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ABSTRACT 

 
This paper presents the rigid-body inverse dynamics 
of a spatial redundantly actuated parallel mechanism 
(RAPM) constrained by two point-contact higher 
kinematic pairs (HKPs). Firstly, its constrained 
motions are analysed comprehensively, Then the 
dynamic model is built by the decoupled natural 
orthogonal complement (DeNOC) in the joint space, 
which is very suitable for the model-based motion 
control. The influences by HKPs in the model 
structure, the computational time, and the torque cost 
are discovered clearly. The NOC matrix is decoupled 
into three matrices, which is very different from those 
in PMs without actuation redundancy. The 
comparisons between the RAPM and its counterpart 
free of HKPs clearly validate that the constraints at 
HKPs considerably increase the computational cost, 
and the torques required by the parasitic motions of 
the end effector are significantly smaller than those by 
the corresponding DOFs. 

 
INTRODUCTION 

 
In the food industry, there is a strong interest in 

evaluating the time-varying dynamics of newly 
developed food textures during the chewing process. 
To this end, a machine that can accurately replicate the  
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human-like chewing behaviours such as the 
three-dimensional (3D) chewing motions and bite 
forces in a biomimetic fashion can come into play a 
significant role. Inspired by the masticatory system of 
human beings, a spatial parallel mechanism (PM) 
constrained by two point-contact higher kinematic 
pairs (HKPs) has been developed (Cheng, Xu, and 
Shang 2015): the base is the skull, the six RSS 
(revolute-spherical-spherical) kinematic chains are the 
primary chewing muscles, the end effector is the 
mandible, and the two HKPs are the left and right 
temporomandibular joints (TMJs), respectively. The 
underlined letter means the joint is active in the chain. 
From the viewpoint of mechanism, the masticatory 
system is redundantly actuated, for it owns more 
chewing muscles than its degrees of freedom (DOFs). 
Meanwhile, during its movements, the lower jaw is 
always constrained by the maxilla at two TMJs. In the 
designed PM, the number of actuations is also larger 
than that of the DOFs, and the end effector is directly 
constrained by the base at two HKPs. Therefore, these 
two features are in a good agreement with the human 
masticatory system, and it is a biologically congruent 
redundantly actuated parallel mechanism (RAPM) 
constrained at HKPs. Readers interested in the human 
masticatory system and chewing robotics can refer to 
(Xu and Bronlund 2010) for a comprehensive 
description. 

Compared to serial mechanisms, PMs have 
better payload capacities, larger stiffness, and higher 
motion accuracy (Merlet 2012). Actuation redundancy 
can better enhance these advantages (Muller 2005). To 
realise them in practice, a suitable inverse dynamic 
model that can contribute to the model-based motion 
and/or force control is needed. Due to the nature of 
actuation redundancy in PMs, actuations in the joint 
space are not independent. Thus, the inverse dynamics 
models of RAPMs are usually in the task space, for 
instance, see (Liu et al. 2022) (Wang et al. 2019) 
(Shang and Cong 2014) (Cheng, Yiu, and Li 2003). To 
implement the dynamic model-based motion control, 



 
J. CSME Vol.44, No.1 (2023) 

 -92- 

the motions in the task space are either measured by 
exteroceptive optical devices in practice (Bellakehal et 
al. 2011), or computed by forward kinematics in 
real-time theoretically (Shang and Cong 2014) (Cheng, 
Yiu, and Li 2003). However, these two methods pose 
evident challenges: the exteroceptive devices no doubt 
increase the hardware cost and complexity. On the 
other hand, even though in some planar RAPMs 
forward dynamics is available in a relatively simple 
manner as in (Cheng, Yiu, and Li 2003) (Liang et al. 
2015), however, for the RAPM under study, its 
forward dynamics is very sophisticated, rendering the 
computation hardly be realised in real-time. In 
comparison, a dynamic model in the joint space is 
easy-to-use and the economic cost is acceptable. The 
displacements and velocities can be measured by 
encoders of actuators directly, and accelerations can 
be computed in a simple manner, then neither 
exteroceptive devices nor forward kinematics is 
needed. More importantly, the great number of 
advanced control schemes developed for serial 
manipulators in the joint space can be easily extended 
to this RAPM. In these regards, building an inverse 
dynamics model in its joint space of the RAPM under 
study is the strong motivation in this paper. 

