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ABSTRACT 

With the continuous development of plastic 
strip steel technology, optimization of plastic part 
process parameters has become one of the hot 
research in the field of injection molding. This 
paper takes the automobile front door sill pressure 
plate as the research object and compares the 
results of filling time, cavitation, and weld line 
during the filling process by Moldflow analysis to 
determine the optimal number and position of 
gates. Five parameters such as mold temperature 
and melt temperature were selected as 
experimental factors, volume shrinkage and 
warpage are used as evaluation indicators, design 
of signal-to-noise ratio-based orthogonal tests, 
determined the optimal combination of process 
parameters using grey correlation analysis, the 
results showed that the volume shrinkage and 
warpage deformation of the two evaluation 
indexes were reduced by 22.27% and 20.82%, 
respectively, after optimization. The set of Pareto 
solutions for volume shrinkage and warping 
deformation is then obtained by building an 
Ellipsoidal Basis Function Neural Network 
(EBFNN) model combined with a Non-
dominated Sorting Genetic Algorithm (NSGA-II), 
the optimum process parameters were determined 
as mold temperature 40.5°C, melt temperature 
221.4°C, injection time 3.9s, packing pressure 
54.8 MPa and packing time 39.6s, the maximum 
volume shrinkage of the optimized part is 5.475%, 
the warpage deformation is 1.010mm. 
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INTRODUCTION 
 
With the rapid development of the economy, 

the automobile has become a very important 
means of transportation for the public. The huge 
industry chain of automobiles has brought wealth 
to human beings and at the same time caused 
great pressure on resources and the environment. 
In order to improve the resources and 
environmental problems caused by the 
automotive industry, automotive lightweighting 
has gradually become one of the hot research in 
the automotive industry. In this context, experts 
and scholars have researched a variety of 
lightweight materials to meet the performance 
requirements of automotive lightweighting, 
among which PP composites are gradually being 
widely used in automotive exterior and interior 
parts to replace traditional sheet metal parts to 
achieve weight reduction of automobiles. 
Injection molding is a typical processing and 
manufacturing method of automotive plastic parts, 
various quality problems often occur during the 
molding process, to improve product quality, the 
most economical way to improve product quality 
is to optimize the process parameters when the 
product structure and mold structure are 
determined. Optimizing process parameters with 
CAE technology and intelligent algorithms are of 
great engineering importance to improve product 
quality, shorten development cycles and increase 
product competitiveness. 

According to the structural characteristics 
of sliding door hook plastic parts, Xu Lanying et 
al. (2022) designed a mold casting system with 
two cavities and a cooling system and used 
Moldflow to analyze the mold flow of the 
injection process, and the simulation results 
verified the rationality of the mold structure 
design, which has important reference value for 
the mold design of the same type of plastic parts. 
Huang Fengli et al. (2009) proposed an injection 
molding process parameter optimization method 
based on integrated correlation, Kriging model, 
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and adaptive genetic-ant colony algorithm for two 
quality indicators, warpage and shrinkage, in the 
injection molding process. The results of injection 
molding process parameter optimization were 
reliable through mold flow analysis and actual 
injection molding experiments. In order to 
improve the molding quality of a thick-walled 
plastic product, He Shengyan et al. (2015) 
combined the orthogonal experiment method, 
studied the influence of each factor on each 
evaluation index by mean value analysis and 
extreme difference analysis and obtained a set of 
optimal process parameters by the comprehensive 
scoring method. Geng Haizhen et al. (2015) 
mainly studied the effects of different gate forms 
and a different number of cavities on the amount 
of warpage deformation during the injection 
molding process, which resulted in improved 
injection efficiency and cost savings. Jyoti 
Agarwal et al. (2020) studied the development of 
innovative composite materials to reduce fuel 
consumption in automobiles and explored the 
new composite polypropylene (PP) as a major 
research hotspot and a boon in reducing the 
consumption of automobiles in terms of 
lightweighting. Sung-Wook Park et al. (2018) 
studied the optimization process of the body 
structure by using a model for multi-objective 
optimization by reducing the mass as much as 
possible while ensuring the vehicle performance 
and derived an optimal solution based on the 
design objective using an objective programming 
approach. Vishwanath Panwar et al. (2021) 
proposed an experimental study of the response 
surface method and genetic algorithm for 
optimization of surface roughness of alloy steel 
turning, combined with Box-Behnken structural 
matrix for 15 sets of experiments, designed 
mathematical framework of surface roughness 
using surface response method of response 
surface model, and finally optimized this model 
using a genetic algorithm to obtain the optimum 
settings of process parameters. The optimal 
surface roughness response value of 1.19 𝜇𝜇𝜇𝜇 was 
obtained by analyzing the single-objective 
genetic algorithm optimization. Kuldip Singh 
Sangwan et al. (2017) studied the optimization of 
machining process parameters by integrated 
response surface and genetic algorithm, and 
established a functional expression between 
machining process parameters and optimization 
indexes i.e., a line response surface model based 
on the experimental results, and tested the 
correctness of the response surface model with 
the error controlled within 4%. The response 
surface model of the optimization index was 
validated by combining the significance F-value 
and ANOVA, and finally, the response surface 
model of the optimization index was optimized by 
using a genetic algorithm to find the best, thus 

reducing the energy consumption of the 
machining process on the machine tool. Heidari 
Behzad Shiroud et al. (2018) reduced the values 
of warpage and contraction to 0.287222 mm and 
13.6613% by using ANOVA through simulation 
analysis of important components of the artificial 
skeletal joint. Saad M. S. Mukras et al. (2019) 
proposed a framework for determining the 
optimal injection molding process parameters to 
minimize product defects through experiment-
based multi-objective optimization, considering 
seven process parameters such as mold 
temperature and melt temperature, two evaluation 
indexes such as volume shrinkage and warpage 
deformation, and the warpage and volume 
shrinkage of the obtained injection molded 
experimental products and using these two 
relationships, a multiobjective problem was 
proposed to minimize The multi-objective 
problem of minimizing the two defects is solved 
using genetic algorithm, and the experimental 
results show that it is close to the optimization 
results with a difference of about 7%. 

