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ABSTRACT

With the development of machine learning
technology, more and more complex networks are
developed. For those networks, determining the
hyperparameters is important so that they can provide
the best performance under the structure of neural
network. However, more parameters should be
decided in complex networks. This paper is focused
on developing a structure of neural networks which
can tune the width in each layer based on the utility
of neurons automatically. In order to realize this
function, a new structure of neural network called
convolution neural network based dynamic highway
network is proposed to deal with image recognition
problem. With the self-adjusting method, near
optimal structure and few parameters are required for
training to achieve the same and even better
performance which uses more neurons.

INTRODUCTION

With the development of machine learning,
people have tried to use it to resolve increasingly
difficult problems. More and more complex networks
were designed and more neurons and layers were
used (Guo et al., 2016). Suffering from the vanishing
gradient problem, different structures, and activation
functions were developed. Residual learning (He,
Zhang, Ren, and Sun, 2016; Wu, Zhong, and Liu,
2017), SkipNet (Wang, Yu, Dou, and Gonzalez, 2017)
and highway networks (Srivastava, Greff, and
Schmidhuber, 2015) were tried out to bypass some of
the layers and transmit information to deeper layers.
Using this approach, the algorithm can avoid the
vanishing gradient and construct a deeper network to
address more difficult problems.

However, the complicated structure, enormous
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was required for training. Dynamic neural networks
were proposed and these provided two ways to
overcome this problem. First, the parameters in major
networks were generated by other minor networks so
that the number of parameters used can be reduced.
Second, the structure, including the number of
neurons and the connections with each other, was
modified by specific rules, making it possible to use
fewer parameters to achieve the same performance of
heavy networks.

In this research, a new convolution neural
network (CNN) based dynamic neural network that
uses the basic idea of highway networks and residual
networks is proposed. It offers an efficient method to
generate new neurons and grow from a small network.
As a result, it needs less time for training and uses
fewer parameters to provide high performance for
image recognition applications.

The remainder of the paper is organized as
follows. Section II reviews the state-of-the-art
highway network application. Section III presents the
CNN-based dynamic highway networks. Section IV
conducts simulations and experiments. MNIST and
CIFARI10 datasets are used to test the proposed
CNN-based dynamic highway networks. Section V
summarize the works of this paper and suggest future
works.

RELATED WORKS

CNN has achieved great success in the field of
computer vision. In each ImageNet Large Scale
Visual Recognition Competition (ILSVRC), there
were many structures such as AlexNet (Krizhevsky,
Sutskever, and Hinton, 2012), GoogleNet (Szegedy et
al., 2015) and ResNet (He et al., 2016; Wu et al.,
2017) which had improved the performance. In the
deep learning structure, the number of depth layer
was increased to solve the complex recognition tasks.
The vanishing gradient makes the training process
more difficult (Bengio, Simard, and Frasconi, 1994).
Highway network (Srivastava et al., 2015) is one of
the methods to solve this problem by using bypassing
the information from input to the output layer. It was
successfully used in computer vision such as image
classification (Oyedotun, Shabayek, Aouada, and
Ottersten, 2018), synthetic aperture radar (SAR)
target classification (Lin, Ji, Kang, Leng, and Zou,



2017) and single image super-resolution (SISR) (Li,
Bare, Yan, Feng, and Yao, 2018). Lin et al. (Lin et al.,
2017) used the convolutional highway unit to train a
synthetic aperture radar (SAR) target classification
system with the limited SAR data. And in SISR, Li et
al. (Li et al., 2018) proposed the Highway Networks
Super Resolution (HNSR) to reconstruct the
high-resolution image with a part of loss function
called structural similarity index (SSIM). In
(Oyedotun et al., 2018), the authors added gate
constraints to reformulate the highway blocks that
learned feature transformation as model training
progresses. Although those models outperformed the
original highway units, those models had no
discussion about the effects of the number of neurons
in their proposed structures.

Zagoruyko et al (Zagoruyko and Komodakis,
2016) analyzed the effects of width for the model.
They proposed a novel structure called wide residual
networks (WRNs) which decrease the number of
layers and increase the number of neurons for
residual networks. They showed that the performance
of WRN with different number of layers was better
than more deep networks. However, the WRN used
parameters as many as the deep neural network. It
requires a lot of memory space to optimize and store
the parameters. To reduce the number of the
parameters, Lu and Renals (Lu and Renals, 2017)
trained a small-footprint highway network to achieve
better recognition accuracy with much less model
parameters than the classic deep neural network.
Nevertheless, there is no suggestion to choose how
many parameters can be reduced to suit a particular
task.