From the literature, the decoupled natural 
orthogonal complement (DeNOC) (Saha 1999) has 
attracted our attention. It is developed from the 
concept of NOC matrix which is explicitly decoupled 
as a product of a block lower triangular matrix and a 
block diagonal matrix. This method has some 
advantages such as many physical interpretations of 
the vectors and matrices, and recursive 
inverse/forward dynamics algorithms (Rao, Saha, and 
Rao 2006). Due to these, it has been employed widely 
in various mechanisms recently. For instance, it was 
used to the inverse and forward dynamics of 
serial-chain manipulators (Saha 1999), and the inverse 
dynamics of both planar (Khan et al. 2005) and spatial 
(Rao, Saha, and Rao 2006) PMs. The virtual spring 
method was incorporated into it to resolve the forward 
dynamics of a planar RRRRR PM with two DOFs 
(Raoofian, Kamali, and Taghvaeipour 2017). In 
(Rahmani Hanzaki, Saha, and Rao 2009), this method 
was combined with Euler parameters to build 
improved rigid body dynamic models of multibody 
systems with spherical joints. It was further utilised to 
build the model of a planar compliant robotic fish in 
(Jiang and Liu 2021). 

In this paper, an attempt has been made to 
adopt the DeNOC to build the dynamics model of the 
RAPM, and it is believed the first to apply this method 
to a RAPM constrained by the base directly. In the 
dynamics modelling, it is assumed that all bodies and 
joints are rigid and free of clearances or friction. The 
inertia of the spherical joints is rather small and 
ignored. A detailed description of the mechanism is 
presented first, then the kinematics including the 
constrained end effector and the chains is analysed 

comprehensively. On this basis, the inverse dynamics 
of the RAPM in its joint space is formatted by the 
DeNOC. The numerical computations and the 
influences of the constraints at HKPs in the inverse 
dynamics are presented. Some conclusions are drawn 
in the end. 

 
THE MECHANISM 

The kinematic diagram of the PM constrained 
by the base at two HKPs is illustrated in Figure. 1(a). 
The maxilla (i.e., the base) is fixed on the ground and 
the movable mandible (i.e., the end effector) is driven 
by six independent kinematic chains. For a clear 
exhibition of movable bodies, the main part of the 
maxilla is not shown in the figure. However, the 
articular surfaces of TMJs belonging to the maxilla are 
exhibited to show the point-contact HKPs. 
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Fig. 1 The constrained PM by the base at two 
point-contact HKPs, (a). Its schematic diagram where 
①  ②  are condyle balls, and ③  ④  are articular 
surfaces of TMJs (Cheng, Xu, and Shang 2015), (b). A 
point-contact HKP and related mechanical parts. 

 
The inertia frame {S} attached to the maxilla 

consists of a horizontal XS-YS plane perpendicular to 
the vertical ZS axis. A frame {M} is established at the 
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mass centre OM of the end effector. The origins and 
orientations of {S} and {M} overlap when the 
mechanism is at the home position, that is, the 
maxilla and the mandible are in the occlusal state. 
The origin OM is used as the reference point to 
describe the mandibular translations, and its 
orientations with respect to {S} are described by XYZ 
Euler angles, that is,α , β , and γ around the three axes 
of {M}. Two point-contact HKPs are formed between 
the condylar balls ① ② in the lower jaw and the 
articular surfaces of TMJs ③ ④ at the upper jaw. 
Each chain contains a rotational actuator fixed onto 
the base, whose driving shaft connects a crank GiSi 
(i=1,…,6) with a rotational joint at Gi, and a coupler 
SiMi that joins the crank and the end effector via two 
spherical joints at its two ends Si and Mi, respectively. 
The rotation of the ith actuator with respect to {S} is 
described by the actuator frame{ }iC attached at Gi. In 
it, the

iCX axis is directed from Gi to Si, the
iCZ axis 

runs through the driving shaft of the actuator, and 
the

iCY axis completes the frame, obeying the 
right-hand rule. A frame {Ni} is attached at the mass 
centre Ei of SiMi to describe its motions with respect 
to {S}. The

iNX axis points from Si to Mi, the
iNY axis 

is parallel to the cross product of two unit vectors 
defined along the

iNX and XS axes, and the
iNZ axis is 

defined by the right-hand rule. From Fig. 1(a), the end 
effector is driven by six chains and constrained by the 
base at two HKPs simultaneously. 