In this paper, mold temperature, melt 
temperature, injection time, packing pressure, and 
packing time are selected as experimental factors, 
and volume shrinkage and warpage deformation 
are used as evaluation indexes, design orthogonal 
tests based on signal-to-noise ratio and combine 
with grey correlation analysis to determine the 
primary and secondary factors affecting molding 
quality and the optimal combination of process 
parameters. Design full-scale experiments and 
establish sample points with orthogonal test data, 
the EBFNN model is developed, and the Pareto 
solution set of volume shrinkage and warpage 
deformation is obtained by combining NSGA-II 
multi-objective search algorithm, the optimal 
process parameters were finally determined, and 
the optimized volume shrinkage was evenly 
distributed with a maximum of 5.475% and 
warpage deformation of 1.010mm. Compared 
with the maximum volume shrinkage of 9.205% 
and warpage deformation of 1.739mm under the 
initial injection process parameters, the molding 
quality of plastic parts was significantly improved. 

 
DESIGN OF OPTIMAL POURING 

SYSTEM FOR AUTOMOBILE 
FRONT DOOR SILL PRESS PLATE 
AND SIMULATION STUDY OF ITS 
INJECTION MOLDING PROCESS 

 

In order to improve the defects of the 
injection molding process and reduce the 
production cost, this chapter uses the injection 
molding software Moldflow to design and 
optimize the pouring system of the model. 



Lu Wang and L.F. Tang: Injection Molding and Process Parameter Optimization. 

-147- 
 

Pre-processing for Moldflow analysis of 
automobile front door sill press plate 
 

Before Moldflow can analyze the injection 
molding process, it needs to import the model, 
divide and repair the mesh, then select the 
material, and set the initial process parameters, 
etc. 
(1) Automobile front door sill pressure plate 3D 

modeling 
3D modeling using CATIA on the basis of 

the original sheet metal part model, the model of 
the all- plastic front door sill pressure plate of the 
car was obtained as shown in Figure 1. The model 
size is 114𝜇𝜇𝜇𝜇 × 418𝜇𝜇𝜇𝜇 × 89𝜇𝜇𝜇𝜇, and the 
average wall thickness is 2.50𝜇𝜇𝜇𝜇. 

 
Fig 1. Automobile full plastic front door sill 

pressure plate model 
 
(2) Mesh type selection and division 

The 3D model is converted to igs format 
and imported into Moldflow for meshing. The 
purpose of this step is to convert the physical 
model into a mathematical model. The mesh size 
and quality have a close relationship with the 
simulation results and speed, and the mesh size 
should be set as small as possible to obtain the 
best simulation results. Moldflow provides three 
types of meshes: dual- level meshes, 3D meshes, 
and neutral surface meshes. The automobile front 
door sill pressure plate is a thin-walled plastic part, 
usually set the mesh type to dual-level mesh, 
mesh size is 1.5~2 times the thickness of the part, 
the average thickness of the model is 2.5 mm, and 
the edge length of the mesh is set to 4 mm for 
comprehensive consideration. The mesh quality 
results are shown in Table 1. 

 
Table 1 Mesh division results table 

Projects Value 
Number of meshes 57650 

Mesh matching percentage 93.2% 
Mesh mutual percentage 90.8% 

Average aspect ratio 1.88 
Minimum aspect ratio 1.16 

Maximum aspect ratio 17.04 

 
In Moldflow numerical simulation analysis, 

it is generally required that the percentage of dual-
level mesh matching and the percentage of mesh 
mutual is not less than 85%. In order to improve 

the accuracy of the simulation results, the 
maximum aspect ratio needs to be controlled 
within 10. The average aspect ratio is 1.88, and 
the maximum aspect ratio is 17.04, which is 
greater than the required maximum aspect, so the 
grid needs to be repaired. 
(3) Mesh repair 

Import the model into CAD Doctor for 
mesh repair, using both automatic and manual 
repair methods to repair. The automatic repair can 
only be used as an aid for mesh repair, and manual 
repair is required to obtain better mesh quality, 
this includes merging nodes, node matching, local 
re-gridding, etc. The mesh division of the repaired 
model is shown in Figure 2, the partial 
enlargement of the back side is shown in Figure 3, 
and the division results are shown in Table 2. 

 
Fig 2. Automobile full plastic front door sill 

pressure plate model 

 
Fig 3. Partial enlargement of the mesh on the 

back 
 
 

Table 2 Mesh repair results 
Projects Value 

Number of meshes 57544 
Mesh matching percentage 95.2% 
Mesh mutual percentage 94.2% 

Average aspect ratio 1.86 
Minimum aspect ratio 1.16 

Maximum aspect ratio 8.86 

 
From the restoration results in Table 2, it 

can be seen that the mesh matching percentage 
and mesh mutual percentage are greater than 90%, 
the maximum aspect ratio is reduced to 8.86, 
which is within the required range, and the mesh 
quality meets the simulation requirements. 
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(4) Front door sill pressure plate material setting 
The material is PP composite material 

requested by the customer, the material has 
excellent heat resistance, stiffness, and strength to 
meet the requirements of plastic instead of steel, 
is a comprehensive performance thermoplastic, 
Specific grade PP+EPDM-T20, is produced by 
Shanghai PRET Composites Co Ltd, and its 
viscosity curve and PVT curve are shown in 
Figures 4 and 5. 

 
 

 
Fig 4. Viscosity curve of the material 

 
 

 
Fig 5. Material PVT curve 

 
The main mechanical property parameters 

of the material include a modulus of elasticity of 
1700 MPa, Poisson's ratio of 0.37, and a shear 
modulus of 700 MPa. 
 
Study of automobile front door sill pressure 
plate pouring system 

The difference in gate location and quantity 
makes a big difference in the quality of the 
molded product. The optimal number of gates and 
gate locations are key factors in ensuring the final 
molded quality of the product. 
 
(1) Moldflow-based gate location search 

In order to choose the right number of gates 
and gate positions, the "gate position" analysis 
sequence in Moldflow is used to assist the setting 
of gate positions. In this paper, the number of 
gates is set to 1, 2, and 3 respectively according 
to the actual production experience. The matching 
cloud diagram of the gate position is shown in 
Figure 6. 

 

 

 
(a)                (b) 

 

 
(c) 

 
Fig 6. Gating search results  

 

(a) 1 gate matching schematic; (b) 2 gate 
matching schematic; (c) 3 gate matching 

schematic 
 

In the cloud diagram of the three options, 
the blue color indicates the best location for the 
gate with the least resistance during the filling 
process, while the red color indicates the most 
resistance during the filling process. In order to 
avoid the part will not leave traces on the 
decorative surface after injection molding, the 
gate location should be avoided on the decorative 
surface and set on the side of the part as much as 
possible. Therefore, Moldflow's gate search 
results need to be improved. 
 
