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ABSTRACT 

 
This study aimed to develop a model to 

accurately predict the vibration signal of structural 
systems in real-time. This paper proposed the method 
to estimate the real-time vibration field of the whole 
structure using a limited number of acceleration 
sensor signals. The modal expansion method (MEM) 
is the technique to estimate the modal participation 
factors using the modal matrix and some vibration 
responses of the structure. In previous studies, MEM 
has usually been utilized for the estimation of 
vibration response in the frequency domain. However, 
MEM for the real-time estimation of vibration field, 
which uses noise-contaminated acceleration signals, 
has been hardly studied. Therefore, by using the 
Kalman filter and MEM, this paper proposed the 
method not only to reduce the noise in acceleration 
signal of the time domain but also to estimate the 
displacement, velocity and acceleration vibration 
field of a whole structure. 
 

INTRODUCTION 
 

Normal ly,  real - t ime vibrat ion pa t tern 
visualization of the vibration field of structures 
provides important information for the vibration  

 
 
 
 
 
 
 
 
 

 threatening to the vehicle occupant. within the 
moving tank vehicle involves quite complex dynamic 
modeling and analyses due to the dependence of the 

reduction design, the reduction of structure-borne 
noise, real-time health monitoring, damage diagnosis 
and real-time control of mechanical systems. Thus, 
many studies have been conducted to predict the 
vibration field of structures and to monitor vibration 
responses using the measured sensor signals. 

One of the methods for visualizing the 
vibration pattern of the structure using the measured 
sensor signals is the modal expansion method (MEM). 
Modal expansion techniques seek to estimate the 
displacements and velocities at all degrees of 
freedom of a Finite Element (FE) model of a system 
based on limited measured data which may comprise 
natural mode shapes or operating deflection shapes.  

For many studies, modal expansion method has 
been used for vibration monitoring (Alkhfaji and 
Garvey 2013, Cho et al. 2015). Chen et al. (2012) 
proposed an approach for expanding mode shapes 
with consideration of both the errors in analytical 
model and noise in measured modal data. Jung et al. 
(2016, 2017) introduced the block-wise modal 
expansion method (BMEM) for reproducing the 
vibration patterns by dividing the frequency range of 
interest into several frequency blocks to overcome 
the problem of a limited number of sensors. Jung and 
Jeong (2015) predicted the vibration fields and 
radiation noise of washing machines by applying 
MEM.  

However, from extensive literature reviews, 
since most of the previous studies conducted on the 
visualization of vibration fields using conventional 
modal expansion methods were carried out in a 
frequency domain, real-time vibration estimation 
using MEM, which uses noise-contaminated 
acceleration signals, has been more sparsely 
represented. Sim et al. (2017), exceptionally, 
predicted the vibration field of structures by 
implementing the modal expansion method in a time 
domain. This paper showed that the more the number 
of sensors than the number of the mode, the less 
influence of sensor noise on the vibration field 
prediction. However, it couldn’t overcome the 
limitation that the more the number of sensors, the   
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more cost and time consuming. 
In fact, there are several limitations to monitor 

the real-time vibration pattern using the measured 
sensor signals. First one is that measurement error in 
vibration test. There is no doubt that a certain level of 
noise contamination is inevitable in the process of 
acquiring the vibration signals. Second one is the 
modeling errors in the finite element model.  

In this paper, Kalman filter is used to overcome 
these limitations. Kalman filter is effective for 
estimating unmeasured physical quantities, and 
removing the noise included in the sensor signals 
(Grewal and Andrews 1992, Zarchan and Musoff 
2000). Kalman-filtering-based approaches have been 
widely used for time domain estimation of 
mechanical system.  

