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ABSTRACT 
 
This study develops a novel approach for surface 
defect inspection of golfball using a view-to-view 
mapping based on a reduced set of Zernike moments. 
According to 1,000 random test views conducted in 
this study, the cycle time of inspection is about 2.0 
seconds, which is very competitive to a 
commercialized deep learning system. With a 
proposed fine-tuning mechanism, the false alarm rate 
achieved is 0.6%. To our best knowledge, no such 
comparable data are available in literature. The 
proposed inspection algorithm equipped with a non-
logo detector using color thresholding works under 
uneven illumination. It is capable to detect 
simultaneously logo-attached and non-logo assembly 
defects of different shapes, sizes, and colors in a 
single view and resolution. The principle of the 
proposed view-to-view mapping is applicable for 
inspection of defects on a wide and highly-
curved/plane surface where precise feature alignment 
for template matching is impractical to perform on 
line. 

INTRODUCTION 
 
    Automatic optical inspection (AOI) techniques 
have been widely applied for quality control of many 
industrial products. However, the technique 
developed for one application is rarely directly 
applicable for another. The applications may have 
their own specific clamping mechanism, region of 
interest (ROI), illumination design, and/or alignment 
scheme for a wide inspection area. Indeed, advanced 
techniques are still required, especially for the 
applications: (1) defects randomly spread over a wide 
and highly curved or ball surface where precise ROI 
alignment and uniform illumination design is difficult 
(2) defects vary simultaneously in shape, size, and 
color.  
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    Rosati et al. (2009) designed a defect detection 
system for an automotive plastic component with 
curved surfaces coated with high reflective material. 
They designed a set of mirrors to illuminate the 
defects of various shapes and dimensions on coating. 
The defects are detected as shadows against a high 
brightness background with good uniformity of 
intensity. Qiang et al. (2015) studied defects of 
printed circuit boards (PCB) where image stitching is 
applied to form a whole PCB image for inspection. 
They extract characteristic lines from views as 
registration for alignment. Surf registration is used to 
improve the stitching accuracy to solve the stitching 
gap problem caused by uneven illumination.  
    Arunachalam et al. (2018) applied the traditional 
techniques of RGB segmentation, edge detection and 
feature extraction for fruit quality control where fruits 
are classified as defected or fresh, based on the colors 
of fruit peel. Such inspection tasks are very labor-
intensive and time-consuming performed by human. 
An AOI system is developed to minimize 
classification error and processing time. Tout (2018) 
designed a system for wheel defect detection. 
Cameras allocate in a hemispherical way for 
capturing the whole surface of a wheel from all sides. 
The defects for inspection include surface scratches, 
marks, and different geometrical deformations in 
shape and size. Characteristic holes of the wheel are 
used as registration to enhance alignment accuracy 
and reduce false alarm rate.  
    Most of the previous AOI systems developed for 
wide-area inspection are based on views overlapping 
and ROI alignment. The defects to inspect either are 
at a background with even intensity or well aligned 
for template matching. Very few of the systems are 
applicable for inspecting defects over a ball. Yu et al. 
(2021) developed an AOI system for defects on the 
surface of a Si3N4 ceramic ball. The system acquires 
defect images using a locating device, eliminates 
image noises by stationary wavelet transform, and 
enhance image contrast using nonlinear filtering. 
Experiments are implemented to verify the 
effectiveness of their algorithm. 
    Golfball is a growing and popular sport. Golfball 
surface defects could be various in shape, size, and 
color. They could spread randomly over the whole 
surface of the ball (Asia Quality Focus). Some defects 
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such as dirt mark, inferiority and seam buffing flaw 
could appear casually on dimple surfaces along with 
glare light. Some defects such as logo scratch, logo 
protrusion/intrusion, print misalignment and incorrect 
print color could appear as attachment to a logo or 
inside it. It has a strong need to invest on AOI 
equipment for the economic reason. 
    Many successful golfball producers undergo strict 
inspection to ensure their highest product quality, 
while some choose to skip quality control to cut the 
cost. Strategic Automation (2021) developed many 
commercialized AOI machines, station by station for 
golfball orientation alignment, sorting, and inspection. 
Integro Technologies (2021) developed a deep 
learning system for inspection and sortation of a 
variety of logos printing on golfball surfaces. They 
implement discrete analysis tools to optimize the 
learning reliability and performance. An eight-station 
sequential operation machine can achieve an 
operating rate of 35 balls/min. However, their 
theoretical scheme and performance index such as 
false alarm rate are literally unknown.  
    The diameter of a standard golfball is about 42.75 
~42.95mm. Nonetheless, logo-related defects could 
be as small as 0.2~0.5mm in either dimension. 
Therefore, some golfball defects must be inspected 
under high image resolution and limited depth of 
focus. A local view is normally full of logos and/or 
dimple patterns under uneven illumination. Precise 
ROI alignment over the dimple surface is difficult. 
Lin (2007) studied the logo-related defect inspection 
problems by logo contours extraction. Mechanism for 
sequential control of ball orientation is designed to 
rotate logos into a focused view automatically. A 
degradation measure is proposed based on the 
accumulation of the turn angle of logo contours for 
evaluating logo quality. Experiments show that when 
the escape rate vanishes, the false-alarm rate is 1.23%.  
    Wu et al. (2016) designed illumination devices to 
reduce glare light reflective from the coating surface 
of golfball. Area-scan cameras are used to acquire 
images with good contrast for automatic defect 
detection. Some subtle flaws are detected with an 
improved false alarm rate and manpower reduction. 
Lin et al. (2020) proposed an image stitching method 
using optimization to achieve a whole-ball-surface 
(WBS) image fused from multiple views covering the 
whole surface of a golfball. Defect detection by WBS-
to- WBS matching between test and template is 
proposed.  
    This study is devoted to developing a novel AOI 
system for inspecting various golfball surface defects. 
All defects are detected based on a template WBS 
image constructed offline using Lin’s image stitching 
method (Lin et al., 2020). However, we inspect 
defects in a view-to-view mapping basis to reduce 
effectively the process time.  
    By view-to-view mapping, we search for a best 
mapping for a test view, based on a reduced set of 