(2) Pouring system design 

The design of the pouring system directly 
affects the quality, dimensional accuracy, and 
molding cycle time of the product. As the 
automobile front door sill pressure plate is a 
product with high requirements for appearance, 
there should be no marks on the surface. The 
pouring system with mixed hot and cold runners 
is chosen. The main flow channel adopts a hot 
runner structure, which is conducive to improving 
the injection pressure and material utilization rate, 
speeding up the injection speed and ensuring the 
filling quality of the parts, opening cold runners 
before entering the cavity, and adopting side gates 
with trapezoidal gate cross-section, which can 
improve the quality of product appearance to a 
certain extent. 

The automobile front door sill pressure 
plate belongs to the left and right parts in the 
automobile interior parts, so the layout of one 
mold with two cavities is used for its injection 
molding, which can improve the production 
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efficiency and save cost, and the obtained pouring 
system is shown in Figure 7. 

 

 
(a)                (b) 

 
(c) 

Fig 7. Pouring system 
(a) 1-gate pouring system; (b) 2-gate pouring 

system; (c) 3-gate pouring system 
 
(3) Pouring system optimization study 

By comparing the results of filling time, 
volume shrinkage, cavitation, and weld line 
during the filling process, the number and 
location of gates can be determined. The 
simulation of injection molding was done 
separately for three kinds of pouring systems. The 
injection process parameters were set as follows: 
mold temperature 50℃, melt temperature 208℃, 
injection time 2s, packing pressure 40MPa, 
packing time 20s, and the analysis result cloud is 
shown in the figure below. 

 

 
 

(a)                  (b) 

 
 

(c) 
Fig 8. Filling time cloud chart 

(a) 1-gate pouring system; (b) 2-gate pouring 
system; (c) 3-gate pouring system 

 
The filling results from Fig. 8 show that the 

filling times of the three gates are not very 
different, 2.453s,2.496, and 2.437s, respectively. 

  
(a)                  (b) 

 
(c) 

Fig 9. Volumetric shrinkage cloud chart 
(a) 1-gate pouring system; (b) 2-gate pouring 

system; (c) 3-gate pouring system 
 

From the volume shrinkage cloud in Figure 
9, the volume shrinkage of gate 1 is maximum of 
9.205%, that of gate 2 is maximum of 9.815% and 
that of gate 3 is maximum of 9.732%. 

  
(a)                  (b) 

 

 
(c) 

Fig 10. Cavitation cloud chart 
(a) 1-gate pouring system; (b) 2-gate pouring 

system; (c) 3-gate pouring system 
 

Cavitations will make the quality and 
structural stability of the molded part deteriorate, 
therefore, we need to try to select a pouring 
system that produces fewer cavitation s for 
injection molding. 

 

  
(a)                  (b) 
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(c) 

 
Fig 11. Weld line cloud chart 

(a) 1-gate pouring system; (b) 2-gate pouring 
system; (c) 3-gate pouring system 

 
The cloud diagram in Fig. 11 shows that the 

weld line of gate 1 has the best quality. Since the 
front door sill pressure plate of the car is an 
exterior part, the quality of the weld line is high. 

In summary, the results of filling time, 
volume shrinkage, cavitation, and weld line are 
clouded by comparing the three pouring systems, 
as shown in Table 3. 

Program Filling 
time/(s) 

Volume 
shrinkage

/(%) 

Cavitatio
n /(pcs) 

Weld line 
/(bar) 

1 gate 2.453 9.205 95 25 

2 gates 2.496 9.815 85 36 

3 gates 2.437 9.732 128 32 

By comparing Table 3, it can be concluded 
that the 1-gate pouring system gives the best 
results, so 1-gate is chosen as the gating solution 
for this paper. 
 

OPTIMIZATION OF INJECTION 
MOLDING PROCESS 

PARAMETERS BASED ON 
ORTHOGONAL TEST 

 
Orthogonal experimental design is an 

efficient, rapid, and economical experimental 
design method to study multi-factor and multi-
level. In this chapter, the volume shrinkage and 
warpage deformation of automobile front door 
sill press plate is taken as process parameter 
optimization objectives. designing a 5-factor, 4-
level orthogonal test based on the signal-to-noise 
ratio, and transforming the multi-objective 
problem into a single-objective optimization 
problem by combining grey correlation analysis, 
the best combination of process parameters was 
obtained using extreme difference analysis. 
 
Design of orthogonal test 
 

The orthogonal test is a widely recognized 
and highly effective experimental design method 
with unparalleled advantages for finding the best 
for complex objectives under the influence of 
multiple factors. The main use of orthogonal 

tables for experimental design Each orthogonal 
table has a code 𝐿𝐿𝑛𝑛(𝜇𝜇𝑘𝑘), where L is the 
representative symbol of the orthogonal table; n 
is the number of experiments; m is the number of 
levels of each selected parameter; and k is the 
number of parameters. 
 
(1) Orthogonal test factors and evaluation index 
selection 

The thickness of the front door sill platen in 
this paper is uneven, so it will produce warpage 
deformation in the process of injection molding, 
and the volume shrinkage rate of each part of the 
plastic part is the main cause of its warpage 
deformation, so the volume shrinkage rate and 
warpage deformation of the front door sill platen 
of the car will be used as the test index. 

The injection molding process of 
automobile front door sill pressure plate is 
influenced by many factors. By reviewing the 
literature, it is found that, among them, mold 
temperature, melt temperature, injection time, 
packing pressure, and packing time are the main 
factors affecting the volume shrinkage and 
deformation of the product during the injection 
molding process. The temperature of the mold is 
too high, which will cause the mold to stick and 
also cause bright spots in the local area; when the 
temperature is too low, the mold will be too tight, 
which is not conducive to mold exit and easy to 
strain the plastic parts; the melt temperature needs 
to be decided according to the temperature 
characteristics of different materials; too high a 
melt temperature will cause the material to lose 
activity and thermal deformation of the machine; 
the shorter the injection time, the higher the 
injection rate, and the size of the injection rate has 
a great impact on the performance of the molded 
part. Increasing the injection rate will help to 
reduce the heat loss in mold filling and reduce the 
shrinkage rate of the product. If the packing 
pressure is applied properly, the quality defects of 
the product will be reduced; if the packing time is 
too short, the shrinkage of the product will be 
increased and bubbles will be caused, if the 
packing time is too long, the stress will be 
generated inside the product and it will be easy to 
crack, etc. Therefore, the five main factors of 
mold temperature (A/℃), melt temperature 
(B/℃), injection time (C/s), packing pressure (D/ 
MPa), and packing time (D/s) were used as test 
factors. 
 