For many studies, Kalman filter has been used 
for vibration monitoring (Shao and Mechefske 2009), 
damage diagnosis (Liu et al. 2009, Gao and Lu 2006) 
and mechanical system identification in time domain 
(Ghorbani and Cha 2018, Roffel and Narasimhan 
2014). For example, Palanisamy et al. (2015) 
investigated a response estimation technique at 
unmeasured locations based on the Kalman filter to 
combine multi-sensor data. Azam et al. (2015) 
employed a dual Kalman filter to estimate the 
unknown input and states of a linear state-space 
model by using sparse noisy acceleration 
measurements, aiming at prediction of fatigue 
damage identification. Shrivastava and Mohanty 
(2018) proposed a model-based method to estimate 
single plane unbalance parameters (amplitude and 
phase angle) in a rotor using Kalman Filter. 

From broad literature reviews, however, 
previous studies on estimating vibration responses 
while minimizing the sensor noise using 
Kalman-filtering-based approaches were limited. The 
vibration responses were not be reasonably estimated 
at points where measurement is not performed. The 
present article presents a method for real-time 
visualization and monitoring of a vibration field of an 
entire structure by using noisy acceleration signals 
that are measured by a limited number of sensors, 
which is not larger than the number of modes. 
 
 

REAL-TIME VIBRATION FIELD 
PREDICTION THEORY  

 
Time-Domain Vibration Field Prediction Theory 

The modal expansion method, one of the 
vibration field prediction theories, is used to visualize 
the vibration field of a structure when the number of 
sensors is limited, by using a characteristic mode 
matrix obtained by numerical analysis.  

The vibration response of a structure is a 
product of the mode matrix and the modal 
participation factor (MPF) as shown in Eq. (1). 

( ) ( )N mN m
t t×× ×

=x Φ a
1 1

     (1) 

where ( )tx  is the acceleration, Φ  the natural 

mode matrix, and ( )ta  the acceleration MPF vector. 

The subscript, N, is the total degree of freedom of the 
structure, and m is the number of modes. Therefore, 
the acceleration signal measured at a point in the 
structure, ( )tx , is expressed as a product of the 

mode matrix reconstructed only with the values 
corresponding to the vibration signal acquisition 
point, Φ , and the MPF, ( )ta , as shown in Eq. (2) 

where the subscript, n, denotes the number of 
sensors. 
 
( ) ( )n mn m
t t×× ×

=x Φ a  
1 1

     (2) 

 
The modal expansion method employed the 

pseudo-inverse matrix of the reconstructed mode 
matrix, †Φ , as shown in Eq. (3). To obtain 
appropriate results from the estimated MPF vector 
which is calculated using the pseudo-inverse matrix, 
the number of sensors used, n, should be greater than 
the number of modes used, m. 

 
( ) ( )m nm n
t t×× ×

= †a Φ x   
1 1

     (3) 

 
( )ta  is the acceleration MPF vector estimated 

by the modal expansion method. The estimated 
acceleration MPF, ( )ta , reflects the incoming noise 

signals from the sensors. Therefore, the vibration 
field of a structure estimated by using the estimated 
acceleration MPF, ( )ta , is different from the actual 

vibration field due to the influence of the noise. The 
present article proposes a real-time vibration field 
estimation method for reducing the sensor noise. 

 
Modeling of a System State Space 

A state space model was designed to analyze 
the system in the time domain. The state space 
expressing the system is expressed in Eqs. (4)-(5). 

 
k k k+ = +X AX BF1

     (4) 

k k k= +Y CX DF       (5) 
 

where X  is the state variable vector, Y  is the 
measurement vector, and F  is the force vector in 
the physical coordinates. The subscript, k, refers to 
time. 

Generally, Eq. (4) is derived from the equation 
of motion of the system. Eq. (5) shows the relations 
between the measurements and the state variables, 
specifying how the state variable is reflected in the 
measurements. The equation of motion in the mode 
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coordinates used to express Eq. (4) for the state space 
model is shown in Eq. (6). Here, the subscript, r, 
means that the value corresponds to the r-th mode 
among the modes used for the modal expansion 
method. Hence, 

ra  is the acceleration MPF of the  

r-th mode, ra  is the velocity MPF, ra  is the 

displacement MPF, rq  is the force in the r-th modal 

coordinates, 
rζ  is the damping ratio, and rω  is the 

natural frequency. 
 