Zernike Moments (ZMs) over a grid of template 
views. A similarity measure assisted with supplement 
is proposed to accomplish the mapping.  
    ZMs are traditional image descriptors used in 
application of image recognition (Prokop et al., 1992; 
Shang et al., 2000; Ma et al., 2001; Mukundan et al., 
1995). ZMs are mutually independent descriptors and 
invariant to rotation (Teague, 1980). By this 
invariance property, rotation can be negligible in 
searching for a view-to-view mapping. In addition, 
we found that ZMs have good competence against 
additive defects. This property is useful to assure a 
proper mapping.  
    However, the invariance properties of ZMs depend 
heavily on the accuracy of ZMs, while traditional 
numerical computation of ZMs could suffer from 
geometric and integration errors (Liao et al., 1998). In 
this regard, Xin et al. (2007) proposed a polar tiling 
layout of image with piecewise continue variation, 
and cubic spline interpolation is applied to compute 
ZMs with good accuracy.  
    In this study, we employ Xin’s method for ZMs 
computation. Defects are classified into the groups of 
logo-attached and non-logo. We extract logo-related 
and non-logo binary images out of a test view by color 
thresholding. Difference between the binary images 
of test and template provides information for defect 
detection. Approach for fine-tuning of the mapping is 
proposed in case a better detection accuracy is 
required. 
    The rest of the paper is organized as follows. 
Section 2 describes the coordinate system of view, 
view mapping and discretization. Section 3 reviews 
formula for computing a reduced set of ZMs and 
rotation. Section 4 presents a similarity measure with 
supplement and experiments based on the reduced set 
of ZMs for view mapping. The defect inspection 
method proposed is discussed in Section 5. Defects to 
detect include logo-attached and non-logo examples. 
Finally, Section 6 presents the conclusions of this 
paper. 
 

VIEW MAPPING AND 
DISCRETIZATION 

 
    Figure 1 gives a WBS image fused from 14 local 
views of a whole golfball surface using Lin’s image 
stitching with optimization (Lin et al., 2020). The 
WBS image has two large groups of logos and one 
small group of logos. The resolution of the local views 
is 640x480 pixels; the WBS image has the resolution 
of 1000x500, and it comprises all views as template.  
    In this study, the views of template are discretized 
into a grid as shown in Fig. 2. The discrete inclination 
angles are 𝑁௞𝜑௦ ൌ

గ

ேೖ
𝑘  where  denotes the number 

of intervals along the inclination axis and 0 ൑ 𝜑௦ ൑
𝜋. The discrete azimuthal angles are 𝜃௦ ൌ

ଶగ

ே೔
𝑖 where 
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𝑁௜  denotes the number of intervals along the 
azimuthal axis and 0 ൑ 𝜃௦ ൏ 2𝜋. Each point of the 
grid denotes a view and all views assume normal to 
the golfball surface.  
    By color thresholding, the primary colors of the 
WBS image are black (0x14211E), brown 
(0x552213), dark green (0x72A974), and light green 
(0x8FCF8C) where the number of pixels of each color 
is in an ascending order. The background renders dark 
and light green colors due to uneven illumination over 
the spherical and dimple surface, but black and brown 
are the colors of logos. 

 

 
 

Fig. 1.  Coordinate of a WBS image. 
 

 
 

Fig. 2.  Discretization of template views. 
 
 

ZERNIKE MOMENTS 

    For a continuous function f(𝜌, 𝜃), the ZMs of order 
n with repetition m is (Teague, 1980) 

𝑍௡௠ ൌ 𝐶௡௠ െ 𝑗𝑆௡௠ ൌ 
௡ାଵ

గ
׬ ׬ 𝑓ሺ𝜌, 𝜃ሻ𝑅௡௠ሺ𝜌ሻ𝑒ି௝௠ఏଵ

଴
ଶగ

଴ 𝜌𝑑𝜌𝑑𝜃,       (1) 

where 𝑗 ൌ √െ1; n is a nonnegative integer and m is 
an integer such that 𝑛 െ |𝑚| is even and nonnegative; 
𝐶௡௠ and 𝑆௡௠ denote the real and imaginary parts of 
𝑍௡௠, respectively; 𝑅௡௠ሺ𝜌ሻ is the Zernike polynomial, 
and 

𝑅௡௠ሺ𝜌ሻ ൌ ∑ ሺିଵሻೞሺ௡ି௦ሻ!ఘ೙షమೞ

௦!ቀ
೙ష|೘|

మ
ି௦ቁ!ቀ

೙శ|೘|
మ

ି௦ቁ!

ሺ௡ି|௠|ሻ/ଶ
௦ୀ଴  .      (2) 

    In this study, we employ Xin’s method for ZMs 
computation (Xin et al., 2007). Only the centered 
circular image with a radius of 228 pixels of a view is 
used. The image is transformed to a polar tiling layout 
with piecewise continue variation, and cubic spline 
interpolation is applied. If the image rotates, the ZMs 
become (Bai, 2007) 

𝑍௡௠
ሺఈሻ ൌ 𝑍௡௠𝑒ି௝௠ఈ,                          (3) 

where 𝑍௡௠
ሺఈሻ denotes the ZMs after the rotational angle 

of 𝛼, counterclockwise. 
 