(2) Establishing an orthogonal test table 

The range of levels of the factors is 
determined based on the range of process 
parameters recommended for the material in 
Moldflow. The selected level settings for each 
factor are shown in Table 4. The 16 groups of 
orthogonal tests were combined in Moldflow to 
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do injection molding simulation, and the 
experimental results of each group were obtained 
as shown in Table 5. 

 
Table 4 Level factor setting 

Level 
Factor 

A B C D E 
1 40 190 1 40 10 
2 50 208 2 45 20 
3 60 226 3 50 30 
4 70 244 4 55 40 

 
Table 5 Orthogonal test scheme and results 

No A B C D E 
Volume 

shrinkage 
Warpage 

1 40 190 1 40 10 9.229 1.867 
2 40 208 2 45 20 7.534 1.593 
3 40 226 3 50 30 9.706 1.312 
4 40 244 4 55 40 9.316 1.037 
5 50 190 2 50 40 5.966 1.599 
6 50 208 1 55 30 8.446 1.434 
7 50 226 4 40 20 9.227 1.479 
8 50 244 3 45 10 12.11 1.705 
9 60 190 3 55 20 6.995 1.422 
10 60 208 4 50 10 10.23 1.372 
11 60 226 1 45 40 9.008 1.596 
12 60 244 2 40 30 8.977 1.558 
13 70 190 4 45 30 7.641 1.634 
14 70 208 3 40 40 8.565 1.726 
15 70 226 2 55 10 10.03 2.333 
16 70 244 1 50 20 11.15 1.406 

 
(3) Signal-to-noise ratio 

The ratio of signal power and noise is called 
the signal-to-noise ratio, which is often used to 
measure the degree of influence of various factors 
on the results and can be used as a basis for 
judging the stability of the experiment. The 
signal-to-noise ratio is divided in different 
situations into nominal- the-best characteristic, 
larger-the-better characteristic, and smaller-the-
better characteristic. In order to improve the 
molding quality of the automobile front door sill 
press plate, the evaluation index selected in this 
paper should be as small as possible, so the 
smaller-the-better characteristic is chosen. Its 
signal-to-noise ratio is calculated by the formula. 

𝑆𝑆 𝑁𝑁⁄ = −10lg (1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 )      (1) 

Where: 𝑆𝑆 𝑁𝑁⁄ —Signal-to-noise ratio (dB); 
𝑥𝑥𝑖𝑖—the value of the i-th experiment; 

n—number of repetitions of the experiment. 
The signal-to-noise ratio is calculated by 

substituting the volume shrinkage and warpage 
deformation data into equation (1), and the results 
are shown in Table 6. 

 
Table 6 S/N results of orthogonal test 

No 
Volume 

shrinkage 
S/N 

/(dB) 
Warpage 

S/N 
/(dB) 

1 9.229 -19.30 1.867 -5.42 
2 7.534 -17.54 1.593 -4.04 
3 9.706 -19.74 1.312 -2.36 
4 9.316 -19.38 1.037 -0.32 
5 5.966 -15.51 1.599 -4.08 
6 8.446 -18.53 1.434 -3.13 
7 9.227 -19.30 1.479 -3.40 
8 12.11 -21.66 1.705 -4.63 
9 6.995 -16.90 1.422 -3.06 

10 10.23 -20.20 1.372 -2.75 
11 9.008 -19.09 1.596 -4.06 
12 8.977 -19.06 1.558 -3.58 
13 7.641 -17.66 1.634 -4.27 
14 8.565 -18.65 1.726 -4.74 
15 10.03 -20.03 2.333 -7.36 
16 11.15 -20.95 1.406 -2.96 
 
Gray correlation analysis 
 

Gray correlation analysis is applicable to 
multi-objective optimization problems with small 
sample sizes. By establishing the relationship 
between the signal-to-noise ratio data and the 
ideal value of the evaluation index after 
dimensionless processing, calculating the gray 
correlation, and extreme difference analysis, the 
multi-objective optimization problem is 
converted into a single-objective optimization 
problem to obtain the optimal combination of 
injection molding process parameters for 
automobile front door sill press plate. 
 
(1) Gray correlation calculation 

In order to eliminate the effect of odd 
sample data on the results, the signal-to-noise 
ratio needs to be dimensionless, and the 
dimensionless formula is as follows: 

𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑖𝑖
𝑎𝑎𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚−𝑎𝑎𝑖𝑖 𝑚𝑚𝑖𝑖𝑚𝑚

         (2) 
Where: 𝑎𝑎𝑖𝑖—Signal-to-noise ratio of the i-

th experiment evaluation index; 
𝑎𝑎𝑖𝑖 𝑚𝑚𝑎𝑎𝑚𝑚—maximum signal-to-noise ratio of 

each evaluation index; 
𝑎𝑎𝑖𝑖 𝑚𝑚𝑖𝑖𝑛𝑛 —minimum signal-to-noise ratio of 
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each evaluation index; 
𝑦𝑦𝑖𝑖  —signal-to-noise ratio value after 

dimensionless. 
The degree of correlation between the 

dimensionless S/N data and the ideal value is 
called the gray correlation coefficient and is 
calculated as: 

𝛿𝛿𝑖𝑖 =
�𝑦𝑦𝑖𝑖
0−𝑦𝑦𝑖𝑖�𝑚𝑚𝑖𝑖𝑚𝑚+𝜌𝜌�𝑦𝑦𝑖𝑖

0−𝑦𝑦𝑖𝑖�𝑚𝑚𝑚𝑚𝑚𝑚
�𝑦𝑦𝑖𝑖
0−𝑦𝑦𝑖𝑖�+𝜌𝜌�𝑦𝑦𝑖𝑖

0−𝑦𝑦𝑖𝑖�𝑚𝑚𝑚𝑚𝑚𝑚
      (3) 

 
Where: 𝛿𝛿𝑖𝑖—Grey incidence coefficient; 
𝑦𝑦𝑖𝑖0—the ideal value of the i-th experimental 

data, generally taken as 0; 
𝜌𝜌 —the resolution factor, 𝜌𝜌 ∈ [0,1] , is 

generally taken as 0.5. 
 

