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ABSTRACT 
 

The stiffness of hydrostatic bearings is mainly 
affected by the flow resistance of the restrictor, 
however, accurate estimation of which is often 
unattainable because of variation of environment 
conditions, resistance from oil tube and incompatible 
assumptions in the theory of hydrostatic bearings. 
This paper proposed a design method to improve the 
stiffness of hydrostatic bearings by use of multilayer 
perceptron (MLP). The MLP model constructed a 
multi-input and multi-output (MIMO) system with 
supply pressure, load, and the depth of groove as the 
inputs and the oil-film thickness as the output. The 
MLP model employed gradient decent algorithm as 
the optimizer with an input layer, three hidden layers, 
and an output layer. According to this malleable 
nonlinear model and various functions, the MLP 
model could find the hidden patterns from the 
training data and predict the output. Simulation of 
bearing characteristics was performed on the basis of 
the hydrostatic bearing theory. An experimental setup 
was constructed to verify the film thickness obtained 
from both simulation and predictive results of the 
MLP model. A number of flow restrictors with 
distinct groove depths together with parameters such 
as supply pressure and load were used in experiments. 
Meanwhile, the pressure, flow rate, load, temperature 
and oil-film thickness were measured by the 
corresponding sensors directly. The MLP model for 
the stiffness of hydrostatic bearings was effectively 
trained with the collected data. Compared to the 
simulation, the proposed method demonstrates more 
applicable for the design of hydrostatic bearing 
systems. 
 
 
 
 
 
 
 

INTRODUCTION 
 

Hydrostatic bearings are widely used in 
precision machine tools because of their superior 
characteristics of high stiffness, high load-carrying 
capacity, high damping, nearly frictionless and long 
life. The stiffness of hydrostatic bearings is mainly 
affected by the designed oil-film thickness and the 
characteristic of flow restrictors. With different kinds 
of flow restrictors, hydrostatic bearings will perform 
with distinct stiffness. In general, the flow restrictors 
can be categorized into two types: the fixed type, 
such as capillary, orifice and groove restrictors; and 
the active type, for example, a constant flow valve, a 
diaphragm controlled and self-compensation 
restrictors. 

Raimondi and Boyd (1957) proposed the 
theoretical analysis of multi-recess hydrostatic 
bearing with orifice and capillary, based on the 
assumption of one-dimensional flow. Malanoski 
(1961) discovered that the constant flow valve 
performed higher stiffness than capillary and orifice. 
Moshin (1963) proved that diaphragm restrictor had 
higher dynamic and static stiffness than fixed-type 
restrictors in the same working situation. Moris (1972) 
compared the effect of active-type restrictors and 
fixed-type restrictors on oil-film stiffness. Osumi et al. 
also observed that under identical dynamic loading, 
the diaphragm restrictor or other active-type 
restrictors achieved higher dynamic response. 
Moreover, he deduced the possibilty of negative 
stiffness and infinite stiffness. Tully (1977) proposed 
that in the static infinite stiffness condition, the mass 
of the compensation element in self-compensation 
restrictor reduced the vibration of hydrostatic bearing. 
Robert (2001) presented a new diaphragm restrictor 
that adjusted the preload to calibrate flow resistance 
error. 

Hybrid flow restrictors that, for instance, 
combine a diaphragm restrictor with a groove 
restrictor have been developed recently to meet the 
need of high stiffness while avoid the occurrence of 
negative stiffness. However, to design a hybrid flow 
restrictor is very complicated, trials and errors are 
usually inevitable because of a plenty of parameters 
involved in the design process. To resolve this 
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drawback, this paper employed MLP to optimize the 
stiffness of hydrostatic bearings and the properties of 
the groove restrictor. The training data for the MLP 
model were adopted from the experiment that was 
implemented on a single-pad hydrostatic bearing 
integrated individually with groove restrictors of 
various groove depths. In addition, the supply 
pressure and load were also varied and considered as 
design parameters. Finally, the stiffness curve of the 
hydrostatic bearings was predicted by this 
well-trained MLP model and the properties of 
restrictor were analyzed. 
 