2
r r r r r r ra 2ζ ω a ω a q+ + =      (6) 

 
The state variable, X, is defined as Eq. (7). In 

Eq. (7), a  and a  respectively refer to the 
displacement MPF vector and the velocity MPF 
vector, which are expressed as Eqs. (8)-(9). 

 

m×

 
=  
 

aX
a2 1

      (7) 

{ }T

m r ma a a a a× =a  , , , , , ,1 1 2 3
   (8) 

{ }T

m r ma a a a a× =a      , , , , , ,1 1 2 3
   (9) 

 
The force in the modal coordinates, q , 

expressed as in Eq. (10), is related to the force in the 
physical coordinates, F , as shown in Eq. (11). 

 

{ }T

m r mq q q q q× =q  , , , , , ,1 1 2 3
   (10) 

T
m m N N× × ×=q Φ F1 1

      (11) 
 
Now, the matrices A and B in Eq. (4) are 

expressed by Eqs. (12)-(15). 
 

Δ m m m m
m m

m m m m

t × ×
×

× ×

 
= +  

  
2

0 I
A I

-Ω -2ZΩ2 2
  (12) 

Δ
m N

T
m Nt
×

×

 
=  
  

0
B

Φ
      (13) 

r

m

ω

ω

ω

ω

 
 
 
 
 

=  
 
 
 
 
 

Ω 



1

2    (14) 

 

r

m

ζ

ζ

ζ

ζ

 
 
 
 
 =
 
 
 
 
 

Z 



1

2     (15) 

For the modeling of the matrices, C and D, the 
measurement, Y, is defined in Eq. (16) as the 
acceleration signal, x , measured at n sensors at 
some points on the structure. 

 
n×=Y x 1

       (16) 
 
The modal expansion method, shown in Eq. (2), 

is used to express the relation between the 
measurement, Y, and the acceleration MPF vector, 

m×a 1 , as in Eqs. (17)-(18). 
 

{ }T

m 1 2 3 r ma ,a ,a a a× =a      , , , ,1
   (17) 

n m m× ×=Z Φ a  1
      (18) 

 
By using Eq. (6), the acceleration MPF vector 

may be expressed with respect to the modes as shown 
in Eq. (19). 

 

m m m m
m

× × ×
×

 
= + 

 
2 aa [-Ω - 2ZΩ] q

a


1 2 1
2 1

  (19) 

 
Using the Eq. (11) to convert the force vector 

in the modal coordinates to the one in the physical 
coordinates, the matrices, C and D, may be expressed 
as Eqs. (20)-(21). 
 

n m m m× ×
2C = Φ [-Ω - 2ZΩ]

2
    (20) 

T
n m m N× ×D = Φ Φ       (21) 

 
Noise Reduction Filter 

Using A Kalman filter, it is possible to 
estimates the state variables in real-time under a 
minimized noise influence. Here, the measured noise 
and the noise inflowing to the system are assumed to 
be white Gaussian noise. 

Adding the white Gaussian noise to the Eqs. 
(4)-(5), the state space of a system without 
considering the noise, the state space is expressed as 
the Eqs. (22)-(23) where 

kw  is the noise vector 
inflowing to the system affecting the state variable, 
and kv  is the measured noise vector. 

 
k+1 k k kX = AX + BF + w     (22) 

k k k kY = CX + DF + v      (23) 
 

From these noise vector, the covariant matrices can 
be defined. Q is the covariance matrix of 

kw , and R 

is the covariance matrix of kv . 
Fig. 1 shows the algorithm of the Kalman filter. 

The Kalman filter algorithm consists of a prediction 
process and an estimation process. The prediction 
process is based on Eq. (22), which shows how the 
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system moves over time. The estimation process is 
based on Eq. (23). The estimation process is a 
process of updating the predicted values in the 
previous step using the measured values, which 
shows the relationship between measurements and 
state variables. 

In Fig. 1, Pk denotes the error covariance, and 
Kk denotes the Kalman gain. The superscript, ^, 
denotes that the value is an estimated, and the 
superscript, , means that the value is a predicted. 
The prediction process predicts the values of the state 
variable, X, and the error covariance, P, based on the 
system model. In other words, in the prediction 
process, the estimated state variables of the previous 
step, ˆ

k-1X , and the error covariance of the previous 
step, Pk-1, are used to calculate the predicted state 
variables, -

kX̂ , and the predicted covariance values, 
-
kP . 