The average of the gray correlation 
coefficients of the evaluation indicators is called 
the gray correlation degree, and the larger the 
value of the gray correlation degree, the greater 
the convergence of the experimental evaluation 
indicators under the influence of various factors. 
The gray correlation was calculated according to 
equation (4), and the analysis results are shown in 
Table 7, where dimensionless values are denoted 
by 𝐷𝐷𝑆𝑆𝑆𝑆, gray incidence coefficients are denoted 
by 𝐺𝐺𝑖𝑖𝑖𝑖, and gray correlations are denoted by 𝐺𝐺𝑖𝑖𝑐𝑐. 

 
𝛾𝛾𝑖𝑖 = 1

𝑚𝑚
∑ 𝛿𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1            (4) 

 
Where: 𝛾𝛾𝑖𝑖—grey correlation degree; 
m—optimize the number of targets, m is 

taken as 2. 
 

Table 7 Results of gray correlation analysis 

No 
Volume shrinkage Warpage 

𝐺𝐺𝑖𝑖𝑐𝑐 
S/N 𝐷𝐷𝑆𝑆𝑆𝑆 𝐺𝐺𝑖𝑖𝑖𝑖 S/N 𝐷𝐷𝑆𝑆𝑆𝑆 𝐺𝐺𝑖𝑖𝑖𝑖 

1 -19.30 0.62 0.45 -5.42 0.72 0.41 0.43 

2 -17.54 0.33 0.60 -4.04 0.53 0.49 0.55 

3 -19.74 0.69 0.42 -2.36 0.29 0.63 0.53 

4 -19.38 0.63 0.44 -0.32 0.00 1.00 0.72 

5 -15.51 0.00 1.00 -4.08 0.53 0.49 0.75 

6 -18.53 0.49 0.51 -3.13 0.40 0.56 0.54 

7 -19.30 0.62 0.45 -3.40 0.44 0.53 0.49 

8 -21.66 1.00 0.33 -4.63 0.61 0.45 0.39 

9 -16.90 0.23 0.69 -3.06 0.39 0.56 0.63 

10 -20.20 0.76 0.40 -2.75 0.35 0.59 0.50 

11 -19.09 0.58 0.46 -4.06 0.53 0.49 0.48 

12 -19.06 0.58 0.46 -3.58 0.50 0.50 0.48 

13 -17.66 0.35 0.59 -4.27 0.56 0.47 0.53 

14 -18.65 0.51 0.50 -4.74 0.63 0.44 0.47 

15 -20.03 0.73 0.41 -7.36 1.00 0.33 0.37 

16 -20.95 0.88 0.36 -2.96 0.38 0.57 0.47 

 
(2) Analysis of the extreme difference 

In order to obtain the degree of influence of 
each factor on the evaluation index and the best 
combination of injection molding process 
parameters, it is necessary to calculate the mean 
and extreme difference values of gray correlation 
degree under different combinations of process 
parameters. The difference between the 
maximum value and the minimum value in a 
group of data is called the extreme difference, and 
the larger the extreme difference is, the greater the 
influence of the factor on the evaluation index. 
The calculation results are shown in Table 8. 

 
Table 8 Extreme difference analysis of 

gray correlation 

Projects 
Factor 

A B C D E 

Mean value 1 0.558 0.585 0.480 0.468 0.423 

Mean value 2 0.543 0.515 0.538 0.488 0.535 

Mean value 3 0.523 0.468 0.505 0.563 0.520 

Mean value 4 0.460 0.515 0.560 0.565 0.605 

Extreme 

difference 
0.098 0.117 0.080 0.097 0.182 

 
From the calculation results of each factor 

in Table 9, it can be seen that the combined 
influence of each process parameter on the 
volume shrinkage and warpage deformation of 
the front door sill platen is, in descending order, 
as follows: mold temperature, mold temperature, 
injection time, packing pressure and packing time. 
The optimal combination of process parameters is 
𝐴𝐴1𝐵𝐵1𝐶𝐶4𝐷𝐷4𝐸𝐸4 , that is, mold temperature 40 ℃, 
melt temperature 190 ℃, injection time 4s, and 
packing pressure 55 MPa, packing time 40s. 
 
(3) Optimization result verification 

The optimal injection molding process 
parameters were obtained by combining signal-
to-noise ratio and gray correlation analysis for the 
automobile front door sill platen optimized by the 
method, further verification of the accuracy of the 
described method is required, and the best 
combination of process parameters 𝐴𝐴1𝐵𝐵1𝐶𝐶4𝐷𝐷4𝐸𝐸4 
obtained is experimentally verified, as shown in 
Figures 12 and 13. 
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Fig 12. Volume shrinkage 

 
Fig 13. Warpage 

 
The volume shrinkage of the optimized part 

was 7.155%; the warpage deformation was 1.377 
mm. Compared with the volume shrinkage of 
9.205% and warpage deformation of 1.739 mm 
under the initial injection molding process 
parameters, it can be seen that the volume 
shrinkage and warpage deformation of the two 
evaluation indexes were reduced by 22.27% and 
20.82%, respectively, after optimization. The 
quality of the molded parts is improved, and the 
feasibility and effectiveness of the optimization 
method combining the signal-to-noise ratio-based 
orthogonal test and gray correlation analysis are 
verified. 

 
PROCESS PARAMETER 

OPTIMIZATION BASED ON 
ELLIPSOIDAL BASIS FUNCTION 
NEURAL NETWORK AND NON-

DOMINATED SORTING GENETIC 
ALGORITHM 

 
The 16 sets of data obtained from 

orthogonal experiments cannot include all the 
values between the minimum and maximum 
levels of each process parameter, and the method 
can only obtain the local optimal process 
parameters, but not the global optimal process 
parameters. In this chapter, an Ellipsoidal Basis 
Function Neural Network (EBFNN) model with 
input as process parameters and output as 
evaluation indexes will be built, and the process 
parameters corresponding to the optimal 
evaluation index will be predicted in conjunction 
with Non-dominated Sorting Genetic Algorithm 

(NSGA-II).  
 
Sample data selection 
 

The selection of sample data plays a critical 
role in the accuracy of building the EBFNN 
model. Theoretically, the more sample data are 
selected, the more accurately the neural network 
is trained to simulate the system. In order to 
obtain more accurate optimization results, a 
comprehensive design of the experiment is also 
required. Three levels were taken for each factor, 
and the specific level values are shown in Table 9, 
and a total of 243 sets of experimental data were 
obtained. The sample points and results are shown 
in Table 11, and the data in the last 16 rows of 
Table 10 are from the orthogonal test. 