A point-contact HKP and its related 
mechanical parts in Fig. 1(b) show the practical 
mechanical design of HKPs. The condylar ball slips 
along a condylar socket with a width equal to the 
diameter of the ball. Thus, the point-contact HKP 
during the movements of the end effector is always 
guaranteed. 

 
 

KINEMATICS OF THE MECHANISM 
 

The constrained end effector 
A second-order surface was used as the 

workspace of the centre of the condylar ball in 
(Cheng, Xu, and Shang 2015). However, it is very 
difficult to derive explicit analytical expressions of 
the parasitic motions under the second-order surface 
when the frame {M} is situated at the mass centre of 
the end effector. Regarding it, in this paper where the 
chewing system is explored from the viewpoint of 
constrained mechanical dynamics, the surfaces in {S} 
where the left and right condyle ball centres Ti (i=L, R) 
slide on are designed as flat (unit: mm) 
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where p1 is a dimensionless parameter, while the unit 
of p2~ p6 is millimetre. 

From the Kutzbach-Grübler criterion, the 
mechanism has four DOFs, but the information on 
which four to choose is not given. They are to be 
derived from a rigorous computation below. 

The coordinates of Ti (i=L,R) in {S} can be 
expressed as 

      S M
S i S M M M i= + ⋅O T O O R O T        (2)                                                     

where [ ]TS M X Y Z=O O denotes the 3 1× position 
vector of OM in {S}, ( ) ( ) ( )S

M X Y Zα β γ⋅= ⋅R R R R is 

the rotation matrix from {S} to {M}, ( )X αR , ( )Y βR , 
and ( )Z γR are three rotation matrices about the XM, YM, 
and ZM axes by three Bryant anglesα , β , and γ , 
respectively, and M

M iO T is the vector M iO T in {M}. It is 
worth noting that in this paper, a position vector in a 
local frame owns a leading superscript on its left to 
denote the specific frame it refers to, but those in {S} 
omit the superscript for the sake of clarity. 

From Eq. (2), one can obtain 
(1,:)

(3,:)

S M
i M M i

S M
i M M i
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= + ⋅

= + ⋅

R O T

R O T
           (3)                                    

where ( ),:
S

M jR is the jth(j=1,3) row of S
M R . Putting Eq. 

(3) into Eq. (1) produces 

( )(3,:) 1 (1,:) 2
S M S M

M M i M M iZ p X p+ ⋅ = ⋅ + ⋅ +R O T R O T                                          
(4) 

Because of the left-right symmetry 
of M

M LO T and M
M RO T in {M}, a summation and a 

subtraction of the two equations in Eq. (4) yield 
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+

O T
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O T (5)                                      

where ( ) ( )1,3M
M L j j =O T are the jth term of M

M LO T . 
From these computations, Z and γ are transferred from 
DOFs to parasitic motions and they are functions 
of EEq , which is a 4◊ 1vector by grouping four DOFs 
as 

[ ]TEE X Y α β=q            (6)                                                               
and it constitutes the task space of the RAPM. 

In this case, to characterise the instantaneous 
configuration of the mechanism, both Eqs. (5) and (6) 
are needed. In other words, the RAPM can still 
perform motions in six directions with four DOFs and 
two parasitic motion variables. Regarding this, 
redundant actuations in the mechanism are essentially 
caused by constraints from the base directly onto the 
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end effector, converting two DOFs into parasitic 
motion variables. This is completely different from the 
two methodologies mentioned in (Gosselin and 
Schreiber 2018), namely, adding identical chains as 
those existing in the PM, or actuating passive joints in 
the chain. It is also worth noting that though the 
workspace of the centre of the condylar ball is 
simplified as a flat surface as in Eq. (1), a strongly 
nonlinear and sophisticated relationship between 
Z/ γ and qEE in Eq. (6) can still be observed. 
The ith chain 

