wang, 
2009). In general, polymer resist films such as photo 
resists, dielectrics and protective coatings show that 
viscosity is strongly correlated to the rate of coating 
process deformation. Appropriate mathematical 
models can be derived from general viscous fluids to 
describe the actual film flow characteristics for the 
rheology of new materials dependant on the rate of 
deformation. The most widely used mathematical 
model for general viscous fluids is the power-law 
constitutive model (Chhabra & Richardson, 2008), 
which is typically used to describe behaviors such as 
the material flows of pseudo plastic fluids )1( <n  for 
shear thinning or as dilatant fluids )1( >n for shear 
thickening characteristics. The simplicity of this 
model has led to its increased use in experimental and 
theoretical analysis (Zou, Håkansson & Cvetkovic, 
2020; Mahmood, Bilal, Majeed, Khan & Sherif, 2019; 
Sadigh, Paygozar, Silva & VakiliTahami, 2019; 
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Agassi, 2015). 
While most photo resists such as non-Newtonian 

materials show shear thinning, some show shear 
thickening due to concentrated suspensions. The 
rheological properties of a coating liquid can affect 
the nature of the flow and consequently alter the 
performance of the coating system. Thickening often 
induces flow instability and irreversibility. The 
present study presents the hydromagnetic stability of 
polymer resist films with weakly nonlinear effects on 
a vertical rotating coating process. Several previous 
works have examined the stability of cylindrical 
rotating systems (Chen, Chen & Yang, 2004; Chen, 
Chen & Yang, 2005), and the results of the present 
study provide new modeling of multiphysics process 
into general viscous fluid films with weakly 
nonlinear effects on a rotating vertical cylinder. 

The remainder of this paper is organized as 
follows. Section 2 presents the generalized nonlinear 
kinematic equation of an electrically conductive 
polymer resist film flowing on a vertical rotating 
coating process under an applied magnetic field. 
Section 3 presents the stability analysis for coating 
modeling for standard approaches using long-wave 
perturbation techniques, the multiple scales method 
and the Ginzburg-Landau equation. Section 4 
presents several numerical examples to illustrate the 
effectiveness of the proposed method. 

 
GENERALIZED MATHEMATICAL 

FORMULATION 
 

Consider the axisymmetric flow of an electrically 
conductive polymer resist film designated as a power 
low model flowing on a vertical rotating coating 
process with a constant angular velocity *Ω  under 
an applied magnetic field. The external uniform 
magnetic field is applied perpendicular to the plane of 
the vertical cylinder (see Fig. 1).  
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Fig. 1 Schematic diagram of a general viscous 

magnetic fluid film flow traveling along a rotating 
vertical cylinder 

This model entails certain assumptions including: 
(1) the film flow is rotationally symmetrical, (2) the 
film flow velocity is independent of *θ  and there is 
a negligible circumferential flow given a very thin 
physical coating flow ( * *h r<< ), And (3) due to the 
lack of phase change effects, all associated physical 
properties are assumed to be constant (i.e. 
time-invariant). A variable with a superscript “*” 
represents a dimensional quantity. *u  and *w  are 
respectively the velocity components in the cylinder’s 
radial direction *r  and the perpendicular direction 

*z . For the sake of simplicity, the only applied 
magnetic field is *

0B  when the imposed and induced 
electric fields are negligible at a magnetic Reynolds 
number much less than 1. The electromagnetic force 
is * * *

0B wσ (Attia, 1998; Hayat, Javed & Sajid, 2008). 
The flow couples the Navier-Stokes equations and 
Maxwell’s equations for the magnetic field on a 
vertical rotating coating process. The governing 
equations of continuity and motion are as follows 
(Cheng & Chu, 2009)  
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where *v  is tangential velocity, *ρ  is constant 

fluid density, *p is fluid pressure, g* is acceleration 
due to gravity and the individual stress components 
are given as (Lin, 2014)  
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where n is the flow index of the power law model and 
*

nµ is the fluid dynamic viscosity of the polymer 
resists. On the surface of the vertical cylinder at 

** Rr = , and the boundary conditions are treated as 
no-slip as  follows 

0* =u  (8) 

0* =w  (9) 

On the free surface *** hRr += , and the 
boundary condition approximated by the vanishing of 
shear stress is given as  
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By solving the balance equation in the direction 
normal to the free surface, the resulting normal stress 
condition can be expressed as  
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The kinematic condition that ensures the flow 
does not travel across a free surface,  it follows that 
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where *h  is the local film thickness, *
nS  is the 

surface tension and *
ap  is the atmospheric pressure. 