 
Table 9 Table of the levels of each factor in the 

full-scale test 

Level A B C D E 

1 40 190 1 40 10 

2 55 217 2.5 47.5 25 

3 70 244 4 55 40 
Table 10 Sample points and results 

No A B C D E 
Volume 

shrinkage 

Warp

age 

1 40 190 1 40 10 9.229 1.867 

2 40 190 1 40 25 7.325 1.913 

3 40 190 1 40 40 6.383 1.913 

4 40 190 1 47.5 10 9.154 1.684 

5 40 190 1 47.5 25 7.066 1.734 

6 40 190 1 47.5 40 5.908 1.734 

7 40 190 1 55 10 9.084 1.498 

8 40 190 1 55 25 6.660 1.543 

9 40 190 1 55 40 5.514 1.543 

10 40 190 2.5 40 10 9.088 1.760 

… … … … … … … … 

243 70 244 4 55 40 9.273 1.172 

244 40 190 1 40 10 9.229 1.867 

245 40 208 2 45 20 7.534 1.593 

246 40 226 3 50 30 9.706 1.312 

247 40 244 4 55 40 9.316 1.037 

248 50 190 2 50 40 5.966 1.599 

… … … … … … … … 

259 70 244 1 50 20 11.15 1.406 
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EBFNN model building 
 
In order to obtain the global optimal 

solution, it is necessary to re-optimize the 
injection molding process parameters. In this 
section, the mold temperature, melt temperature, 
injection time, packing pressure, and packing 
time are used as inputs, and the volume shrinkage 
and warpage deformation are used as outputs to 
build the EBFNN approximation model using 
Isight. 
 
(1) Mathematical model for multi-objective 
optimization problems 

Without loss of generality, the minimization 
problem for the multi-objective optimization 
problem can be expressed in the following 
mathematical form: 

⎩
⎪
⎨

⎪
⎧
𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀: 𝑓𝑓(𝑥𝑥) = {𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥), … , 𝑓𝑓𝑘𝑘(𝑥𝑥)}

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡:𝑔𝑔(𝑥𝑥) ≤ 0; 𝑝𝑝 = 1,2, … , 𝑙𝑙
ℎ(𝑥𝑥) = 0;𝑞𝑞 = 1,2, … ,𝜇𝜇
𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛]𝑇𝑇

𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖𝑐𝑐 , 𝑀𝑀 = 1,2, … ,𝑛𝑛

(5) 

Where: 𝑓𝑓(𝑥𝑥)—Objective function; 
𝑔𝑔(𝑥𝑥)—inequality constraint function; 
ℎ(𝑥𝑥)—equation constraint function; 
𝑛𝑛 —optimize the number of design 

variables; 
𝑥𝑥—design Variables; 
𝑘𝑘—number of objective functions; 
𝑙𝑙 —number of inequality constraint 

functions; 
𝜇𝜇 —number of equation constraint 

functions; 
𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑐𝑐—upper and lower limits of design 

variables. 
 
(2) Ellipsoidal Basis Function Neural Network 
(EBFNN) overview 

In recent years, BP neural network and RBF 
neural network have achieved a more mature 
theoretical basis and corresponding application 
results under the research of domestic and foreign 
scholars. In view of the characteristics of BP 
neural networks and RBF neural networks, 
Kavuri et al. proposed a neural network model 
with ellipsoidal basis functions, namely 
Ellipsoidal Basis Function Neural Network 
(EBFNN). The EBFNN structure is the same as 
the RBF neural network structure, which is also a 
feed-forward network model formed by three 
layers: the input layer, the hidden layer, and the 
output layer, and can be seen as an extension of 
the RBF neural network model. Its difference in 
network structure from BP and RBF neural 
networks mainly lies in the use of the ellipsoidal 
unit function for its hidden layer nodes and the 
use of full covariance matrix instead of diagonal 
covariance matrix in RBF neural networks, the 

input space is divided by ellipsoidal morphology, 
and the function output value is derived from the 
distance of the input sample data from the center 
of the ellipse and the axis distance of the ellipsoid, 
which can divide the input space more precisely 
and can improve the classification ability of the 
network. Thus, EBFNN should theoretically have 
stronger pattern recognition capability than the 
unbounded RBF neural network. The EBFNN 
structure is given in Figure 14. 
 

 
Fig 14. EBFNN structure 

An N-dimensional input sample: 𝑥𝑥 =
(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 and 𝑥𝑥 ∈ 𝑅𝑅𝑁𝑁 , then it is directly 
input into each hidden node so that the mth EBF 
node function expression of the hidden layer is: 

 
𝐹𝐹𝑚𝑚(𝑥𝑥) = 𝑀𝑀𝑥𝑥𝑝𝑝 �− 1

2
(𝑥𝑥 − 𝐵𝐵𝑚𝑚)𝑇𝑇𝑍𝑍𝑚𝑚−1(𝑥𝑥 − 𝐵𝐵𝑚𝑚)� (6) 

Where: 𝐵𝐵𝑚𝑚 —Hidden node centroids, 
𝐵𝐵𝑚𝑚 = (𝐵𝐵1𝑚𝑚,𝐵𝐵2𝑚𝑚 , … , 𝑥𝑥𝑚𝑚𝑁𝑁) ∈ 𝑅𝑅𝑁𝑁; 

𝑍𝑍𝑚𝑚 —full covariance matrix, 𝑍𝑍𝑚𝑚 =
(𝜎𝜎𝑠𝑠𝑠𝑠)𝑠𝑠,𝑠𝑠=1

𝑁𝑁 . 
 
The expression of the function of the i-th 

node of the output layer with respect to x is: 
𝐺𝐺𝑖𝑖(𝑥𝑥) = ∑ 𝛼𝛼𝑖𝑖𝑚𝑚𝜑𝜑𝑚𝑚𝑀𝑀

𝑚𝑚=1 + 𝛼𝛼𝑖𝑖0   (7) 
Where: 𝛼𝛼𝑖𝑖𝑚𝑚 —Connecting the weight of 

the mth EBF node and the i-th output node; 
𝛼𝛼𝑖𝑖0 —deviation term of the i-th indicator, 

𝑀𝑀 = 1,2, … ,𝑘𝑘. 
 
