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ABSTRACT 
  

This study reveals the patent interpolation 
surface for investigating the patent data ecosystem 
with a dataset of 3,770 patents discretized into six 
patent clusters. The CRISP-DM model is used to 
manage the patent data mining process, from data 
preparation to modeling and evaluating, and to explore 
the patent data cluster within the same framework. 
Four independent and three dependent factors and 
their corresponding three levels are identified and will 
be used for further data processing. The Taguchi 
method is used to select the orthogonal array design 
OA9 (34) and reduce the number of cases required to 
investigate the patent data cluster. Using the 
orthogonal array design, only nine cases are performed 
instead of the possible 34, and the results are applied to 
structure the dataset of dependent factors. Three key 
dependent factors influence this patent interpolation 
surface: patent applications, patent assignees, and 
technological diversity. However, it is a difficult issue 
to interpolate the patent dataset using the first-order 
regression equation with three key dependent factors. 
In this case, the biharmonic interpolation method is 
used to interpolate irregulated patent data and create a 
patent interpolation surface. The patent interpolation 
surface is capable of interpolating the irregular data 
points of the dataset of six patent clusters and 
facilitating the analysis of the patent data ecosystem. 
To do so, the patent interpolation surface reveals the 
superposition of patent applications, patent assignees, 
and technological diversity to induce harmonics. As a 
result, harmonic traps are observed on the patent 
interpolation surface in conjunction with variations in 
patent applications, patent assignees, and 
technological diversity. 

 
 
 
 
 

 
 

Finally, the patent interpolation surface is divided into 
zones 1–4, and the harmonic traps formed are 
associated with a decrease in patent applications, 
patent assignees, and technological diversity. The 
levels of the three harmonic traps in zones 2–4 are 0.8, 
0.8, and 0.48, respectively.  

 

INTRODUCTION 
 

Patent data is a valuable and heterogeneous 
(Schröer et al., 2021) resource that is critical in driving 
innovation, technology licensing, and collaboration 
between academic institutions and industry in a variety 
of fields (Kim and Lee, 2015). Patent quality, intensity, 
technical strength, science link, science strength, and 
families all have an impact on the value of patent data 
(Magee and Yoon, 2018; Novelli, 2015). These factors 
comprise useful information for innovators, academic 
institutions, businesses, and decision-makers (Kapoor 
et al., 2015).  