The estimation process is the process for 
compensating the difference between the sensor 
measurements and the predicted values. In other 
words, the predicted state variables, -

kX̂ , and the 

predicted covariance, -
kP , obtained in the prediction 

process are used to calculate the Kalman gain, Kk, the 
estimated state variables, kX̂ , and the error 
covariance, Pk. These two processes are repeated in 
each of the steps to estimate the optimal state 
variables in real-time. 

 

 
 

Fig. 1.  Kalman filter algorithm 

 
Visualization of Vibration Field Using State 
Variables 

Estimating the state variables using the 
presented Kalman filter enables estimation of the 
displacement, velocity, and acceleration vibration of 
an entire structure. 

The state variables, X, consist of the 
displacement MPF vectors and the velocity MPF 
vectors for the modes used in the modal expansion 
method. Hence, the displacement vector of the entire 
structure, x , and the velocity vector of the entire 
structure, x , may be estimated by using Eqs. 
(24)-(25). 
 

N N m m× × ×=x Φ a1 1
      (24) 

N N m m× × ×=x Φ a 1 1
      (25) 

 
Also, the acceleration MPF may be obtained 

from the state variables, X, by using Eq. (18). 
Therefore, the acceleration vibration response of the 
entire structure, x , may be estimated by using Eq. 
(26). 
   

N N m m× × ×x = Φ a 1 1
      (26) 

 
 

ANALYSIS AND RESULT 
 
Analytical Model 

The analytical model used in the present study 
is a planar structure in which four vertices are bound 
at six degrees of freedom. The shape of the finite 
element model for the structure (510 nodal points and 
464 elements) is shown in Fig. 2. The positions of the 
uniformly arranged sensors, the positions and 
directions of excitation and the arbitrarily selected 
position for comparing the estimated results are also 
shown in Fig. 2. The 5 mm-thick planar structure was 
made of steel. Table 1 shows the physical properties 
of the structure. 

 

 
 
Fig. 2.  Geometry of plate, positions of sensors, 

excitation point and comparison point. 
 
The vibration responses of the entire structure 
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without the noise, which are used as the reference 
signals in this study, were obtained by performing the 
transient response analysis using MCS. Nastran. 

 
Table 1. Properties of steel 

 
 
 
 
 

In the present study, a total of 20 modes used 
for the modal expansion method, from the 1st mode 
to the 20th mode, were obtained by the eigenvalue 
analysis performed MCS. Nastran. The number of 
sensors used was 20, and the sensors were arranged 
uniformly as shown in Fig. 2. The signals measured 
by the sensors were assumed to be the signals 
obtained by adding white Gaussian noise to the 
acceleration vibration responses resulting from the 
transient vibration analysis using MCS. Nastran. To 
evaluate the robustness of the proposed method, high 
levels of noise in the measured response data are 
considered. 
 
Prediction of a Vibration Field Under Periodic 
Excitation 
 
Prediction of a Vibration Field Under Sine Wave 
Excitation 

The steady-state vibration field of the structure 
was predicted under excitation with a sine wave of 10 
Hz, as shown in Fig. 3. The signals measured at the 
sensors were assumed to be the signals obtained by 
adding white Gaussian noise with a standard 
deviation of 0.05 ms-2 to the acceleration vibration 
responses obtained from the transient response 
analysis. The signal-to-noise ratio (SNR) of the 
acceleration signals measured by the sensors was 11 
[dB]. 
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Fig. 3.  Sinusoidal wave force 

 
To verify the steady-state vibration signal 

estimation performance of the Kalman filter for the 
acceleration, velocity, and displacement, the vibration 
response plots at the unmeasured point, which is 
arbitrarily selected, marked as  in Fig. 2, are 
shown in Fig. 4. 