Rotation and Phase Angle 
    Equation (3) leads to the rotational invariance 
property, and 

𝛼 ൌ
ఈ೟ିఈೞାଶగ 

௠
, 𝑛 െ |𝑚| ൌ 0, 2,4, …,            (4) 

where 𝛼௦ denotes the phase angle of ZMs of template; 
𝛼௧ the phase angle of ZMs of test,  

𝛼௦ ൌ tanିଵ ቀ
ௌ೙೘

஼೙೘
ቁ , 𝛼௧ ൌ tanିଵ ൬

ௌ೙೘
ሺഀሻ

஼೙೘
ሺഀሻ൰.        (5) 

    Without loss of generality, we assume all phase 
angles of template ZMs are zero (i.e., 𝛼௦= 0). Then, 
the template ZMs of the grid is  

𝑍ሺ଴ሻ ൌ ቄ𝑍௡௠
ሺ଴ሻ ሺ𝑖, 𝑘ሻ|𝑖 ൌ 0,1, … , 𝑁௜;    𝑘 ൌ

   0,1, … , 𝑁௞; 𝑛 െ |𝑚| is evenቅ.                      (6) 

    The phase angle 𝛼௧ relates with the rotational angle 
a test view relative to the template. We assume it is 
unknown in practical applications.  
    The magnitude of 𝑚 must be greater than 0. For 
each ZM, we can have 𝑚 tentative solutions for 𝛼௧ by 
Eq. (4). Therefore, we choose 𝑛 as an odd number. 
The solution set of a larger |𝑚| comprises that of a 
smaller |𝑚|. We classify all solutions into 𝑛 groups 
by nearest neighboring algorithm, and the median of 
the biggest group is elected as the solution for 𝛼௧. 
 
Reduced Set of Zernike Moments 
    Theoretically, ZMs form a complete set of 
descriptors if n is infinitely large. However, use of a 
finite n is more practical in application. We found that 
by experiment a reduced set for 𝑛 ൌ 11 and positive 
𝑚 is appropriate for view-to-view mapping.  
    This reduced set has 21 ZMs for each of the grid 
views, i.e.   
    𝑍௥

ሺ଴ሻ ൌ 

ቄ𝑍ଵଵ
ሺ଴ሻሺ𝑖, 𝑘ሻ, 𝑍ଷଵ

ሺ଴ሻሺ𝑖, 𝑘ሻ, … , 𝑍ଵଵ,ଽ
ሺ଴ሻ ሺ𝑖, 𝑘ሻ, 𝑍ଵଵ,ଵଵ

ሺ଴ሻ ሺ𝑖, 𝑘ሻ|𝑖 ൌ

0,1, … , 𝑁௜; 𝑘 ൌ 0,1, … , 𝑁௞ቅ.    (7) 

    For a test view, the reduced set is  

    𝑍௥
ሺఈ೟ሻ ൌ 

൝
𝑍ଵଵ

ሺఈ೟ሻሺ𝜑௧, 𝜃௧ሻ, 𝑍ଷଵ
ሺఈ೟ሻሺ𝜑௧, 𝜃௧ሻ, … , 𝑍ଵଵ,ଽ

ሺఈ೟ሻሺ𝜑௧, 𝜃௧ሻ,

𝑍ଵଵ,ଵଵ
ሺఈ೟ሻ ሺ𝜑௧, 𝜃௧ሻ

ൡ,    (8) 

where the rotational angle 𝛼௧  of the test view is 
relative to that of template. Note that the order 𝑛 set 
to be 11 here is simply from the computational point 
of view. 
    Figure 3 shows the distributions of |𝑍௡௠

ሺ଴ሻ | over the 

grid where n=5, m=1, 3, 5. | 𝑍௡௠
ሺ଴ሻ | denotes the 

magnitude of 𝑍௡௠
ሺ଴ሻ . 𝑍ଵଵ

ሺ଴ሻ, |𝑍ଷଵ
ሺ଴ሻ|, and |𝑍ହଵ

ሺ଴ሻ| have similar 
distribution patterns as shown in Fig. 3(a), 3(b), and 
3(c), wherever logos reside, the gradient of 
distribution is higher. As m increases, the patterns 
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disperse and the magnitude of the distribution 
decreases as shown in Fig. 3(d), 3(e) and 3(f). It 
reveals that this reduced set of ZMs of different orders 
supplementing to each other can work as a good 
descriptor for a view-to-view mapping. 
 

 
Fig. 3 Distributions of |𝑍௡௠

ሺ଴ሻ | over the grid for n=5,  
          m=1, 3, 5. 
 
 
SIMILARITY AND SUPPLEMENTAL 

MEASURES 
 

    In this study, a similarity measure for evaluating the 
similarity between test and template views is 
proposed: 

  𝛾ሺ𝑖, 𝑘ሻ ൌ
ℂሺ௜,௞ሻ

୫ୟ୶ ሾℂሺ௜,௞ሻሿ
, 𝑖 ൌ 0,1, … , 𝑁௜; 𝑘 ൌ 0,1, … , 𝑁௞,       

(9) 
where 𝛾ሺ𝑖, 𝑘ሻ  is the similarity measure, and 0 ൑
𝛾ሺ𝑖, 𝑘ሻ ൑ 1 . It evaluates the degree of matching 
between a test view and the template at the point ሺ𝑖, 𝑘ሻ, 
based on the reduced set of ZMs; maxሾ∙ሿ denotes the 
maximum function;  ℂሺ𝑖, 𝑘ሻ  is a counter for the 
template view at the point ሺ𝑖, 𝑘ሻ. 
    It counts the number of ZMs of the reduced set of 
test and template satisfying the following conditions, 
and maxሾℂሺ𝑖, 𝑘ሻሿ ൌ 21 according to Eq. (7): 