However, those applications still used the trial
and error to choose the width of each layer. It takes a
lot of time to find the optimal number of parameters.
In this paper, we propose a new structure called
CNN-based dynamic highway network. The structure
with a self-adjusting gate can adjust the width of each
layer that has been optimized.

CNN BASED DYNAMIC HIGHWAY
NETWORKS

In this section, a new structure of neural
networks called CNN based dynamic highway
networks is proposed. It offers several advantages,
such as reducing the time required for training and
the memory occupied.

Highway Networks

Srivastava, Greff, and Schmidhuber (Szegedy
et al, 2015) proposed highway networks which
involved the idea of bypassing some layers and
transmitting information to the deeper layers. In
traditional shallow neural networks with L layers, the
transform in each layer can be formulated as follows.
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(1)

y=H(W,x+by,)

where xeR”,yeR” denote the input and output of

the layer respectively, w, eR™,b, eR" denote the
weight and bias in the layer and H is the activation
function which is usually a sigmoid function.

In highway networks, an additional transform
T(Wyx+b;) is used to control the weights of the
combination of input x and the output of transform
H(MW,x+b,) . The detailed function is shown in
equation (2) and illustrated in Figure 1.
y=HW,x+b,)-T(W,x+b,)+x- (1= T(W,x+5.)), )
where x, y ,W,,b, follow the definition above,
W, eR™ b, eR" denote the weights and bias in the
transform 7(W;x+b,), H is an activation function
which is a rectified linear unit here, and 7 is an
activation function which is a sigmoid function here,
the dot operator () denotes element-wise
multiplication, 1 denotes the vector of one. The

detailed functions of 7" and H are shown in equation
(3) and equation (4).

T = l+e™’ (3)
H (x) = max(0,x), (4)
¥
— ) —
A
T(Wyx+b)|  |HW,x+b,)
A A

Fig. 1 Illustration of highway networks

In addition, equation (2) shows that y is a linear
combination of input x and the output of transform
H(W,x+b,) because the output of function T is
between 0 and 1.

Highway networks have the advantage that
they can train very deep networks by
backpropagation without two-stage training. During
training, backpropagation gives the direction to
reduce loss. The function of backpropagation can be
derived as equation (5) and equation (6).
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where L is the loss and the subscripts i and j denote
the j” variable in the ;* layer. Equation (5) shows
that W,
On the other hand, equation (6) displays how 7;,
changes to reduce loss. To go back to the idea of the
output of T(Wx+b) , it is the weights of the
combination of input x and the output of transform
HW,x+b,)  and equation (6) tunes the weights to
reduce loss. As a result, we can consider the weights
to be tuned according to the utility of input x and the
output of transform #(W,x+b,) by backpropagation.
Although the outputs of H(W,x+b,) and T(W;x+b)
change with epochs at the same time,
backpropagation provides the best direction to reduce
loss. In other words, the output of T(W;x+5;) tends to
be a small value if the weights in #(W,x+b,) still
result in huge loss after backpropagation.

changes as plain feedforward networks do.

Dynamic Highway Networks

Based on the idea of the output of 7(W,x+b,),
the utility of input x and the output of transform
H(W,x+b,) can be compared. Therefore, a new
structure of highway networks is designed so that it
brings some merits. The structure is shown in
equation (7), equation (8) and Figure 2.

d =T,(W, x+b, )-H (W, x+b,,),
y=L(W.x+b,)-H,(W, d+b, )
+(1—T2(WTZX+bTZ))-X,

()
®)

y
>

| EOWodtb,) | |H:(WH:d+bH:)|
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>
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H(Wyx+by)

T (W x+D)

Fig. 2 Illustration of a new structure of highway
networks

where x,yeR",d eR" denote the input, output and
middle input of the whole layer, respectively,
W,,W, eR™. b, b eR", W, ,W, eR™ b, b eR"

denote the weights and bias in the first layer and the
second layer respectively and H,.H,.T,.T, are the
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activation function. Here, x and y are called pass
units and d indicates growing units.