Theory 
 
Lumped parameter modeling method 

Lumped parameter modeling method is 
adopted herein to simplify the calculation of the 
hydrostatic bearing system. With the relationship of 
pressure and flow rate, which is derived from 
Navier-Stokes equation, lumped parameter modeling 
method assumes the hydrostatic bearing system as a 
circuit system. According to the hypothesis, hydraulic 
pressure, flow rate and flow resistance can be 
analogous to voltage, current and resistance in the 
circuit system, respectively. Thus, from the circuit 
formula, the relationship among flow resistance , 
flow rate , and pressure difference ∆  can be 
expressed as 

 
 

(1) 

The groove restrictor is designed to be 
combined with an active one to form a hybrid 
restrictor. The electrical circuit analogy of groove 
restrictor is shown in Figure. 1.  is the pressure 
supplied by an oil pump.  is the pressure of the 
pocket in hydrostatic bearing. Thus, with lumped 
parameter modeling method, the resistance of 
restrictor can be calculated directly. 
 

 
Fig. 1.  Lumped parameter modeling method. 
 
Groove restrictor 

The groove restrictor can be considered as a 
type of capillary restrictor with rectangular section. 
Figure 2 illustrates the configuration and symbol 
definition. 
 

 
Fig. 2.  Symbol definition of the groove restrictor. 

The flow resistance of a groove restrictor can 
be calculated based on the equation derived in Bruus’ 
book “Theoretical Microfluidics” (2008).  

 
 

(2) 

where w is the shorter side of the section, and b is the 
longer side of the section, as shown in Fig. 2. 
 
Pad flow resistance 

In this study, the experiment is performed on a 
hydrostatic bearing with single rectangular pad. The 
calculation of the pad flow resistance can be found in 
the book “Precision Machine Design” written by 
Slocum (1992). Figure 3 shows the rectangular pad 
and its symbol definition. 
 

 
Fig. 3.  Symbol definition of the rectangular pad. 
 

The total resistance ( ) of the rectangular pad 
can be divided into two parts as shown in Fig. 3, 
rounded corner region ( ) and rectangular plate 
region ( ). The formulas are 

  (3) 

 
 

(4) 

 
 

(5) 

 
Simulation 

In this study, experiments are implemented on 
a single-pad hydrostatic bearing matched individually 
with five groove restrictors, each of which has 
different depths, to acquire distinct stiffness 
performance. Figure. 4 illustrates simulation results 
comparing the stiffness of the five different bearings. 
As a result, the shallowest groove restrictor will have 
the highest stiffness performance. However, it may 
also cause lack of flow rate. Thus, how to find a 
compromise between them is an important issue. 
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Fig. 4.  Simulation results of bearings with five 

different depths of groove restrictors. 
 

Experiment 
 
Experimental setup 

The purpose of the experiment is to verify the 
accuracy of the stiffness obtained from simulation 
and to acquire adequate training data for the MLP 
model. Figure. 5 shows the experimental setup 
containing an oil supply system, a cooling system and 
a single pad hydrostatic bearing with a groove 
restrictor. Two manometers were installed to measure 

 and . A thermometer was set to record the oil 
temperature in the pocket. Two eddy current sensors 
were used at both ends of the bearing platform to 
measure oil-film thickness. There were also a load 
cell and a flowmeter to measure load and flow rate. 
All of the data mentioned were read by Data 
Acquisition (DAQ) device. Ten groove restrictors 
with different dimensions were tested by giving 
gradually increased load under distinct supply 
pressure. 
 

 
Fig. 5.  Experimental setup 
 
Experiment result 

According to the theory, when the load 
increases, the pad resistance will raise. Under this 
circumstance, the pressure ( ) increases while the 
flow rate (Q) decreases. These phenomena can be 
found in the experiment results shown in Figure. 6. 
The load increases until the pressure  approaches 

. 
 

 
Fig. 6.  Relationship between pressure (Ps, Pp) and 

flow rate (Q). 
 

Figure. 7 demonstrates the load capacity of 
same groove restrictor under three supply pressure, 
10bar, 20bar, 30bar. The result indicates that higher 
supply pressure results in larger load capacity of the 
hydrostatic bearing. 
 

 
Fig. 7.  Comparison of the bearing stiffness under 

different supply pressure. 
 