The solid line in Fig. 4 represents the reference 
vibration response signals, while the dotted line 
represents the 'vibration response signals affected by 
the noise.' The dash-single dotted line represents the 
'vibration response signals estimated by minimizing 
the influence of the noise'. In the plot shown in Fig. 
4(c), the y-axis range of the signals represented by 
the dotted line is on the right-side range of the y-axis, 
in contrast to the two other signals. The 'velocity 
signals and displacement signals affected by the 
noise' were obtained through numerical integration of 
the acceleration signals mixed with the noise. 

 

 
(a) Acceleration signals 

 
(b) Velocity signals 
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(c) Displacement signals 

 
Fig. 4.  Real-time vibration estimation of the 

structure subjected to the sinusoidal wave 
force 

Density 7850 kg m-3 
Young’s modulus  210 GPa 
Poisson’s ratio 0.3 
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The plot shown in Fig. 4(a) indicates that the 

noise measured at the acceleration sensors was 
reduced in the signals estimated by reducing the 
influence of the noise. The plots shown in Figs. 
4(b)-(c) show that the error caused by the noise was 
accumulated and diverged over time in the 'velocity 
signals and displacement signals affected by the 
noise.' In contrast, 'velocity signals and displacement 
signals estimated by reducing the influence of the 
noise' well estimated the reference response signals. 

 

 
(a) Vibration pattern before noise reduction 

 
(b) Vibration pattern after noise reduction 

 
(c) Reference vibration pattern 

 
Fig. 5.  Vibration patterns of the structure at 4.912 s 

subjected to the sinusoidal wave force 
 
Fig. 5 shows the plot for the acceleration 

vibration field at an arbitrary time point of 4.912 s in 
a steady state, when the excitation was performed by 
using a sine wave, to investigate the vibration field 
prediction performance of the Kalman filter. Fig. 5(a) 
shows the predicted acceleration vibration field 
without filtering the noise-contaminated signal. Fig. 
5(b) shows the estimated acceleration vibration field 
representing the signals with reduced measurement 
noise influence, and Fig. 5(c) shows the reference 
vibration field. The result shown in Fig. 5 indicates 

that the reference acceleration vibration field was 
estimated relatively accurately in the estimation of 
the vibration field using the Kalman filter, because 
the influence of the noise was removed from the 
sensor signals. 

To investigate the ability of the Kalman filter to 
estimate steady-state acceleration, velocity, and 
displacement, a normalized error rate was defined as 
shown in Eq. (27). 

 

( )

( )
( )

ref

ref

F

F

N T

j j
j

S N T

j
j

v t v t dt
N

e
v t dt

N

=

=

 −  =
 
  

∑ ∫

∑ ∫

( ) ( )
%

( )

2

0
1

2

0
1

1

1
    (27) 

 
where N is the number of nodes in the entire structure, 

FT  is the period of the excitation force, and j  is 

the numbering of the nodes. ref
jv t( )  denotes the 

reference vibration signals, and 
jv t( )  denotes the 

vibration signal of the estimated acceleration, 
velocity, and displacement. 
 

Table 2. Normalized errors of the vibration signal 
subjected to the sinusoidal wave force 

 
Normalized Error, (%)se  

Conventional Proposed 
Acceleration 58.6 1.25 
Velocity diverged 0.0226 
Displacement diverged 0.00950 

 
Table 2 shows the normalized error rate of the 

acceleration, velocity, and displacement subjected to 
the sine wave excitation. The estimation error of the 
acceleration responses by the conventional method 
without using Kalman filter was 58.6%, but the error 
rate was significantly decreased to 1.28% in the 
vibration response signals predicted by using the 
Kalman filter. While the velocity and displacement 
diverged in the conventional prediction method, they 
converged in the prediction method proposed in this 
article within a certain error rate. 
 