This structure provides some advantages.
According to the values of Ti(W;x+b,) it can be
determined whether or not the number of neurons in
growing units is sufficient. If the values are large
enough, this shows that the utility of #/(Wyx+b,) is
greater than the utility of 0. In consequence, the
dimensionality of growing units, n, can be raised until
the values of 7,(W;x+b;) are small enough or achieve
the maximum number of growing units permitted. As
a result, the dimensionality can change dynamically
according to the utility of H,(W,x+b,). It is worth

noting that the values of Ti(W;x+b;) is related to the

input. Therefore, the input should be selected suitably
to get representative value to check a reasonable
width in each layer. However, the structure is too
complex to be trained. Figure 3 shows the result of
CIFAR 10 dataset.

Result of dynamic highway networks on CIFAF
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Fig. 3 Result of dynamic highway networks on
CIFARI10

From Fig. 3, the performance on CIFARI1O is
not high enough. As a result, a new structure of
dynamic highway networks is designed.

d :Tl(brl)'H1(WH1X+le ),
Y =Tz(brz)'1—[2(va2 d+sz)+(l_Tz(brz))'X:
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Fig. 4 Tllustration of dynamic highway networks
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where x,yeR”,deR" denote the input, output and
middle input of the whole layer respectively,
W, €R™.b, b, €R", W, eR"™" b, b cR”
the weights and bias in the first layer and the second
layer, respectively and H,,H,,T7,,7, are the
activation function. Here, x and y are called pass
units and d indicates growing units.

This structure has some advantages. First, the
outputs of 7, and 7, are independent of the input.

denote

The original highway networks shows that the
activity of the transform T'(W,x+b,) varies with

different inputs (Srivastava et al., 2015). It is flexible
because the transform 7(W,x+b,) can compare the

utility of input x and the output of transform
H(W,x+b,) with different input x. Therefore, the

new structure helps to understand the utility of
H(W,x+b,) for all inputs. In order to verify that,

ignoring x will give small change. We test the
difference between transform 7(W,x+b;) and
transform T'(b,), and the results are displayed in
Figure 5.

MNIST test result on original and biasbz
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Fig. 5 Result on original and bias-based highway
networks

In Fig. 5, it can be verified that ignoring the
input x does not cause a huge deviation from the
original highway networks.

In addition, there are two sublayers in the new
structure. The fundamental concept of two sublayers
is similar to that used in residual networks (Wu et al.,
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2017). 1t is said that “if the residual function has only
a single layer, the transformation function is similar
to a linear layer, for which we have not observed
advantages.” Thus, there are some benefits in the
two-sublayer structure. In dynamic highway networks,
the function of the first layer is as shown in equation
(9). In this layer, 7(b,) compares the utility of

x+b, ) and 0.
L)

H, (W,

the the

determination of whether the number of neurons is
sufficient. And the characteristics of Ti(b;) are
similar to T(Wyx+b;) as mentioned previously.
Consequently, the dimensionality can change
dynamically according to the utility of H,(Wyx+b, ).
The added growing units are initialized by a Gaussian
distribution function with zero mean and 0.01
variance. Therefore, the added weights are small
enough to avoid the performance in the training step
shuddering. The second layer is designed to correct
the dimensionality of y, which should be the same as
the dimensionality of the pass units. 7() can
compare the utility of H,(W,x+b,) and input x
such that the goodness of original highway networks
can be preserved.

There are some parameters that should be
determined before training. First, the number of
layers should be decided, as this influences the ability
to deal with the abstract. It enhances the capacity for
learning complex data in deeper networks. Next, the
width of the pass units should also be specified as this
affects the quantity of information that can be passed,
regardless of the width of the growing units. No
matter what information can be carried in growing
units, it still needs to be reduced to the dimensionality
of the pass units. Therefore, the number of pass units
plays an important role in dynamic highway networks.
Finally, the dimensionality of the growing units
should be initialized. Although it will change
dynamically through the training step, it influences
the time required for training and should be
determined.

According to equation (9) and equation (10),
the number of parameters is 2*m*n+2*n+2*m. In
comparison, the number of parameters in the original
highway networks is 2*m*n+2*n. There is thus no
huge difference between the numbers of parameters
in these two structures. However, this new structure
provides the ability to change the number of neurons
automatically.