The inverse kinematics of the RAPM, 
i.e., ( ) [ ]( )1 6

T
EE θ θ= = qθ θ θ that consists of a 

system of six decoupled equations expressed by EEq , 
has already been derived in Section II of (Cheng, Xu, 
and Shang 2015). Nevertheless, the motions of the 
coupler SiMi(i=1,…,6) are still needed for the 
rigid-body dynamics of the RAPM. Due to the two 
spherical joints at Si and Mi, the coupler can rotate 
around the three orthogonal axes of {Ni}. However, 
the rotation around the

iNX axis is a passive DOF for 
it is not controllable, and this rotational range is very 
small thanks to the physical restrictions from the used 
spherical joints in the mechanical design. In these 
regards, it is assumed that there is no axial rotation in 
the coupler. As such, two Euler 
angles iβ and iγ around the

iNY and
iNZ axes, 

respectively, are used to express the rotation of SiMi 
in {S}. These two angles can be derived as functions 
of the DOFs of the end effector, which is very 
well-established as in (Cheng, Yiu, and Li 2003) 
(Huang, Chen, and Zhong 2013). Thereby, the details 
are not listed. A 3 ◊ 1 generalised vector defined 

as [ ]
i

T
r i i iθ β γ=q  consists of the space of the ith 

chain and is used to completely specify its 
configuration. Then 

ir
q is the function of EEq , namely, 

( )
i ir r EE=q q q . Moreover, one can find that 

1ir i EE= ⋅ q M q                    (7)  

from which iθ can be extracted as 

( )1 1,: Ei Eiθ = ⋅  M q                  (8)                                                                  

where ( ) ( )1 1,: 1,...,6i i =M  is the first line of 1iM .  
For the crank GiSi, it only rotates with respect to 

the
iCZ axis of frame{ }iC , then its angular velocity is 

( ) ( )0 0

2 1
:,3i ii i

S S
Z i i

i

θ θ
θ
× 

= ⋅ ⋅ = ⋅ 
 

0 
S CG C R R Rω    (9)                                                  

in which
0i

S
C R is the orientation of { }iC in {S} at the 

initial configuration of the RAPM, ( )Z iθR is the 

rotation matrix about the
iCZ axis by iθ , and ( )0 :,3i

S
C R is 

the third column of 
0i

S
C R . 

The mass centre Gi of the crank is fixed in {S}, thus 
3 1iG ×= 0V . As a result, the twist of the crank GiSi is 

1
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         (10)                                                            

where ( )0 :,
1

3

3

1
i i

i

S

×

 
 
 

=
 0

C
G SM

R
. On this basis, the linear 

velocity of Si is computed as 

2 1i i i i i iS θ= ⋅ ⋅ G S G SV M M            (11)                                                             

where [ ]2 3i i i i= − ×G SM G S E . 
The linear velocity of Mi is computed as 

i iM EE EE= ⋅V A t              (12)                                                                   

where [ ]3iEE M i= − ×A O M E and EEt is the twist of 
the end effector. Thereby, the linear velocity of the 
mass centre Ei of the coupler SiMi is 

( )

2 1

1
2
1 1
2 2

i i i

i i i i i i

E M S

EE EE θ

= ⋅ +

= ⋅ ⋅ ⋅ ⋅+ ⋅ 
G S G S

V V V

A t M M
  (13)                                     

From the assumption made about the rotation 
of the coupler SiMi, its angular velocity is 
perpendicular to the

iNX axis of {Ni}, thus 

( )i i i i i iM S= ⋅ −S M S MB V Vω         (14)                                                          

where 2i i

i i

i i

×
=S M

S M
B

S M
. In it, i i ×S M and i iS M are 

the skew matrix and the length of SiMi, respectively. 
Upon substitution of Eqs. (11) and (12) into Eq. 

(14), it produces 

2 1i i i i i i i i i i iEE EE iθ= ⋅ ⋅ − ⋅ ⋅ ⋅ S M S M S M G S G SB A t B M Mω (15)                                
In view of Eqs. (13) and (15), the twist of the 

coupler SiMi is 

1
i i

i i i i i i

i

iEE EE EE
E

θ
 

= = ⋅ + ⋅ 
  

⋅ 
S M

S M G St C t D M
V

ω
  (16) 

where 

2
3 3

,
0.5 0.5

i i i i

i i i i iEE EE EE

−   
= ⋅ = ⋅   

⋅ ⋅   

S M S M
G S
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Concerning the rigid-body assumption of the 
coupler SiMi, the projections of the two velocities 

iSV and 
iMV along SiMi are equivalent, namely 

i i

T T
i i S i i M⋅ = ⋅S M V S M V          (17)                                                        

Putting Eqs. (11) and (12) into it yields 

2 1i i i i i

T T
i i i i EE EEiθ⋅⋅ ⋅ ⋅= ⋅

G S G SS M M M S M A t   (18)                                   
Thereby, for the six actuators, the relationship 

between θ and EEt is derived as 

 GS d EE EE⋅ ⋅ = ⋅Q T J tθ           (19)                                                         
where 
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and Td is a constant block diagonal matrix under Eq. 
(10). 