Prediction of a Vibration Field Under Triangular 
Wave Excitation 

The steady-state vibration field was predicted 
under excitation with a triangular wave of 10 Hz, as 
shown in Fig. 6. The signals measured at the sensors 
were assumed to be the signals obtained by adding 
white Gaussian noise with a standard deviation of 
0.05 ms-2 to the acceleration vibration responses 
obtained from the transient response analysis. The 
signal-to-noise ratio (SNR) of the acceleration signals 
measured by the sensors was 11 [dB]. 
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Fig. 6.  Triangular wave force 

 
To verify the steady-state vibration signal 

estimation performance of the Kalman filter, the 
vibration response plots at arbitrary selected point, 
marked as , are shown in Fig. 7, which are 
response plot under triangular wave excitation.  

 

 
(a) Acceleration signals 

 
(b) Velocity signals 

 
(c) Displacement signals 

 
Fig. 7.  Real-time vibration estimation of the 

structure subjected to triangular wave force 

 
The meaning of the individual types of lines in 

Fig. 7 are the same as in Fig. 4. Similarly, in the plot 
shown in Fig. 7(c), the y-axis range of the signals 
represented by the dotted line is on the right-side 
range of the y-axis, in contrast to the two other 
signals. 

The result shown in Fig. 7 is similar to the 
result shown in Fig. 5 representing the result under 
sine wave excitation. The acceleration plot shown in 
Fig. 7(a) indicates that the measurement noise was 
reduced in the acceleration signals estimated by 
Kalman filter suggested in this paper. The plots in 
Figs. 7(b)-(c) indicate that the velocity and 
displacement signals, obtained by numerical 
integration, diverged over time. On the other hand, 
the velocity and displacement signals estimated by 
using the filter well estimated the reference vibration 
response. 

Fig. 8 shows the plot for the acceleration 
vibration field at the time point of 4.912 s, which is in 
a steady state under a triangular wave excitation. 
 

 
(a) Vibration pattern before noise reduction 

 
(b) Vibration pattern after noise reduction 

 
(c) Reference vibration pattern 

 
Fig. 8.  Vibration patterns of the structure at 4.901 s 

subjected to the triangular wave force 
 



 
J. CSME Vol.41, No.3 (2020) 

-360- 
 

The meanings of the plots in Figs. 8(a)-(c) are 
the same as the plots in Fig. 6. The result shown in 
Fig. 8 indicates that the reference acceleration 
vibration field was estimated relatively accurately in 
the estimation of the vibration field using the Kalman 
filter, reducing the influence of measurement noise. 

Similar to the case of the sine wave excitation, 
the normalized error in the acceleration, velocity, and 
displacement estimation calculated by Eq. (26) is 
shown in Table 3. 

The error rate in the acceleration was reduced 
from 132% in the case where no filter was applied to 
5.44% in the case where the Kalman filter was 
applied. While the velocity and displacement 
diverged in the conventional prediction method, they 
converged in the prediction method proposed in this 
study within a certain error rate. 
 

Table 3. Normalized errors of the vibration signal 
subjected to the triangular wave force 

 
Normalized Error, (%)se  

Conventional Proposed 
Acceleration 132 5.44 
Velocity diverged 0.0745 
Displacement diverged 0.00902 

 
Prediction of a Vibration Field Under Nonperiodic 
Excitation 

A transient-state vibration field was predicted 
when the structure was excited with a unit impact. 
The acceleration signals measured at the sensors were 
assumed to be the signals obtained by adding white 
Gaussian noise with a standard deviation of 100 ms-2 
to the acceleration vibration responses obtained from 
the transient response analysis. Since the power of 
the vibration signals is continuously reduced over 
time in a unit impact response, for convenience's sake 
the magnitude of the noise signal was selected to be 
the value that made the SNR 11 dB with respect to 
the signal received for 0.1 second from the moment 
when the unit impact applied. 

To verify the transient-state vibration signal 
estimation performance for the acceleration, velocity, 
and displacement, the vibration response plots at 
arbitrary selected point, marked as , are shown in 
Fig. 9, which is a transient-state vibration response 
graph. The meanings of the individual types of lines 
in Figs. 9(a)-(c) are the same as in Fig. 4. Similarly, 
in the plot shown in Fig. 7(c), the y-axis range of the 
signals represented by the dotted line is on the 
right-side range of the y-axis, in contrast to the two 
other signals. 