To obtain a better result on 7;(b;) and T,(b,),

a regularization term is added. Figure 6 shows the
regularization function used.

replaces T(Wyx+b,) as
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Fig. 6 Regularization function

Here the red line is a sigmoid function, the blue
line is a triangle function and the black line which is
the regularization function used is a linear
combination of the red line and blue line and is
shown in equation (11).

1
O‘I*WH, x<0.1
reg(x) = 1 o oy
0‘1*1+e—100(x70_1)+ 9 x>0.1

By using this regularization function, Ti(%;)
and TL(,) tend to be close to 0 or 1 in order to
reduce loss. Therefore, it can emphasize the utility of
H (Wyx+by) and H,(Wyx+b,) . Additionally, the
regularization term for weights and dropout is used to
avoid overfitting. The loss is calculated by
cross-entropy and the regularization for weights here
is calculated by the L2-norm. Equation (12)
illustrates the entire loss function.

Loss = =3[ y(®)log(3(0) + (1~ y(x)) log(1 - (x))]
- (12)

+y [ZZreg('E,. (b )+ reg(T, ,(by, »} Al

where y(x) and J(x) are the ground truth and

prediction of data x, the parameters 4, and 4,
control the importance of the regularization term; the
first regularization term has been described above
and it regularizes 7(6;) and T(b;), the second
regularization term minimizes all the weights used in
the whole network. Adam (Kingma and Ba, 2015) is
applied to optimize the weights in the structure.

Convolution neural networks
highway networks

In order to increase the performance of
dynamic highway networks on image testing, it is
helpful to use convolutional neural networks (CNN).
The primary difference between convolutional neural
networks and neural networks is shared weights.
Because the number of neural networks needed to
deal with numerous inputs is too vast to train,

based dynamic
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convolutional neural networks define shared weights,
called filters, to reduce the parameters. The filters
convolute the inputs and get outputs that are called
feature maps. Figure 7 illustrates the shared weights,
where lines in the same color denote the same
weights.

4
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16 |17 |18 |19 | 20
Fig. 7 Illustration of convolution neural networks

Therefore, CNN-based dynamic highway
networks are designed. Wy and W, in equation (9)
and equation (10) are replaced by two sets of filters.
The gates 7i(»;) and T() are two sets which
contain gates. Each gate is a single value and controls
a corresponding feature map. The number of feature
maps is the same implication of the number of
neurons in original dynamic highway networks. Thus,
they can also be divided into growing feature maps
and pass feature maps, and give the same meaning of
growing units and passing units in original dynamic
highway networks. The mechanism for changing the
dimensionality of growing feature maps dynamically
depends on the value of gates 7(6;) as well and
Figure 8 illustrate the structure.
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Fig. 8 Illustration of CNN-based dynamic highway
networks

EXPERIMENTS FOR CNN-BASED DYNAMIC
HIGHWAY NETWORKS

To make sure that the dynamic CNN-based
highway network is effective, it is tested on the
MNIST dataset and the result is shown in Figure 9.
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Fig. 9 Result on different widths on MNIST
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Here there are three networks in 10 layers and
different widths. The red and blue lines are the
structure in Fig. 4, but the dimensionality of the
growing units is kept at 16 and 32 respectively and
cannot be changed. The black line is the structure in
Fig. 4 and the dimensionality of the growing units
can be changed dynamically, and it is called
“autoneuron” here. Fig. 9 shows an obvious
difference between the accuracy of the 16-neuron and
32-neuron networks. The accuracy of autoneuron
networks can be similar to 32 neurons but achieved
with fewer neurons. Figure 10, Figure 11 and Figure
12 display the value of Ti(5;).

10layers16neuron

Fig. 10 T,(b;) in 16-neuron networks

10layers32neuron

Fig. 11 T(5;) in 32-neuron networks
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Fig. 12 T,(b;) in autoneuron networks

Table 1. Test error for different methods on MNIST

Method Number of the Number of Test Error
neuron for each parameters
layer
Highway
Network 32 151,000 0.0045
(Srivastava et

al., 2015)

Dynamic 32 92,000 0.007
Highway 64 184,000 0.006
Network autoneuron 116,000 0.006

8-

Fig. 10, Fig. 11 and Fig. 12 display the values
of Ti(b;) in a row in the same layer. The unused
neurons are filled with the same value. Based on Fig.
10 and Fig. 12, the networks can achieve similar
accuracy to that of 32-neuron networks if we just
append some neurons on 16-neuron networks in
specific layers. Therefore, the fact that autoneuron
networks can change the dimensionality dynamically
is validated.