ሺ1 െ 𝜀௟ሻminሾℕ௡௠ሺ𝑖, 𝑘ሻሿ ൑  ቚ𝑍௡௠
ሺఈ೟ሻሺ𝜑௧, 𝜃௧ሻቚ  ൑ 

ሺ1 ൅ 𝜀௨ሻmaxሾℕ௡௠ሺ𝑖, 𝑘ሻሿ,                (10) 
where minሾ∙ሿ  denotes the minimum function; 𝜀௟  and 
𝜀௨  are extension tolerances in concern of the 
geometric and integration errors in computing ZMs, 
and 𝜀௟=𝜀௨= 0.01 are set in this study; ℕ௡௠ሺ𝑖, 𝑘ሻ is a 

set of the 4 neighbors of ห𝑍௡௠
ሺ଴ሻ ሺ𝑖, 𝑘ሻห, i.e. 

ℕ௡௠ሺ𝑖, 𝑘ሻ ൌ ቄห𝑍௡௠
ሺ଴ሻ ሺ𝑖 െ 1, 𝑘ሻห, ห𝑍௡௠

ሺ଴ሻ ሺ𝑖 ൅

1, 𝑘ሻห, ห𝑍௡௠
ሺ଴ሻ ሺ𝑖, 𝑘 െ 1ሻห, ห𝑍௡௠

ሺ଴ሻ ሺ𝑖, 𝑘 ൅ 1ሻหቅ.              (11) 

   We acknowledge a view mapping from 

𝑍௡௠
ሺఈ೟ሻሺ𝜑௧, 𝜃௧ሻ  to 𝑍௡௠

ሺ଴ሻ ሺ𝑖, 𝑘ሻ  is constructed wherever 
the similarity measure satisfies 

𝛾௟ ൏ 𝛾ሺ𝑖, 𝑘ሻ ൑ 𝛾௨, 𝑖 ൌ 0,1, … , 𝑁௜; 𝑘 ൌ 0,1, … , 𝑁௞,                            
(12) 

where 𝛾௟ and 𝛾௨ denote the lower and upper bounds of 
similarity between two views, respectively.  
    The proposed view mapping is dynamic by setting 
the bounds varying to avoid possible null mapping. 
For example, we may set initiallyሺ𝛾௟, 𝛾௛ሻ ൌ ሺ0.9, 1.0ሻ, 
and then reduce both the bounds by 0.1 
simultaneously until Eq. (12) is satisfied. The 
consequence of mapping also depends on the size of 
the interval [𝛾௟, 𝛾௨]. A small interval size may sustain 
in a null mapping, while a large one will lead to one-
to-many mappings where Eq. (12) is satisfied. 
 
Color Difference Measure 
    In case of one-to-many mappings, we will choose 
𝜏 mappings (𝜏 ൒1) of highest similarity measures as 
tentative for searching by a supplemental color 
difference measure. This supplemental measure is 
based on average of the absolute difference of RGB 
components between the primary colors of test and 
template in priority.  
    By priority, a primary color should play a more 
dominant role in measure of view matching if it is less 
in population in the views. Therefore, we establish 
priorities for each of the primary colors of the WBS 
image to assist the proposed supplemental measure.  
    In this study, the priority for each of the primary 
colors, from high to low, is black, brown, dark and 
light green. Our supplemental measure starts with the 
color of the highest priority by checking the average 
of absolute difference of RGB components between 
two views. If the color of a higher priority is absent, 
the color of next priority substitutes. The tentative of 
the smallest average of absolute difference is 
acknowledged as the best mapping.   
 
Experimental Examples 
    In this study, the mapping of views is discretized 
into a grid of 720x360 points. The total time required 
to compute the set of 𝑍௥

ሺ଴ሻ is about 36 hours using the 
software of LabVIEW 2020 executing on a laptop 
equipped with Intel(R) Core(TM) i7-8750H CPU @ 
2.20GHz, 16.0 GB RAM, and x64-based processor.  
    The mappings for 1,000 random views is shown in 
Fig. 4(a) where the center of a circle indicates a test 
view. The radius of the circle indicates accumulation 
of mappings (𝑁௠) for the test view. A bigger circle 
denotes more mappings which occur especially at the 
views near the North Pole (𝜑= 0) or South Pole (𝜑= 
𝜋) where the contents of views are much alike.  
    Figure 4(b) shows accumulation of views (𝑁௩) vs. 
accumulation of mappings. The proposed dynamic 
bounds setting guarantees no null mapping, but 95% 
of mapping are one-to-many, and only 5% are one-to-
one mapping.  
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Fig. 4 Mapping results of 1,000 random views (a) 
center of circle indicating a view, radius of 
circle indicating accumulation of mappings 
(b) accumulation of views vs. accumulation of 
mappings. 

 
    For one-to-one mapping, the only mapping itself is 
the best mapping. For one-to-many mappings, we 
temporarily choose the one with the highest similarity 
measure as the best mapping (i.e., 𝜏= 1). Under the 
best mapping, errors of inclination, azimuthal, and 
rotational angles are shown respectively in Fig. 5 (a), 
5(b), and 5(c) where the radii of the circles indicate 
the magnitudes of error.  
    In Fig. 5(a), the mean and maximal inclination 
angle errors are 0.004 and 0.017, respectively. The 
maximum occurs at the view shown in Fig. 6(a) where 
ሺ𝜑௧, 𝜃௧, 𝛼௧ሻ= (2.269, 0.889, 5.659). The mapping view 
of template without rotation is ሺ𝜑௦, 𝜃௦ሻ= (2.286, 0.881) 
as shown in Fig. 6(b). The relative rotational angle 
computed using Eq. (4) is 𝛼௦= 5.656. With rotation, 
the mapping view is shown in Fig. 6(c). Shown in Fig. 
6(d) in red pixel is the misalignment of logos between 
test and template with azimuthal and rotational errors 
as small as 0.008 and 0.003, respectively. 
 