The result shown in Fig. 9 is similar to the 
results obtained under periodic excitation. The 
acceleration plot shown in Fig. 9(a) indicates that the 
noise measured at the acceleration sensors was 
reduced in the acceleration responses estimation. The 

plots in Figs. 7(b)-(c) indicate that the velocity and 
displacement signals, obtained by numerical 
integration, diverged over time. However, the 
'velocity and displacement signals estimated by 
minimizing the influence of the noise' well estimated 
the reference vibration responses. 

 

 
(a) Acceleration signals 

 
(b) Velocity signals 

 
(c) Displacement signals 

 
Fig. 9.  Real-time vibration estimation of the 

structure subjected to the unit impulse 
 
Fig. 10 shows the plot for the acceleration 

vibration field at an arbitrary time point of 0.100 s, 
which is in a transient state, when the plate is 
subjected to the unit impact. The meanings of the 
plots in Figs 10(a)-(c) are similar with the plots in Fig. 
5. The result shown in Fig. 10 indicates that the 
reference acceleration vibration field was estimated 
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relatively accurately in the estimation of the vibration 
field using the Kalman filter, because the influence of 
the measurement noise was removed from the sensor 
signals. 

 

 
(a) Vibration pattern before noise reduction 

 
(b) Vibration pattern after noise reduction 

 
(c) Reference vibration pattern 

 
Fig. 10.  Vibration patterns of the structure at 0.100 

s subjected to the unit impulse 
 
To investigate the ability of the Kalman filter to 

estimate the transient-state acceleration, velocity, and 
displacement, the error rate was calculated. To 
determine the time range for the evaluation of the 
error rate of the transient-state signal, for 
convenience's sake the time at which the energy level 
of the acceleration response signals reaches 95% of 
the acceleration energy level for the whole time was 
defined as TT. 

Using the calculated TT, the vibration field 
prediction error rate for the transient-state response 
signals was defined, as shown in Eq. (28). 
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Table 4 compares the estimation error rate of 

the transient-state response signals for the 
conventional method and the method proposed in the 
present paper.  

Table 4 shows that the error rate was 81.5% in 
the case where the Kalman filter was not applied, but 
it was decreased to 4.43% in the case where the 
Kalman filter was applied. While the velocity and 
displacement diverged in the conventional prediction 
method, they converged in the prediction method 
proposed in this article within a certain error rate. The 
estimated velocity and displacement diverged as the 
error calculated by the numerical integration was 
accumulated, but they stably converged because the 
error was small in the method proposed in this paper. 

 
Table 4. Normalized errors of the vibration signal 

subjected to the unit impulse 

 
Normalized Error, Te (%)  

Conventional Proposed 
Acceleration 81.5 4.43 
Velocity diverged 2.89 
Displacement diverged 0.64 

 
 

CONCLUSIONS 
 
This paper proposes a highly accurate real-time 

method for estimating a vibration field from noisy 
acceleration sensor signals. The displacement, 
velocity and acceleration field were obtained from 
the state variables of the Kalman filter, to which the 
modal expansion method was applied. 

In order to validate the ability of the presented 
method, 'the vibration response at unmeasured points' 
was compared under various excitation conditions. 
Under both periodic excitation and nonperiodic 
excitation, the acceleration, velocity, and 
displacement vibration fields were estimated. 

Under various excitation conditions, the 
real-time vibration fields predicted by the method 
without using Kalman filter diverged, because the 
error was continuously accumulated in the process of 
performing numerical integration of the measured 
signals. In contrast, when using the presented method 
that can reflect the system characteristics, the 
predicted vibration field did not diverge and could be 
predicted. 

In the case where the vibration field is to be 
estimated from the noisy acceleration signals 
obtained from a limited number of sensors, this 
presented noise-reducing filter may be useful to 
estimate the real time vibration field of an entire 
structure, minimizing the influence of the noise. 

Although the presented study was conducted 
with a planar structure, the method proposed in this 
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article may be applied to structures having a more 
complicated shape, to estimate and monitor the 
vibration response of the structures. 
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