The relationship between load and oil-film 
thickness is shown in Figure. 8. Three groove 
restrictors with different depth were tested. The slope 
at different load points out the stiffness performance 
of groove restrictors in each state. Generally, the 
groove with thinner depth will have larger flow 
resistance and higher stiffness performance. However, 
a shallow depth will cause the lack of flow rate. Thus, 
the depth of groove restrictor should be select 
precisely. 
 

 
Fig. 8.  Relationship between load and oil-film 

thickness. 
 

Figure. 9 is the dimensionless chart of pressure 
and oil-film thickness, which displays a comparison 
of simulation and experiment result. The trend of the 
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experiment result can possibly fit the simulation, but 
errors still exist, which may come from the 
experiment environment. 
 

 
Fig. 9.  Comparison of simulation and experiment 

results. 
 

Multiple layer perceptron 
 

With the design parameters and the 
measurement data from the experiment, the next task 
is to establish a model to find the relationship 
between inputs (supply pressure, load, design 
parameter of groove restrictors, temperature) and 
output (oil-film thickness). The multiple layer 
perceptron (MLP) is used in this study to develop the 
possibility of predicting the stiffness performance of 
hydrostatic bearing. Herein, the structure of multiple 
layer perceptron model is written with tensorflow. 
 
Multiple layer perceptron (MLP) model 

Artificial neural network (ANN) is a form of 
artificial intelligence, which imitates from the 
biological neural network. The multiple layer 
perceptron is a branch of artificial neural network. 
Due to the nonlinear structure of the model, artificial 
neural network can be used to solve many nonlinear 
problems. The basic unit in the artificial neural 
network is neuron, which is called node. Each node 
receives input from other node or external input and 
calculates its output. Every input has its own weight 
(w) and bias (b) and a layer containing several nodes. 

Multiple layer perceptron is a kind of 
feedforward neural network and is often used in 
supervised learning. It usually refers to the neural 
network with three or more layers, an input layer, an 
output layer and several hidden layers. Except for the 
nodes in input layer, all of the nodes are using 
nonlinear active function. Furthermore, every node in 
one layer is connected to every node in the next layer. 
Because of the characteristic of several layers of 
neural network and nonlinear active function, MLP 
model has a very good perform on nonlinear 
classification. 

Feature extraction is a method to obtain the 
dominant parameters from the experiment data. In 
this study, supply pressure, load and depth of groove 
restrictors have strong relevant to the oil-film 
thickness except temperature and width of groove 

restrictors. Therefore, the structure of the MLP model 
has three nodes in input layer. And due to the 
dimension, three hidden layers with 6, 9 and 3 nodes 
are applied. The output layer has only one node 
which calculated the oil-film thickness. The whole 
structure of MLP model is shown in Figure. 10. 
 

 
Fig. 10.  Structure of multiple layer perceptron. 
 

In machine learning and mathematical 
optimization field, a function called loss function is 
to calculate the error between prediction and real 
value. Generally, the lower the loss function is, the 
more accurate the MLP model is. There are several 
kinds of loss function in machine learning. Usually, 
mean squared error (MSE) is a common choice for 
loss function in multiple layer perceptron. In order to 
minimize the loss function, gradient decent algorithm 
is used to compute the current gradient of the 
parameters and then let the parameters go a little 
further in the opposite direction of the gradient. 
Repeat this step until the loss function approaches 
zero. However, the structure in multiple layer 
perceptron is complicated. It costs a lot of time when 
calculating the gradient. Therefore, the model also 
needs to use the backpropagation algorithm to lower 
the cost of computation. Overall, the purpose of 
training is to optimize the weight and bias in the MLP 
model. 

Cross-validation (CV) is a strategy for model or 
algorithm selection in order to avoid overfitting 
during the training process and estimate how 
accurately a predictive model will perform in practice. 
Figure. 11 is the schematic diagram of 
cross-validation. At the beginning, all the data will be 
split into two parts: training data and validation data. 
Later, the model will be trained by the training data. 
Different validation data is tested to estimate the risk 
for the model. At the end, after multiple rounds of 
cross-validation, the validation results are averaged. 
In this study, experiment data are divided into 9 
training data parts and 1 validation part. To ensure 
the model operates without overfitting, 10 times of 
cross-validation are performed. 
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Fig. 11.  Cross-validation 
 
Modeling results 

Due to many inevitable sources of errors, e.g., 
resistance from tube, measurement error, 
environment vibration and so on, the simulation 
cannot match the experiment results accurately. 
However, the MLP model used in this study can 
properly predict the relationship of pressure and 
oil-film thickness through learning from training 
data. 