By introducing a stream function *ϕ , the 
dimensional velocity components become 
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The following dimensionless quantities are used to 
form the dimensionless governing equations and 
boundary conditions 

*
0

*

h
rr = , *

0

*

h
zz α

= , *
0

**
0

h
tut α

= , *
0

*

h
hh = , 

2*
0

*
0

*

hu
ϕϕ = , 2*

0

**

u
ppp a

ρ
−

=
n

nn

n
hu

ν

*
0

2*
0Re
−

=  , 

*

*
02

λ
πα h

= , 
2

1
2342233

*

)2(
2

+−+++−

=
nn

n
n

n
nn

n
n

g

S
S

νρ

 (14) 

where *
0h  is the average film thickness, α  is the 

dimensionless wave number, *
nν  is the kinematic 

viscosity, *Ren  is the Reynolds number, *
nS  is the 

dimensionless surface tension, m is the Hartmann 
number, λ  is the wavelength, and *

0u  is the scale 
of velocity defined as 
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To investigate the effects of angular velocity, *Ω , on 
the coating flow stability, the dimensionless Rossby 
number, β , and the Hartmann number, m , are 
defined as  
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For these non-dimensional variables, the governing 
equations can be expressed as 
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Using the non-dimensional variables, the boundary 
conditions at the cylinder surface )( Rr =  are 
reduced to 
 0=== zr ϕϕϕ                        (22)                                                    
and the boundary conditions at the free surface of the 
cylinder )( hRr +=  become 
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Hence the term 2α S can be treated as a quantity of 
the zeroth order (Lin, 2012; Lin, 2014). We use 
long-wave perturbation techniques (Benney, 1974)  
by expanding the stream function and flow pressure 
in terms of some small wave number ( 1<<α ) as 
 
 )( 2
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)( 2
10 αα Oppp ++=                    (27)   

We can obtain the coating film flow conditions by 
inserting the above expressions into equations 
(20)-(25) and then systematically solving the 
resulting equations. The solutions of the zeroth order 
and first order equations were obtained and are given 
in Appendix A. The zeroth and first order solutions 
are inserted into the dimensionless free surface 
kinematic equation to yield the following generalized 
nonlinear kinematic equation  
 

0)()()()()( 2 =+++++ zzzzzzzzzzzzt hhhEhhDhhChhBhhAh  (28) 

where )(hA , )(hB , )(hC , )(hD  and )(hE are given in 
Appendix B.  
 

STABILITY ANALYSIS 
 

Some perturbations are unavoidable in any 
coating process, thus we study the stability of a 
steady state undisturbed liquid film. The thickness of 
the dimensionless film can be expressed in terms of 
the perturbation variables as  
 

)(),,(1),( αηη Oztzth =+=      (29)          
               
where η  is the perturbed quantity of the stationary 
coating thickness. The value of ),( trh  is 
substituted into generalized nonlinear kinematic 
equation (28) and all terms up to order 3η  are 
collected. The evolution equation of η  is obtained 
as 
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where the values of A~E and their 
corresponding derivatives are all evaluated in terms 
of the dimensionless height of the film h=1. 

 

Linearized stability analysis 
 

The effect of perturbation on coating flow 
instability is of particular interest and the perturbation 
behavior can assume various forms. The present 
analysis begins with linearized analysis. When the 
nonlinear terms of equation (30) are neglected, the 
linearized equation is given as 

 
0=+++ zzzzzzzt CBA ηηηη           (31) 

                                        
To use the normal mode analysis, we assume that 

   ..)](exp[ ccdtzia +−=η              (32)  

where a  is the small perturbation amplitude, and 
c.c. is its complex conjugate counterpart. The 
complex wave celerity, d is given as  

 )( CBiAiddd ir −+=+=                 (33)                                                      

where rd  and id  are respectively the linear wave 
speed and linear growth rate of the disturbance. The 
solution of the disturbance about ),( trh =1 is 
asymptic stability or instability depending on whether 

0<id  or 0>id . 
 