 
 

Fig. 5 Magnitude of mapping errors (a)|𝜑௧ െ 𝜑௦|: 
max = 0.017, mean = 0.004 (b)|𝜃௧ െ 𝜃௦|: 
max=1.133, mean = 0.012 (c)|𝛼௧ െ 𝛼௦|: 
max=1.132, mean = 0.013. 

 

 
 
Fig. 6 Mapping views of the maximal inclination 

angle error in Fig. 5(a) for 𝜏= 1,(a) test view: 
 ሺ𝜑௧, 𝜃௧, 𝛼௧ሻ= (2.269, 0.889, 5.659),(b) best 
mapping without rotation: ሺ𝜑௦, 𝜃௦ሻ= (2.286, 
0.881),(c) best mapping with rotation: 
ሺ𝜑௦, 𝜃௦, 𝛼௦ሻ= (2.286, 0.881, 5.656),(d) 
misalignment of logos between test and 
template. 

 
    The misalignment of Fig. 6(d) can be improved 
based on a best mapping chosen from tentative using 
the proposed supplemental measure. For 𝜏 = 2, 
improvement of the misalignment is significant as 
shown in Fig. 7(c), despite that change of the mapping 
angles is less than 1.1% as shown in Fig. 7(a) and 7(b). 

 

 
 
Fig. 7 Mapping views of the maximal inclination 

angle error in Fig. 5(a) for 𝜏= 2, (a) best 
mapping without rotation: ሺ𝜑௦, 𝜃௦ሻ= (2.260, 
0.890),(b) best mapping with rotation: 
ሺ𝜑௦, 𝜃௦, 𝛼௦ሻ= (2.260, 0.890, 5.659),(c) 
misalignment of logos between test and 
template. 

 
    In Fig. 5(b), the mean and maximal azimuthal angle 
errors are 0.012 and 1.133, respectively. The 
maximum occurs at the view shown in Fig. 8(a) where 
ሺ𝜑௧, 𝜃௧, 𝛼௧ሻ= (0.002, 5.526, 1.088). The mapping view 
of template without rotation is ሺ𝜑௦, 𝜃௦ሻ= (0.000, 0.375) 
as shown in Fig. 8(b). Since the test view is very close 
to the North Pole, the azimuthal and rotational angles 
of the view correlate to each other strongly. The logos 
of the two views align to each other well despite the 
substantial errors of azimuthal and rotational angles 
whose sums differ only by 0.001 between test and 
template. The two views perfectly match with each 
other as shown in Fig. 8(c) where the inclination angle 
error is only 0.002. Therefore, the errors of azimuthal 
and rotational angles will be combined for evaluation, 
hereafter. 
 

 
 
Fig. 8 Mapping views of the maximal azimuthal 

angle error in Fig. 5(b) for 𝜏= 1, (a) test view: 
 ሺ𝜑௧, 𝜃௧, 𝛼௧ሻ= (0.002, 5.526, 1.088), (b) best 
mapping without rotation: ሺ𝜑௦, 𝜃௦ሻ= (0.000, 
0.375), (c) best mapping with rotation: 
ሺ𝜑௦, 𝜃௦, 𝛼௦ሻ= (0.000, 0.375, 6.240). 
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DEFECT INSPECTION 
 

    In this study, the defects to detect are classified into 
logo-attached and non-logo. The former may include 
logo protrusion/intrusion, scratch, print misalignment, 
and incorrect print color, while the latter may include 
surface dirt mark, inferiority, and seam buffing flaw.  
 
Classification of Image Blobs 
    Each pixel of a test view is classified into a primary 
color by minimizing the sum of square of RGB 
component differences between the pixel and the 
primary colors, i.e. 

𝐹௧ሺ𝑥, 𝑦ሻ ൌ 𝜅, 𝑥 ൌ 1, … , 𝑁௫, 𝑦 ൌ 1, … , 𝑁௬,    (13) 
where 𝐹௧ሺ𝑥, 𝑦ሻ  is a color classified function of test 
view; 𝑁௫  and 𝑁௬  the dimensions of the test view 
along the x- and y-axis, respectively, and 𝑁௫ = 640, 

𝑁௬= 480, and ඥ𝑥ଶ ൅ 𝑦ଶ ൑ 228 in this study; 𝜅 is an 
integer of 1 to 4 representing the color of black, brown, 
dark green, or light green, respectively according to 
the following criteria: 

min
఑ୀଵ,…,ே೎

ሼሾ𝑓௧ோሺ𝑥, 𝑦ሻെ𝑝఑ோሿଶ ൅ ሾ𝑓௧ீሺ𝑥, 𝑦ሻെ𝑝఑ீሿଶ ൅

ሾ𝑓௧஻ሺ𝑥, 𝑦ሻെ𝑝఑஻ሿଶሽ,                (14) 
where 𝑁௖ denotes the number of the primary colors, 
and 𝑁௖= 4 in this study; 𝑓௧ோ, 𝑓௧ீ, and 𝑓௧஻ are the RGB 
components of a test pixel; 𝑝఑ோ, 𝑝఑ீ, and 𝑝఑஻ are the 
RGB components of a primary color.  
 