The training data contained No. 1 to No. 9 
groove restrictors (without No. 8) with different 
design parameters. Under several supplied pressure, 
the load was increased step by step. The loss closed 
to zero after the MLP model was trained for 10000 
times by these experiment data. Later, test data of No. 
8 groove restrictor with depth of 0.363mm and under 
20 bar supplied pressure was inputted into the model. 
With regard to No.8 groove restrictor, a comparison 
between the predictive and experiment results of the 
relationship of load and oil-film thickness is shown in 
Figure. 12. Also, when the load increased,  would 
approach . The dimensionless chart of comparison 
of the experiment, simulation, and prediction are 
shown in Figure. 13. Only a little error exists between 
experiment result and prediction, the MLP model can 
definitely predict the stiffness performance of 
hydrostatic bearings. 
 

 
Fig. 12.  Comparison of prediction and experiment 

result. 
 

 
Fig. 13.  Comparison of experiment, simulation and 

prediction. 
 

Accordingly, with this MLP model, the 
stiffness performance of groove restrictors can be 
predicted by giving supply pressure, load and depth 
of groove restrictors. Furthermore, this method can 
effectively assist the design and accelerate the 
manufacturing process. 
 

Conclusion 
 

The proposed design method for improving the 
stiffness of hydrostatic bearings by use of multilayer 
perceptron (MLP) was verified in this paper. The 
MLP model constructed a multi-input and 
multi-output (MIMO) system with supply pressure, 
load, and depth of groove as the inputs and the 
oil-film thickness as the output. In addition, the MLP 
model employed gradient decent algorithm as the 
optimizer with an input layer, three hidden layers, 
and an output layer. According to this malleable 
nonlinear model and various functions, the model 
could find the hidden patterns from the training data 
and predict the output. Simulation of bearing 
characteristics was also performed on the basis of the 
hydrostatic bearing theory. An experimental setup 
was constructed to verify the film thickness, which 
can be considered as the bearing stiffness, obtained 
from both simulation and MLP prediction. Compared 
to the simulation, the proposed method by 
implementing the MLP model is more applicable for 
the design of hydrostatic bearing systems. 
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NOMENCLATURE 

 
 supply pressure 

 
 pocket pressure 

 
 flow rate 

 
 flow rate through the groove restrictor 

 
 flow rate through the pad 

 
 resistance of the entire restrictors 

 
 resistance of pad 

 
 resistance of groove restrictor 

 
 depth of groove restrictor 

 
 groove radius 

 
 oil viscosity 

 
 land resistance 

 
 resistance of rounded corner region 

 
 resistance of rectangular plate region 

 
 pocket width 

 

 pocket length 
 

 pocket radius 
 
 oil-film width 

 
 oil-film thickness 

 
 

以多層感知器改善 

液靜壓軸承之剛性表現 
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摘 要 

液靜壓軸承因其高剛性、高承載力、幾乎無摩

擦力等特性，已經被廣泛使用在精密機械加工機產

業，而使用於其中之節流器更是影響液靜壓軸承表

現的關鍵元件，因此本文致力於研究實驗室過往所

設計之溝槽式、自補償式與結合前兩者的複合式節

流器，進行物理理論之模擬與實驗驗證，完善此新

構形節流器的設計。然而，由於對於整個液靜壓軸

承系統，其數學模型過於冗長，又為非線性，在做

物理模擬時須做非常多的假設條件；再加上實驗的

過程中，來自於環境的其他干擾因素是模擬無法考

慮的，最後造成模擬結果不準確。因此，本研究利

用多層感知器模型可以接受多輸入多輸出與能處

理非線性問題等特性，以達到預測液靜壓軸承系統

搭配不同節流器時，隨著供油壓力、負載、油溫等

參數變化時其他相應參數可能的改變，並依此結果

輔助新節流器的設計。 

 