Table 1 shown the MNIST classification results.
In this examination, the number of parameters in
32-neuron networks is about 184,000 and the number
of parameters in dynamic networks is about 116,000.
The proposed structure reduces the parameters by
36%. The dynamic network reduces about 23%
parameters than the highway network and the error
rates are very close to the highway network. As a
result, adjusting the dimensionality manually is not
necessary to enhance the performance with the
mechanism proposed. 7i(b;) can help us to tune the
best dimensionality with fewer neurons.

Furthermore, the proposed structure is further
tested on CIFAR10 dataset to make sure the
performance of CNN-based dynamic highway
network. The result is shown in Figure 13 and Table
2.
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CIFAR10 test result on different width
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Fig. 13 Result on different widths on CIFAR10

In Figure 15, there are three networks in 20

layers and different widths and the result is processed.

The red and blue lines are the structure whose
dimensionality of the growing units is kept at 256 and
64, respectively and cannot be changed. The black
line is autoneuron structure. Fig. 15 shows an obvious
difference between the accuracy of the 64-neuron and
256-neuron networks. The accuracy of autoneuron
networks is similar to that of 256 neurons but with
fewer neurons. Table 2 shows the detail about the
number of parameters and the error rates used for
different width. In Table 2, it shows that compared to
256 neuron numbers. Autoneuron can reduce the
number of neurons about 45% and does not reduce
the test error. This also means that there are
redundant neurons in the model.

Table 2. Test error for different methods on cifar10

Number of the Number of Test

Method neuron for each

layer parameters Error
Highway
Network 64 2300000 | 0.0754

(Srivastava et

al., 2015)
Dynamic 64 368,000 0.1612
Highway 256 1,472,000 0.1519
Network autoneuron 864,800 0.1518

The details are shown in Figure 14, Figure 15
and Figure 16. The values of 7,(b;) are shown there.
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Fig. 14 T(b;) in 64-neuron networks
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Fig. 15 Ti(b;) in 256-neuron networks
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Fig. 14, Fig. 15 and Fig. 16 display the values
of Ti(b;) in a row in the same layer. The unused
neurons are filled with the same value. Based on Fig.
16 and Fig. 18, the networks can achieve similar
accuracy to that of 256-neuron networks if we just
append some neurons on 64-neuron networks in each
layer. Therefore, the fact that autoneuron networks
can change the dimensionality dynamically is further
validated. By automatically adjusting method, we can
avoid the step of selecting the number of neurons,
and save a lot of trial and error time. At the same time,
our method can train the model structure that is most
suitable for the application.

CONCLUSION

In this paper, the CNN-based dynamic highway
network is proposed. Through the characteristics of
highway networks, the utility of neurons in each layer
can be checked. By appending neurons to the proper
layer, it can raise the performance as high as complex
networks. Besides, a regularization function is
designed to tune the suitable value of gates so that the
utility of neurons can be determined more precisely.
Two picture datasets, MNIST and CIFAR1O0, are used
to justify the performance of dynamic highway
networks. From the result, the proposed structure can
achieve high performance in less parameter.
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NOMENCLATURE

x the input vector of the layer

v the output vector of the layer

y(x) the ground truth label of data x

7(x) the prediction label of data x

W,, the weight of the highway network

b, the bias of the highway network

A, the penalty weight of the highway network term

A, the penalty weight for the gate term

H the sigmoid activation function for the weight
T the sigmoid activation function for the gate

L the loss function

W, the weight of highway network in the first layer

W, the weight of highway network in the second

layer

W, the weight of gate in the first layer

W, the weight of gate in the second layer

by, the bias of highway network in the first layer
by, the bias of highway network in the second layer

b, the bias of the gate in the first layer
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b, the weight of the gate in the second layer

H, the sigmoid activation function for the highway
network in the first layer

H, the sigmoid activation function for the highway
network in the second layer

T, the sigmoid activation function for the gate in the
first layer

T, the sigmoid activation function for the gate in the
second layer

reg (x) the regularization function
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