(3) EBFNN model building and accuracy 
evaluation 

Approximate models are a set of methods 
that represent the response relationship between 
inputs and outputs as an approximate 
mathematical model, which can be used as an 
alternative to time-consuming and 
computationally expensive simulations. In this 
chapter, the EBF neural network approximation 
model is constructed using the optimization 
design software Isight. In the main interface 
Approximation component, select RBF Model as 
the function approximation technique; in the Date 
file interface, select the sample type as Sampling 
Points, and import the first 229 groups of data in 
Table 11 as the training sample point data. Scan 



Lu Wang and L.F. Tang: Injection Molding and Process Parameter Optimization. 

-155- 
 

the training sample data in Parameter and define 
the input variables as the above five process 
parameters and the output responses as volume 
shrinkage and warpage, in the Technique Option 
interface, select Elliptical as the function type, 
where Smoothing Filter and Maximum lterations 
to Fit are set to default values. The final error 
analysis method selected Separate Date File and 
imported the last 30 sets of sample data in Table 
11 for error analysis. where the complex 
correlation coefficient(𝑅𝑅2) is calculated as: 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑚𝑚
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑚𝑚
𝑖𝑖=1

         (8) 
Where: 𝑛𝑛—Number of samples tested; 
𝑦𝑦𝑖𝑖—numerical simulation of real values; 
𝑦𝑦�𝑖𝑖 —estimated values of the approximate 

model; 
𝑦𝑦�𝑖𝑖—true Average. 
 
The results of the error analysis for each 

output response are shown in Table 11.  
 

Table 11 Model fitting accuracy 
Output 

Response 
𝑓𝑓𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴 𝑓𝑓𝑀𝑀𝐴𝐴𝐴𝐴  𝑓𝑓𝑅𝑅𝑀𝑀𝑆𝑆𝐴𝐴  𝑅𝑅2 

Volume 
shrinkage 

0.02855 0.19667 0.05404 0.94053 

Warpage 0.02192 0.19741 0.04668 0.96340 
 

 
(a) 

 
(b) 

Fig 15. Model error analysis 
(a) Volume shrinkage; (b) Warpage 

 
Among them, 𝑓𝑓𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴  , 𝑓𝑓𝑀𝑀𝐴𝐴𝐴𝐴  , and 𝑓𝑓𝑅𝑅𝑀𝑀𝑆𝑆𝐴𝐴  

are all less than 0.2, and 𝑅𝑅2 are all greater than 

0.9, which indicates that this model is significant, 
and the relationship between the true and ideal 
values can be seen in Figure 15, uniformly 
distributed on both sides of the ideal straight line, 
which proves that the accuracy of the 
approximation model meets the requirements and 
can fit the response values under the combination 
of different factors. 
 
NSGA-II based multi-objective injection 
molding process parameter optimization 
 

In order to quickly find the optimal 
combination of injection molding process 
parameters and reduce software simulation and 
labor costs, the NSGA-II multi-objective 
optimization algorithm is introduced to find the 
optimal solution based on the EBFNN model 
established in the previous section. 
 
(1) Overview of NSGA-II multi-objective 
optimization algorithm 

Genetic algorithms are modeled after the 
evolutionary phenomenon of biological 
superiority and inferiority, whose specific 
phenomena include heredity, mutation, natural 
selection, and hybridization. It is commonly used 
in optimization engineering problems, where 
iterative methods are used to find the optimal 
solution or solution set from a new population. 
Goldberg first proposed the concept of the Pareto 
optimal solution set. The phenomenon of 
conflicting sub-objectives often occurs in multi-
objective optimization, which also requires 
balanced optimization of sub-objectives to find 
the Pareto optimal solution set and Pareto frontier. 
Based on the nondominated genetic algorithm 
(NSGA) combined with elite strategy and optimal 
retention strategy, Deb et al. proposed the non-
dominated sorting genetic algorithm (NSGA-II) 
to obtain uniformly distributed noninferior Pareto 
solutions, NSGA-II not only improves the 
computational efficiency compared with NSGA 
algorithm but also solves the optimization 
problem with constraints. Therefore, this 
algorithm is chosen as the multi-objective 
optimization algorithm for process parameters in 
this chapter. 
 
(2) Multi-objective optimization model building 
based on EBFNN 

The Optimization component is invoked in 
the multi-objective optimization software Isight 
to solve the multi-objective optimization of the 
volume shrinkage and warpage deformation of 
the injection molding process of the automobile 
front door sill press plate in combination with the 
EBF neural network model. The NSGA-II multi-
objective optimization algorithm is selected in the 
interface, and the settings are set to set the 
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population size to 48, the evolutionary generation 
to 30, the crossover probability to 0.8, and the 
crossover distribution index and variance 
distribution index to default values. The design 
variables and objective function are defined. 
 
(3) Analysis of optimization results 

The iterative history of each optimization 
index obtained by Isight optimization is shown in 
Figure 16, and the distribution of Pareto solutions 
of the optimization index is shown in Figure 17. 

 
(a) 

 
(b) 

Fig 16. Iterative evolutionary process 
(a) Volume shrinkage; (b) Warpage 

 

 
Fig 17. Pareto solution distribution and optimal 

solution 
After 1201 iterations of the algorithm, the 

Pareto fronts for volume shrinkage and warpage 
deformation were obtained, and the iterative 
evolution process is shown in Figure 16. The 
optimal solution is obtained, and the 
corresponding optimal process parameters are: 
mold temperature 40.5°C, melt temperature 
221.4°C, injection time 3.9s, packing pressure 
54.8 MPa, and packing time 39.6s. The molding 
quality results are shown in Fig. 

 
Fig 18. Volume shrinkage 

 
Fig 19. Warpage 

 
The maximum volume shrinkage and 

warpage deformation of the optimized plastic 
parts are significantly improved, and the 
optimized volume shrinkage is evenly distributed 
with a maximum of 5.475% and warpage 
deformation of 1.010 mm. Compared with the 
maximum volume shrinkage of 7.155% and 
warpage deformation of 1.377 mm optimized by 
the combination of signal-to-noise ratio-based 
orthogonal test and gray correlation analysis, the 
volume shrinkage and warpage deformation were 
reduced by 23.48% and 26.65%, respectively, and 
the forming quality of the parts was improved. 
 

CONCLUSIONS 
 

The 3D data model of the front door sill 
pressure plate of the automobile was drawn by 
CATIA on the basis of the original sheet metal 
parts, and the mesh was repaired in CAD Doctor, 
three types of pouring systems, one gate, two 
gates and, three gates, have been created for the 
front door sill pressure plate. By evaluating the 
filling time, volume shrinkage, cavitation, and 
weld line of the three gating systems, the 1 gate 
gating system is determined to be the best gating 
system. 