Classification and Difference of Images  
    In this study, black and brown are the colors of 
logos. Therefore, we extract a logo-related binary 
image out of the test view using Eqs (13) and (14), i.e.,  

Φ௧ሺ𝑥, 𝑦ሻ ൌ ൜
 1, 𝑖𝑓 𝐹௧ሺ𝑥, 𝑦ሻ ൌ 1 𝑜𝑟 2 
0, 𝑖𝑓 𝐹௧ሺ𝑥, 𝑦ሻ ൌ 3 𝑜𝑟 4

,       (15) 

where Φ௧ሺ𝑥, 𝑦ሻ denotes the logo-related binary image.  
    Besides, a non-logo binary image is defined below: 

Ψ௧ሺ𝑥, 𝑦ሻ ൌ Φ௧ሺ𝑥, 𝑦ሻതതതതതതതതതതത ∙ Γ௧ሺ𝑥, 𝑦ሻ,            (16) 
Γ௧ሺ𝑥, 𝑦ሻ ൌ Γ௧ோሺ𝑥, 𝑦ሻ ൅ Γ௧ீሺ𝑥, 𝑦ሻ ൅ Γ௧஻ሺ𝑥, 𝑦ሻ,   (17) 

Γ௧ோሺ𝑥, 𝑦ሻ ൌ ൜
 1, 𝑖𝑓 |𝑓௧ோሺ𝑥, 𝑦ሻ െ 𝑝఑ோ| ൒ 𝛿

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
,       (18) 

Γ௧ீሺ𝑥, 𝑦ሻ ൌ ൜
 1, 𝑖𝑓 |𝑓௧ீሺ𝑥, 𝑦ሻ െ 𝑝఑ீ| ൒ 𝛿

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
,       (19) 

Γ௧஻ሺ𝑥, 𝑦ሻ ൌ ൜
 1, 𝑖𝑓 |𝑓௧஻ሺ𝑥, 𝑦ሻ െ 𝑝఑஻| ൒ 𝛿 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
,      (20) 

where Ψ௧ሺ𝑥, 𝑦ሻ denotes the non-logo binary image; “∙” 
denotes the AND operator, “ ഥ ” the NOT operator, “൅” 
the OR operator; 𝛿 is a threshold of color difference, 
and 𝛿 = 40 is set in this study; Γ௧ோሺ𝑥, 𝑦ሻ , 
Γ௧ீሺ𝑥, 𝑦ሻ ,  Γ௧஻ሺ𝑥, 𝑦ሻ  are binary images of test view 
𝑓௧ሺ𝑥, 𝑦ሻ with one of RGB components different from 
that of a primary color, respectively by thresholding; 
Γ௧ሺ𝑥, 𝑦ሻ  is a union binary image of Γ௧ோሺ𝑥, 𝑦ሻ , 
Γ௧ீሺ𝑥, 𝑦ሻ, and Γ௧஻ሺ𝑥, 𝑦ሻ. 
    The logo-related binary image may provide 
information of logo protrusion/intrusion, scratch and 
surface dirt mark falsely classified as logo-related 
comparing with the logo related binary image of a 

template view. The non-logo binary image may 
provide information of logo print misalignment, 
incorrect print color, inferiority, seam buffing flaw 
after comparing with the non-logo binary image of a 
template view. However, color gradient across the 
border of a logo is normally high under normal 
illumination where false non-logo binary images may 
arise. Such false binary images require removal in this 
study. 
    In this study, the differences between the logo-
related and non-logo binary images of test and 
template are defined as  

∆Φሺ𝑥, 𝑦ሻ ൌ Φ௧ሺ𝑥, 𝑦ሻ ൈ Φ௦ሺ𝑥, 𝑦ሻ,             (21) 
∆Ψሺ𝑥, 𝑦ሻ ൌ Ψ௧ሺ𝑥, 𝑦ሻ ൈ Ψ௦ሺ𝑥, 𝑦ሻ,             (22) 

where ∆Φ and ∆Ψ denote the difference of the binary 
images of logo-related and non-logo between test and 
sample; “ൈ ” is the EXCLUSIVE-OR operator; Φ௦ 
and Ψ௦ are logo-related and non-logo binary image of 
template with rotation.  
 
Fine-tuned Mapping and False Alarm Rate 
    The misalignment of logos in Fig. 7(c) is primarily 
due to the inclination angle error of 0.009 while the 
grid of mapping has the resolution of 0.00873. Further 
improvement of the alignment accuracy by fine-
tuning is proposed. 
    The proposed fine tune is based on searching for 
local minimization of the sum of the image values of 
∆Φ  by adjusting the inclination, azimuthal, and 
rotational angles of view, sequentially in a small step 
size, i.e.  

min
ఈೞേ௤∆ఈೞ

min
ఏೞേ௤∆ఏೞ

min
ఝೞേ௤∆ఝೞ

∑ሾ∆Φሿ ,  𝑞 ൌ 0,1, …,   (23) 

where ∑ሾ∆Φሿ denotes the sum of the image values of 
∆Φ ; ∆𝜑௦ , ∆𝜃௦ , ∆𝛼௦  denote the step size for fine-
tuning along an associated axis, respectively.  
    After fine-tuning, a blob image of ∆Φ is classified 
as logo-attached if the Euclidian distance between a 
blob pixel and a pixel of the contours of Φ௦  is less 
than a threshold of distance, i.e.    