Weak stability effects 

 
To derive the nonlinear behaviors of the thin 

film flows, we use the same procedure (Cheng et al., 
2009; Lin, 2012) and apply the multiple scales 
method (Krishna & Lin, 1977 )  
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 (42) 
Equation (37) is solved order by order. After 
collecting the order )(εO and solving for the 
equation 010 =ηL , the solution of 1η  is 

..)](exp[),,( 2111 cctdrittcra rr +−−=η       (43)                        
After collecting the order )( 2εO and solving for the 
secular equation, the solution of 2η  is  

..)](2exp[2
2 cctdriea r +−=η             (44) 

By plugging both 1η  and 2η  into the equation of 
order )( 3εO ,the Ginzburg–Landau equation 
(Ginzburg & Landau, 1950)  is given as  
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The overhead bar in Eq. (45) represents the complex 
conjugate of the same variable. Equation (45) can be 
used to assess the weak nonlinear behavior of the 
fluid film flow. To solve for Eq. (45), we assume a 
filtered wave with no spatial modulation, so the 
filtered wave can be expressed as 

])(exp[ 220 ttibaa −=                      (50)                                             

After substituting Eq. (50) into Eq.(45), we obtain 
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The associated wave amplitude 0aε  in the 
supercritical stable region is derived and given as 

1
0 E

da i=ε                                (53) 
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E

= +                             (54)                                                                                                                            

If 1 0E = , then Eq. (51) is reduced to a linear 
equation. The second term on the right-hand side of 
Eq. (51) results from nonlinearity and may moderate 
or accelerate the exponential growth of the linear 
disturbance according to id  and 1E . Equation (51) 
modifies the perturbed wave speed caused by 
infinitesimal disturbances in the nonlinear system. 

The Ginzburg–Landau equation can be used to 
characterize various flow states. 
 

NUMERICAL EXAMPLES 
 

To demonstrate the effectiveness of the proposed 
mathematical models, numerical examples are 
presented to verify the solutions. The general viscous 
fluid considered in the present study represents the 
rate of deformation, and should be designated as a 
“power-law model” (valid only for high shear rate 
regions such as those in polymer process models). In 
fact, a power-law model represents each polymer 
resist film as unique, requiring the direct evaluation 
of its rheological behavior. The practical fluid used 
here (Chhabra et al., 2008) includes a certain mixture 
of polymethyl methacrylate in pyridine with a density 
ρ=0.98 x 103 kg/m3 and a fluid dynamic viscosity 
μn =0.79 N s/m2 to create a film with thickness of the 
order * 2

0 10h m−= . The physical parameters and the 
range of their values for the numerical experiments 
are based on previous findings (Lin, 2014). To study 
the effects of magnetohynamic forces, rotational 
motion and flow index on coating flow stability, we 
performed numerical experiments using randomly 
selected physical parameters within specified ranges 
based on previous works (Lin, 2014; Cheng et al., 
2009), including: (1) Reynolds number (0 to 10); (2) 
dimensionless perturbation wave numbers (0 to 0.12); 
(3) Hartmann number (0, 0.1 or 0.2) ; (4) Rossby 
number (0.1 or 0.2) and (5) flow index (0.95, 1, or 
1.05). The remaining parameters are treated as 
constants for all numerical computations. 
Furthermore, to simplify the analysis, the 
dimensionless surface tension S=6173.5 and the 
dimensionless radius R=20. 

 
Weakly nonlinear stability analysis 

 
The effects of rotation number and cylinder size 

on the film flow linear stability are well established 
(Chen et al. 2004; Chen et al. 2005). This paper 
studies the weakly nonlinear effects of the evolution 
equation with consideration of many potential 
mechanisms including centrifugal forces, 
magnetohynamic forces, inertia and film viscous 
stress. Figures 2(a) to (d) show various conditions for 
sub-critical instability 1( 0, 0)id E< < , sub-critical 
stability 1( 0, 0)id E< > , supercritical stability 

1( 0, 0)id E> >  and the supercritical explosion 
1( 0, 0)id E> < .  
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Fig. 2(a) Neutral stability curves for m=0.1, β =0.1,  
n=0.95, and R=20 
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Fig. 2(b) Neutral stability curves for m=0.2, β =0.1,  
n=0.95, and R=20 

0 2 4 6 8 10
0

0.03

0.06

0.09

0.12

0
0

1 <
>

E
di

0
0

1 >
>

E
di

0
0

1 >
<

E
di

0
0

1 <
<

E
di

1Re

α

1 0
0i

E
d

=
=

 

Fig. 2(c) Neutral stability curves for m=0.1, β =0.2,  
n=0.95, and R=20 
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Fig. 2(d) Neutral stability curves for m=0.1, β =0.1,  
n=1.05, and R=20 