According to the influence of process 
parameters on the molding quality of plastic parts, 
mold temperature, melt temperature, injection 
time, packing pressure, and packing time were 
selected as experimental factors, and volume 
shrinkage and warpage deformation were used as 
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evaluation indexes to establish a 5-factor, 4-level 
orthogonal test, the optimal combination of 
process parameters is 𝐴𝐴1𝐵𝐵1𝐶𝐶4𝐷𝐷4𝐸𝐸4 , i.e. mold 
temperature 40 ℃, melt temperature 190 ℃, 
injection time 4 s, packing pressure 55 MPa and 
packing time 40 s. After optimization, the volume 
shrinkage is 7.155%; warpage deformation is 
1.377 mm. Compared with the initial parameters, 
the two evaluation indexes of volume shrinkage 
and warpage deformation are reduced by the 
volume shrinkage and warpage were reduced by 
22.27% and 20.82%, respectively. 

Design and complete a comprehensive test 
to obtain more comprehensive sample point data, 
establish an EBFNN model combined with 
NSGA-II multi-objective optimization search 
algorithm, obtain Pareto solution sets for volume 
shrinkage and warpage deformation through 
genetic iteration, the final selection of process 
parameters was 40.5°C mold temperature, 
221.4°C melt temperature, 3.9s injection time, 
54.8 MPa packing pressure and 39.6s packing 
time as the optimal combination. the optimized 
volume shrinkage is uniformly distributed with a 
maximum of 5.475%, warpage deformation is 
1.010 mm, and the molding quality of the 
fabricated parts is improved. 
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NOMENCLATURE 

𝑆𝑆 𝑁𝑁⁄ —Signal-to-noise ratio (dB); 
𝑥𝑥𝑖𝑖—the value of the i-th experiment; 
n—number of repetitions of the experiment. 
𝑎𝑎𝑖𝑖 —Signal-to-noise ratio of the i-th 

experiment evaluation index; 
𝑎𝑎𝑖𝑖 𝑚𝑚𝑎𝑎𝑚𝑚—maximum signal-to-noise ratio of 

each evaluation index; 
𝑎𝑎𝑖𝑖 𝑚𝑚𝑖𝑖𝑛𝑛 —minimum signal-to-noise ratio of 

each evaluation index; 
𝑦𝑦𝑖𝑖  —signal-to-noise ratio value after 

dimensionless. 
Where: 𝛿𝛿𝑖𝑖—Grey incidence coefficient; 
𝑦𝑦𝑖𝑖0—the ideal value of the i-th experimental 

data, generally taken as 0; 
𝜌𝜌 —the resolution factor, 𝜌𝜌 ∈ [0,1] , is 

generally taken as 0.5. 
𝛾𝛾𝑖𝑖—grey correlation degree; 
m—optimize the number of targets, m is 

taken as 2. 
𝑓𝑓(𝑥𝑥)—Objective function; 
𝑔𝑔(𝑥𝑥)—inequality constraint function; 
ℎ(𝑥𝑥)—equation constraint function; 
𝑛𝑛 —optimize the number of design 

variables; 
𝑥𝑥—design Variables; 
𝑘𝑘—number of objective functions; 
𝑙𝑙 —number of inequality constraint 

functions; 
𝜇𝜇 —number of equation constraint 

functions; 
𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑐𝑐—upper and lower limits of design 

variables. 
𝐵𝐵𝑚𝑚 —Hidden node centroids, 𝐵𝐵𝑚𝑚 =

(𝐵𝐵1𝑚𝑚 ,𝐵𝐵2𝑚𝑚, … , 𝑥𝑥𝑚𝑚𝑁𝑁) ∈ 𝑅𝑅𝑁𝑁; 
𝑍𝑍𝑚𝑚 —full covariance matrix, 𝑍𝑍𝑚𝑚 =

(𝜎𝜎𝑠𝑠𝑠𝑠)𝑠𝑠,𝑠𝑠=1
𝑁𝑁 . 
 
The expression of the function of the i-th 

node of the output layer with respect to x is: 
𝐺𝐺𝑖𝑖(𝑥𝑥) = ∑ 𝛼𝛼𝑖𝑖𝑚𝑚𝜑𝜑𝑚𝑚𝑀𝑀

𝑚𝑚=1 + 𝛼𝛼𝑖𝑖0   (7) 
𝛼𝛼𝑖𝑖𝑚𝑚 —Connecting the weight of the mth 

EBF node and the i-th output node; 
𝛼𝛼𝑖𝑖0 —deviation term of the i-th indicator, 

𝑀𝑀 = 1,2, … ,𝑘𝑘. 
𝛼𝛼𝑖𝑖𝑚𝑚 —Connecting the weight of the mth 

EBF node and the i-th output node; 
𝛼𝛼𝑖𝑖0 —deviation term of the i-th indicator, 

𝑀𝑀 = 1,2, … ,𝑘𝑘. 
𝑛𝑛—Number of samples tested; 
𝑦𝑦𝑖𝑖—numerical simulation of real values; 
𝑦𝑦�𝑖𝑖 —estimated values of the approximate 

model; 
𝑦𝑦�𝑖𝑖—true Average. 
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摘要 

 

摘要：隨著塑帶鋼技術的不斷發展，塑件

工藝參數優化已經成為注塑成型領域的熱點

研究之一，本文以汽車前門檻壓板為研究物件，
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通過 Moldflow 分析對比充填過程中的充填時

間、氣穴和熔接線等結果，確定最佳的澆口數

量和位置。選取模具溫度、熔體溫度等五個參

數作為主要實驗因素，以體積收縮率和翹曲變

形為評價指標，設計基於信噪比的正交試驗，

利用灰色關聯分析法確定最優工藝參數組合，

結果表明，優化後的兩個評價指標體積收縮率

和翹曲變形分別降低了 22.27%，20.82%。再通

過建立 EBF神經網路模型結合 NSGA-II多目標

尋優演算法得到體積收縮率和翹曲變形的

Pareto解集，最終確定最佳工藝參數為模具溫

度 40.5°Ｃ，熔體溫度 221.4°Ｃ，注射時間

3.9ｓ，保壓壓力 54.8 MPa 及保壓時間 39.6

ｓ，優化後製件體積收縮率最大為 5.475%，翹

曲變形為 1.010mm。 
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