หℬ∆஍ሺ𝑥, 𝑦ሻ െ 𝒞஍ೞ
ሺ𝑥, 𝑦ሻห ൏ 𝜆,                (24) 

where 𝒞஍ೞ denotes the contours of Φ௦; ℬ∆஍ the blob 
images of ∆Φ ; 𝜆  the threshold of distance for logo 
attachment detection, and it is set 𝜆= 9 by experiment 
in this study.  
    For a blob image of ℬ∆஍ attached to logo, the width 
of the blob image along a contour of 𝒞஍ೞ is defined as 
below:  

𝑤 ൌ max
∀ሺ௫,௬ሻ∈஍ೞ

min
∀ሺ௫ᇲ,௬ᇲሻ∈∆஍

หℬ∆஍ሺ𝑥ᇱ, 𝑦ᇱሻ െ 𝒞஍ೞ
ሺ𝑥, 𝑦ሻห,           

(25) 
where 𝑤 denotes the width of the blob image along a 
contour of 𝒞஍ೞ

ሺ𝑥, 𝑦ሻ.  
    By thresholding, we acknowledge a blob image of 
ℬ∆஍ as a logo-attached defect if 

𝑤 ൐ 𝜔,                             (26) 
where 𝜔 denotes a threshold of width.  
    A small threshold of width determines the 
sensitivity of detection to miniature logo-attached 
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defects. However, the false alarm rate (𝜖 ) could be 
high when logo misalignments mean. Inspection of 
1,000 random views without defects is accomplished, 
and the results are shown in Fig. 9. The black lines in 
the figures denote the distributions of accumulation of 
views of true positive vs. errors of mapping 
inclination and combination of azimuth-and-rotation 
where the width of lines is 0.00017 for accumulation. 
The red circles in the figures denote the distributions 
of false alarm (false positive) vs. the errors of 
mapping. 
 

 
 
Fig. 9 Distributions of true/false positives vs. 

mapping errors for 1,000 random views (a)𝜏= 
1, 𝜖=16.2% (b)𝜏= 2, 𝜖=5.6% (c)𝜏= 2, 
∆𝜑௦=∆𝜃௦=∆𝛼௦= 0.25, 𝜖=0.6%. 

 
    For 𝜏= 1, the distributions without fine-tuning are 
shown in Fig. 9(a) where 𝜖 ൌ  16.2%. For 𝜏 = 2, the 
distributions without fine-tuning are gathering toward 
the center. The variance of the distribution reduces as 
shown in Fig. 9(b) where 𝜖 ൌ 5.6%. The accuracy of 
view-to-view mapping is improved. By fine-tuning 
where ∆𝜑௦ = ∆𝜃௦ =  ∆𝛼௦ = 0.25, we execute the 
sequential searching of Eq. (23) twice for 
minimization. The mapping accuracy is further 
improved as shown in Fig. 9(c) where 𝜖 ൌ 0.6%.  
 
Experimental Examples 
    Defects are added to views by labor as shown in Fig. 
10, to demonstrate the robustness of the proposed 
view mapping against defect disturbances. The added 
defects are small, dashed logo protrusion/intrusion, 
thin-cracked logo protrusion/intrusion, and surface 
dirt marks as shown at the left of Figs 10(a)~10(d). 
    Logo misalignment and surface dirt are marked in 

red at the right of Figs 10(a)~10(d) where 𝜏= 3 and 
𝜔 = 3 are set without fine-tuning. For protrusion/ 
intrusion defects, precise logo alignment and 
successful defect detection are achieved. Despite the 
dirt marks added may disturb alignment as shown in 
Fig. 10(c), this disturbance is minor and does not 
affect dirt marks detection by using the proposed non-
logo binary image.  
 

 
 
Fig. 10 Proficiency of the proposed inspection 

algorithm against small-added defects (a) 
dashed protrusion/intrusion (b) thin-cracked 
protrusion/intrusion (c) spot marks (d) dash 
marks. 

 

   
 
Fig. 11 Demonstration of the proposed inspection 

algorithm for assembly defects (a) test views 
with assembly defects (b) detection without 
fine-tuning (c) detection with fine-tuning.  

 
    Continue the previous examples with more defects 
added as shown in Fig. 11(a). All added defects are 
assemblies of different shapes, sizes, and colors. With 
the above parameter settings and no fine-tuning, the 
robustness of the proposed view mapping against 
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disturbances still hold, despite logo misalignment is 
now somehow noticeable as shown in Fig. 11(b). 
These assemblies of disturbance do not affect dirt 
marks detection by using the proposed non-logo 
binary image. Note that the “surface dirt mark defects” 
of dark and light green colors are added for test on 
purpose. It illustrates that the proposed non-logo 
defect detection using the binary images ∆Ψ  can 
solve the problem of uneven illumination by using a 
proper threshold of color difference where 𝛿= 40 is 
set in this study. 
    With fine-tuning and ∆𝜑௦ = ∆𝜃௦ = ∆𝛼௦ = 0.25, the 
alignment accuracy is significantly improved as 
shown in Fig. 11(c). Dashed and thin-cracked 
protrusion/intrusion are isolated and detectable. 
 