Figure 3(a) shows the threshold amplitude in the 
sub-critical instability region for various wave 
numbers with different m values at Re1=5, R=20, 
n=0.95, and β =0.1. The results show that the 
threshold amplitude 0aε  decreases with the 
Hartmann number (m) value due to the 
magnetohynamic forces, en external force in the 
governing equation. Increasing the Hartmann number 
can inhibit the growth of the linear disturbance due to 
the Lorentz forces, thereby contributing to flow 
stabilization. Figure 3(b) shows the threshold 
amplitude in the sub-critical instability region for 
various wave numbers with different n values at 
Re1=4, R=20, m=0.2 and β =0.1. The results show 
that the threshold amplitude 0aε  decreases with the 
flow index (n) value because of the viscous stresses 
term, an internal force in the governing equation. The 
microstructure characteristic of a polymer resists 
dissipates the energy of the linear disturbance due to 
effective viscosity increasing with n and thus 
contributing to flow stabilization. 
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Fig. 3(a) Threshold amplitude in subcritical unstable 

 region for three different values of m. Note  
that 1Re =5, R=20, n=0.95, and 1.0=β  
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Fig. 3(b) Threshold amplitude in subcritical unstable  

region for three different values of n. Note  
that 1Re =4, R=20,β =0.1, and m=0.2 
 

Figure 4(a) shows the threshold amplitude in the 
supercritical stability region for various wave 
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numbers with different m values at Re1=4, β =0.1, 
n=0.95, and R=20. Increasing the m value decreases 
the maximum threshold amplitude. Figure 4(b) shows 
the nonlinear wave speed in the supercritical stable 
region for various wave numbers with different m 
values for the same film flow. The nonlinear wave 
speed is inversely correlated to the m value . Figure 
4(c) shows the threshold amplitude in the 
supercritical stability region for various wave 
numbers with different n values at Re1=6, 
m=0.2, β =0.1, and R=20. The n is inversely 
correlated to the maximum threshold amplitude. 
Figure 4(d) shows the nonlinear wave speed in the 
supercritical stable region for various wave numbers 
with different n values for the same film flow. The 
nonlinear wave speed is inversely correlated to the n 
value. In the above cases, the wave amplitudes 
fluctuate with the nonlinear terms resulting in energy 
transfers between different waves, thus changing 
their amplitudes. 
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Fig. 4(a) Threshold amplitude in supercritical stable 

region for three different values of m. Note 
that 1Re =4, β =0.1, n=0.95, and R=20 
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Fig. 4 (b) Nonlinear wave speed in supercritical  

  stable region for three different values of m. 
Note that 1Re =4,β =0.1, n=0.95, and R=20 
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Fig. 4(c) Threshold amplitude in supercritical stable 

 region for three different values of n. Note that  

1Re =6, m=0.2, β =0.1, and R=20 
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Fig. 4(d) Nonlinear wave speed in supercritical stable 

  region for three different values of n. Note  
that 1Re =6, m=0.2, β =0.1, and R=20 

 
CONCLUDING REMARKS 

 
To simplify analysis and computations, a number 

of assumptions are made regarding the flow of matter: 
(1) the dimensions of the general viscous fluid 
consistency coefficient are assumed to depend on the 
numerical value of the flow index n. (2) The present 
study is limited to the higher shear rate region (i.e., n 
approaching 1). Based on numerical modeling results, 
several conclusions can be drawn as follows. 
1. Due to t the viscous stresses term, the 

microstructure characteristics of a polymer resist 
dissipate the energy of a linear disturbance due to 
the effective viscosity increasing with n, thus 
contributing to film flow stabilization with the 
rotation effect due to centrifugal forces. 

2. Material flows as dilatant fluid are more stable 
than pseudo plastic fluid with the same coating 
flow. 

3. Enhancing the magnetic effects enhances the 
stabilization of the polymer resist films as 
general viscous fluids using a spin cylinder at a 
low Reynolds number due to the Lorentz forces. 

4. Using appropriate operating conditions such as a 
low Reynolds number (Re1<6) or a slow rotation 
effects ( β <0.2), the necessary conditions of the 
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various critical flow states can be determined by 
the Ginzburg-Landau equation in practical 
polymer resist films. 
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摘要 

本文檢驗廣義型黏滯流體薄膜具弱非線性效

應於旋轉垂直圓柱之液磁穩定性，數學建模選用冪

次律模型流體做為在外加均勻磁場作用下分析高

分子光阻劑流變行為，並利用長波擾動技巧得到該

流體系統之無因次廣義自由面運動方程式。

Ginzburg-Landau 方程式用來數值解析並圖示各種

流動狀態之臨界條件，並探討漢特曼數(Hartmann 
constant)、羅斯比數(Rossby number)及流動指數

(flow index)在小雷諾數流動下對高分子光阻劑磁

液動穩定性之影響。再者，當相同塗層流動條件

下，增加磁場效應，研究結果指出脹流性流體

(dilatant fluid)比擬塑性流體(pseudo plastic fluid)
較具穩定作用。 