As a result, the twist of the end effector can be 
expressed by the active joint rates as 

1
EE EE GS d

−= ⋅ ⋅ ⋅ t J Q T θ          (20)                                                              
when EEJ is not singular. 

DYNAMICS MODELLING 
From Eqs. (10) and (16), the twist of the ith 

chain is 
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where 6 6,
i i
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EE EE
EE EE

   
= =   
   

0 E
E F

C D , 60 and 6E are 

the 6 6× zero matrix and identity matrix, respectively.  
By virtue of Eqs. (20) and (21), the twist of the 

entire mechanism is 

1
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Substituting Eq. (20) into it produces 

h d= ⋅ ⋅ t T T θ                (23)                                                                   
where

1_ 6 1_ 6

1 +h EE EE EE
−⋅ ⋅= GST E J Q F . One can further 

obtain 

h d h d= +⋅ ⋅ ⋅ ⋅ t T T T Tθ θ          (24)                                                           
If the mechanism under study is not 

redundantly actuated, its twist can be expressed by the 
independent active joint coordinates as those in (Rao, 
Saha, and Rao 2006) (Khan et al. 2005) (Khan et al. 
2004). However, this is not the case in this RAPM, 
because the 6×1 vector θ is not independent, and from 
Eq. (8), one can find 

EE1= ⋅ J qθθ                  (25)                                                                      

where ( ) ( )11 1,: 16 1,:

TT T
1

 =  M MJθ is the 

6 4× Jacobian matrix mapping EEq into θ . Putting Eq. 
(25) into Eq. (23) yields 

EE= ⋅ t T q                 (26)                                                                     

where h d 1= ⋅ ⋅T T T Jθ is nothing but the NOC matrix 
which is decoupled into three matrices. In PMs 
without actuation redundancy as in (Rao, Saha, and 
Rao 2006) (Khan et al. 2005) (Khan et al. 2004), the 
NOC matrix is decoupled to two matrices. By contrast, 
in the RAPM, there are three decoupled matrices. 
From the symbolic computations above, they are full 
block, block diagonal, and full block, respectively. 

The uncoupled dynamic model of the RAPM 
can be written in a compact form as 

= W C⋅ ⋅ ⋅ +M t +W M t w w         (27)                                                        
where 
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( )

1 1 1 1 6 6 6 6

1 1 1 1 6 6 6 6

1 1 1 1

1 1 1 1

6 6 6 6

6 6 6 6

,

EE

EE

W C

W C

W C
W C

W C

W C
EE EE

diag

diag

=

=

   
   
   
   
   = =
   
   
   
   
   





 

G S S M G S S M

G S S M G S S M

G S G S

S M S M

G S G S

S M S M

M M M M M M

W W W W W W

w w

w w

w w
w w

w w
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are the system mass matrix, the system angular 
velocity matrix, the system working wrench vector, 
and the system constraint wrench vector, respectively. 
Specifically, 
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     (29) 

are the 6 6× inertia dyad of the crank GiSi, the coupler 
SiMi, and the end effector, respectively, where 

, ,
i ii i EES MG SI I I are their inertia tensors in frame {S}, 

respectively, and , ,
i i i i EEm m mG SS M  are their masses, 

respectively. In the system angular velocity matrix, 

 

( )
( )

( )

3

3
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EE EE

= ×

= ×

= ×

0

0
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S S

MS M

G G

S

W

W

W

ω

ω

ω

        (30)                        

are the 6 6× angular velocity dyad of the crank GiSi, 
the coupler SiMi, and the end effector, respectively. In 
the system working wrench vector, as far as GiSi is 
concerned, the external working wrench acting on it is 

i i i i i i

W A G= +S S SG G Gw w w            (31)                                                             
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where 1i i i i