CONCLUSIONS 
 

    This study is devoted to developing a novel 
approach for surface defect inspection of golfball. We 
propose a view-to-view mapping algorithm based on 
a reduced set of ZMs where the order of the reduced 
set is open to option. It is set in this study simply to 
shorten the computational time. The proposed 
mapping algorithm has good ability against additive 
defects as shown in Fig. 11. This ability is essential 
and explains why the proposed defect inspection 
approach can be successful to apply.  
    The mapping is from test to a template view defined 
by ℕ௡௠ሺ𝑖, 𝑘ሻ in Eq. (11), which is the 4 neighbors of 
the view. This adjacent region definition makes the 
mapping have better robustness against the geometric 
and integration errors of ZMs. Other definition of 
ℕ௡௠ሺ𝑖, 𝑘ሻ  to improve further the robustness 
performance is feasible. 
    The proposed inspection algorithm can be 
implemented in a single view in a sequential operation 
to reduce the inspection time. All the experiments 
conducted in this study are based on 1,000 random 
test views, using the software of LabVIEW 2020 
running on a desktop equipped Intel(R) Core(TM) i7-
8750H CPU @ 2.20GHz, 16.0 GB RAM, and x64-
based processor. The average cycle time of our view-
to-view inspection is about 2.0 seconds. This is very 
competitive to the deep learning system developed by 
Integro Technologies, Inc..  
    The false alarm rate achieved in this study is as low 
as 0.6% as shown in Fig. 9(c). In addition, the 
proposed inspection algorithm is equipped with a 
non-logo detector by color thresholding, which gives 
a flexible parameter 𝛿 for design for overcoming the 
uneven illumination problem. The algorithm with 
fine-tuning can detect simultaneously logo-attached 
and non-logo defects of assemblies of different shapes, 
sizes, and colors in a single view and resolution. To 
our best knowledge, these performance indexes of 
related studies are unknown in the literal domain. 
    The idea of the proposed view-to-view mapping is 
applicable for defect inspection on a wide highly-

curved/plane surface or other ball surface where 
precise ROI alignment is difficult to perform on line 
or in a short time.  
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NOMENCLATURE 
 
𝜑      inclination angle 
𝜑௦      inclination angle of template view 
𝜑௧      inclination angle of test view 
𝑁௞   number of grid intervals along inclination axis 
𝜃     azimuthal angle 
𝜃௦    azimuthal angle of template view 
𝜃௧    azimuthal angle of test view 
𝑁௜       number of grid intervals along azimuthal axis 
𝑍௡௠  Zernike moment of order n with repetition m 
𝐶௡௠  the real part of 𝑍௡௠ 
𝑆௡௠  the imaginary part of 𝑍௡௠ 
𝑅௡௠  Zernike polynomial of order n with repetition 
m 
𝛼     rotational angle 
𝛼௦    phase angle of ZMs of template 
𝛼௧    phase angle of ZMs of test 

𝑍௥
ሺ଴ሻ  reduced set of ZMs of template  

𝑍௥
ሺఈ೟ሻ reduced set of ZMs of test  

𝛾     similarity measure 
ℂ     counter for template view 
𝜀௟    extension tolerances 
𝜀௨    extension tolerances 
ℕ    set of 4 neighbors 
𝛾௟    lower bound of similarity 
𝛾௨   upper bound of similarity 
𝜏    number of mappings 
𝑁௩   accumulation of views 
𝑁௠   accumulation of mappings 
𝐹௧    color classified function of test view 
𝑁௫   dimension of test view along x-axis 
𝑁௬   dimension of test view along y-axis 
𝜅    index integer of a primary color  
𝑁௖    number of primary colors 
𝑓௧    binary image of test view 
𝑓௧ோ   R component of a test pixel 
𝑓௧ீ   G component of a test pixel 
𝑓௧஻   B component of a test pixel 
𝑝఑ோ   R component of a primary color 
𝑝఑ீ   G component of a primary color 
𝑝఑஻   B component of a primary color 
Φ௧   logo-related binary image of test view 
Φ௦   logo-related binary image of template view 
∆Φ   difference of logo-related binary image 
between test and sample 
∆𝜑௦  step size of fine-tuning along inclination axis 
∆𝜃௦  step size of fine-tuning along azimuthal axis 
∆𝛼௦  step size of fine-tuning along rotational axis 
∑  sum of image values 
Ψ௧   non-logo binary image of test view 
Ψ௦    non-logo binary image of template view 
∆Ψ   difference of non-logo binary image between 
test and sample 
𝛿     threshold of color difference 
Γ௧    union binary image of Γ௧ோ, Γ௧ீ, and Γ௧஻ 
Γ௧ோ   see definition in Eq. (18) 
Γ௧ீ   see definition in Eq. (19) 
Γ௧஻   see definition in Eq. (20) 
𝒞஍ೞ  contours of Φ௦ 
ℬ∆஍  blob images of ∆Φ 
𝜆     threshold of distance 
𝑤    width of blob image along contour of 𝒞஍ೞ 
𝜔    threshold of width 
𝜖     false alarm rate 
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藉由影像對映及Zernike矩
之高爾夫全球表面瑕疵檢

測法 
 

林穀欽  馬敏雄 

崑山科技大學機械工程系暨研究所 

 

摘要 
    本研究提一高爾夫全球表面瑕疵檢測新法，本

法採用測試影像之Zernike矩次集合與二維陣列樣

板影像，尋找出兩者間之最佳對映，進而實踐樣

板影像比對及瑕疵檢測。依據 1,000 次隨機影像

測試實驗顯示，本實驗完成每顆高爾夫球表面瑕

疵檢測，所需平均電腦計算時間約為 2 秒，本檢

測速度與一般商業化深度學習系統約略相當。然

而，本檢測法具精密的影像對映微調機制，可獲

得低至 0.6%之錯誤警報率。依作者的瞭解，目前

並無可參考文獻提出更低之錯誤警報率。本檢測

結合有色彩分割技法，可克服非均勻照明下易造

成瑕疵誤判的問題。線上檢測時，本法僅須擷取

單一解析測試影像，即可同時針對不同形狀、尺

寸及顏色商標及非商標之混合瑕疵作檢出。本影

像對映法特別適用於其他大範圍平面或曲面、不

易執行精確特徵對位或無法短時間內完成有效線

上瑕疵檢測之應用。 

 
 
 
 
 
 