A
iτ= ⋅G GS Sw M  and 3 1

i i
i i

G

m
× 

=  − ⋅ 

0
G

G
S

S
w

g are 

the wrenches from the actuator and the gravity, 
respectively. For the coupler SiMi, the external 
working wrench acting on it is only caused by its 
gravity, thus 

3 1

i i
i i

W

m
× 

=  − ⋅ 

0
S

S M
Mw

g              (32)                                                                

Concerning the end effector, its working 
wrench is 

B

W G
EE EE= + Fw w w                (33) 

where 3 1G
EE

EEm
× 

=  − ⋅ 

0
w

g
and

BFw are the wrenches 

from its gravity and the bite force, respectively. 
In the system constraint wrench 

vector,
i i

C
G Sw ,

i i

C
S Mw , and C

EEw are the constraint 
wrenches acting at GiSi, SiMi, and the end effector, 
respectively. Specifically,

i i

C
G Sw is from the actuator 

and SiMi, 
i i

C
S Mw is from GiSi and the end effector, 

and C
EEw is from the six couplers and the base at the two 

HKPs simultaneously. 
Since the sole function of ideal constraint 

wrenches in a mechanism is to keep all bodies together, 
the sum of the power by them is zero 

0T
EE

T C T C⋅ = ⋅ ⋅ =t w T wq           (34)                                                           
Because qEE is the independent coordinate vector, 

EEq is free to vary, i.e., 

0T C⋅ =T w                 (35)   
From this step, the reason why the twist of the entire 
mechanism in Eq. (26) is expressed by EEq and the 
NOC is decomposed into three matrices can be 
discovered clearly. 
After TT is left-multiplied at each term of Eq. (27), the 
constraint wrench vector can be eliminated 

=T T T W⋅ ⋅ ⋅ ⋅ ⋅ ⋅T M t + T W M t T w      (36)                                                   
Substituting Eqs. (23) and (24) into it 

generates 

( )( ) 0+T
h d

T

T
h d

1

1= ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅⋅ ⋅

⋅

+ ⋅ T M T T M

J

W M T T J
θ

θθ

τ

τθ

                        (37) 
where 

( )

1 1 1

6 6 6

6
1

0
1

+

ii i

TT T W W
d EE EE EE

i

T W
EE

T
d

T W
EE

−

=

 = ⋅ ⋅ ⋅ ⋅ + 
 

 ⋅
 
⋅  
 ⋅ 

∑



GS

S M

S

S M

M

T J Q C w w

E w

T
E w

τ

 

In Eq. (37), there are four equations and six unknowns, 

indicating the mechanism is redundantly actuated. The 
minimum-norm solution of the actuating torques is 
expressed as 

( )T
1

+
= ⋅J Rθτ                  (38)                                                                      

where ( )T +

1Jθ is the pseudo-inverse matrix of T
1Jθ , and 

R is the right hand side of Eq. (37). Thereupon, the 
dynamic model of the RAPM has been built in the 
joint space. 

 
 

NUMERICAL COMPUTATIONS AND 
DISCUSSIONS 

 
Computational demands 

 
Fig. 2 A real incisor trajectory. 

 
To verify the model, the mechanism is 

commanded to follow a real incisor trajectory by a 
healthy human subject which lasts 5 seconds shown in 
Figure. 2 in the 3D space. The corresponding 
mandibular motions in terms of the four elements of 
qEE are computed, using the same method in Eq. (38) 
of (Cheng, Xu, and Shang 2015). The reacted bite 
force from the chewed foods is given in Figure. 3. 
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Fig. 3 3D bite force profiles on peanuts (Xu and 
Bronlund 2010). 
 

The procedures are implemented in programs 
written in Matlab, using an Intel(R) Core(TM) 
i7-8700K CPU@3.70GHz and 32GB of RAM. The 
time consumption is 22.709s, and the actuating 
torques is given in the first subplot of Figure 4. 
Because the software at hand, i.e., Matlab is not able to 
compute redundant actuation mode, a software 
simulation cannot be performed to validate the 
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numerical results. Thereby, the Lagrangian 
formulation is used as a second method to build the 
dynamics model, which is in the task space naturally. 
The torque differences from these two methods are 
presented in the second subplot of Fig. 4. The 
differences are very minor, proving the rightness of 
the built model. 
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Fig. 4 Torques from the DeNOC and torque 
differences from two methods. 
 
Influence of constraints at HKPs 

It is remembered that the RAPM is generated 
by imposing two constraints at HKPs onto the end 
effector of the 6RSS PM. Thereby, the inverse 
dynamics of the 6RSS PM is also built by the DeNOC, 
as far as the role of these constraints in the dynamic 
model is concerned. In this circumstance, its inverse 
dynamics problem is reduced to solving a system of 
six linear algebraic equations in six unknowns. As can 
be found in PMs without actuation redundancy (Rao, 
Saha, and Rao 2006) (Khan et al. 2005), the NOC 
matrix is also decoupled into two matrices. The input 
torques can be uniquely determined and there is no 
pseudo-inverse computation as in the RAPM. The 
computational time in the 6RSS PM is 2.526s, which 
is only about 11.12% of that of the RAPM. As such, it 
indicates the HKPs considerably increase the 
computational complexity. The reason clearly roots in 
the complex expressions of parasitic motion variables 
Z and γ in Eq. (5), which greatly increase the 
computational demands. By contrast, in the 6RSS PM, 
Z and γ are directly used as DOFs which are much 
more straightforward. 

The profiles of torques in the time history are 
similar to those in the first subplot of Fig. 4 but with 
larger magnitudes. Thus, the actuating torques are not 
exhibited to save pages. To quantitatively justify and 
compare the influence by HKPs to the actuating 

torques, one index is set as 

1

1 N

i
i

F
N =

= ∑ τ                (39)                                                              

where N is the number of sampling points in the time 
history, and i

τ is the two-norm sum of the actuating 
torques at the ith time instant. The value of F is 
0.1985N.m and 0.2727N.m in the RAPM and the 
6RSS PM, respectively. The latter is as large as 1.37 
times that of the former, indicating redundant 
actuation can minimise the input torques, which is a 
well-known opinion, even though redundant 
actuations in the mechanism are generated by 
converting two DOFs into parasitic motions under the 
constraints at HKPs. In other words, smaller torques 
are devoted to the remaining four DOFs and two 
parasitic motion variables. 
Table 1 Comparison of the RAPM and the 6RSS PM 

 RAPM 6RSS 
Number of matrices decomposed 
from the NOC 

3 2 

Computational time (unit: s) 22.709 2.526 
F (unit: N.m) 0.1985 0.2727 
 

To better compare the RAPM and the 6RSS 
PM, their differences are summarised in Table 1. 

 
 

CONCLUSION 
 

The inverse dynamics in the joint space of a 
spatial RAPM constrained directly by the base at two 
HKPs was solved via the DeNOC. It is believed the 
first to apply this method to a RAPM constrained by 
the base directly. The scientific contributions in this 
paper are: 
1. The model from the DeNOC is in the joint space, 
providing a great potential to facilitate the 
model-based control scheme in real-time. 
2. The DeNOC in the RAPM is decoupled into three 
matrices, being very different from those in PMs 
without redundant actuations. 
3. By comparing the RAPM and the 6RSS PM, the 
torques required by the parasitic motion variables in 
the RAPM are smaller than those by the corresponding 
DOFs in the 6RSS PM. Meanwhile, constraints at 
HKPs considerably raise the computational cost. 
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受兩個點接觸高副約束的

冗余驅動並聯機構關節空

間動力學逆解 
 

程晨  袁曉靜  曾繁琦  羅偉蓬  張澤 

西安技術學院機電一体化實驗室 

 
摘 要 

本文提出了一個受到兩個點接觸高副約束的

空間冗余驅動並聯機構的剛性動力學逆解。首先，

完整地分析了它的受約束運動，之後，使用解耦自

然正交分解法建立了關節空間的動力學模型，其非

常適合於基於模型的運動控製。借助該模型，清晰

地發現了高副約束在模型結構，計算時間，和驅動

力矩上帶來的影響。自然正交矩陣分解為三個矩

陣，這和非冗余驅動並聯機構非常不一樣。同時，

通過對比該機構及其無高副約束的對比對象，發現

高副約束極大增加了模型的計算時間。該機構的寄

生運動所需力矩遠小於其對比對象相應的自由度

所需驅動力矩。 
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