Increasing competition and patent 
litigation: It is true that insufficient technical 
information in patent documents may result in 
rejection by the United States Patent and Trademark 
Office (USPTO) (Kong et al., 2023; Chang, 2018; 
Somaya, 2003). As more organizations disclose their 
patents, competition for the legal use of patented 
technology will increase, making patent litigation 
strategies increasingly important (Burhan et al., 2017; 
Lissoni, 2012; Rassenfosse et al., 2013). Offensive 
patent litigation strategies are emerging, emphasizing 
the importance of patent validity and quality in 
preserving the benefits of industrial innovation (Wang 
et al., 2022).  
 There is a gap in the existing scholarly 
literature: Patent data are available from intellectual 
property offices, and the patent classification system 
distinguishes a diverse and complex range of 
innovation topics (Marco et al., 2019; Wittfoth, 2019). 
For example, PCT application data has been examined 
to gain a better understanding of Industry 4.0 clusters 
(Tsakalerou and Akhmadi, 2021). Similarly, there was 
an increase in global blockchain patent filings 
following Bitcoin and blockchain’s appearance on The 
Economist’s cover in 2015 (Clarke, 2022). These 
demonstrate the potential of patent data analysis for 
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understanding technological trends and developments. 
Meanwhile, these findings highlight significant 
challenges in developing a patent data ecosystem, 
emphasizing the growing importance of addressing 
this issue. However, there is a noticeable gap in the 
existing scholarly literature, and only a thorough 
examination of the patent data ecosystem has the 
potential to bridge this gap. 
 Activating cross-disciplinary innovation 
through patent data ecosystems: The importance of 
patent data ecosystems is increasing as data sources 
become more abundant and data modeling becomes 
increasingly complex. The data ecosystem approach 
has been widely adopted in various fields, including 
knowledge mining, artificial intelligence (Tetteh et al., 
1998), big data (Boyle et al., 2022), smart 
manufacturing (Pschybilla and Homann, 2020), 
sustainability (Yang et al., 2017), and digital economy 
(Neuha¨usler and Frietsch, 2020). A robust patent data 
ecosystem requires multiple sources of data, 
technological diversity (Jin et al., 2022), and 
complexity to meet the evolving demands of 
businesses and customers. To address various service 
demand challenges, Haak (2018) proposed a data 
framework to strengthen the patent data ecosystem. 
The patent plays a pivotal role in promoting patent 
value and technological innovation in various fields 
(Lee et al., 2022), contributing to the overall value of 
the data ecosystem. Detailed case studies conducted 
by Nylund et al. (2022) on emerging entrepreneurial 
biotechnology ecosystems highlight the structural, 
social, and ethical barriers to ecosystem development. 
While technologies have the potential to generate 
entrepreneurial ecosystems, this potential is not 
always realized. The Innovation Patent Index was 
proposed by Ponta et al. (2021) as a tool for companies 
to assess their innovation performance in terms of 
efficiency, time, diversification, quality, and 
internationalization. Beltagui et al. (2020) studied the 
evolution of patented technology in the three-
dimensional printing ecosystem over the past four 
decades and proposed a process model of formation, 
growth, and destruction. Aaldering et al. (2018) 
visualized the structure of the business ecosystem and 
analyzed patent data using social network analysis. 
Lin et al. (2016) employed knowledge mining and data 
visualization techniques to quickly identify, quantify, 
and characterize clean energy innovation ecosystems. 
Gómez-Uranga et al. (2014) captured the evolution of 
Internet industry clusters, such as Apple, Google, 
Microsoft, Facebook, Amazon, and Samsung, through 
patent portfolios and patent litigation (Mastrogiorgio 
and Gilsing, 2016). 
 Data mining in the same framework and 
patent data ecosystems: Effective data mining is 
essential for making informed decisions, and broad 
frameworks play a crucial role in enabling this flow. In 
the realm of knowledge systems research, the DIKW 
framework is widely recognized for its hierarchical 

structure of system data, information, knowledge, and 
wisdom (Ackoff, 1989). This model allows for sound 
decision-making and wisdom (Deepu and Ravi, 2021) 
by utilizing data, information, and knowledge 
effectively to achieve the ultimate goal (Mishra, 2018). 
Policymakers can access related data for policy 
planning, evaluation projects, and service measures, 
allowing citizens to support government service 
measures by adopting a government data-sharing 
framework based on the DIKW model (Tungkasthan 
et al., 2019). Currently, studies often rely on CRISP-
DM (Sharma et al., 2012), an iterative process that 
combines heterogeneous and diverse data into a 
common environmental structure to facilitate the 
construction of data models. This iterative process 
begins with domain understanding, followed by data 
model creation and evaluation during the data 
preprocessing phase. This process is repeated until the 
data models are deemed sufficient for the problem, 
after which the models are deployed in the context of 
the application (Artyukhov et al., 2021). Adopting a 
framework such as DIKW and CRISP-DM simplifies 
the collection, systematization, and analysis of data, 
facilitating the flow of knowledge for more effective 
solutions (Gimpel et al., 2018). However, a significant 
amount of data can appear in various ways in the 
patent data ecosystem, necessitating the establishment 
of a standardized process for managing data flows in 
this ecosystem (Harrison et al., 2014).  To gain a 
comprehensive understanding of the data ecosystem 
(Heimstädt et al., 2014), it is crucial to examine the 
interrelationships among data users, data providers, 
data itself, institutions, and physical infrastructure that 
facilitates knowledge flows. This perspective is 
particularly useful for resolving complex issues, and 
many researchers have contributed to a deeper 
understanding of the data ecosystem. Mathematical 
models, such as the Taguchi method and the response 
surface method (RSM), are valuable tools for 
establishing relationships between design parameters 
and target variables. For instance, Wang et al. (2022) 
used RSM to predict mold aflatoxin production while 
examining storage conditions, such as water, 
temperature, and culture time. This information can be 
applied to designing upland rice seed storage facilities 
to reduce the risk of food supply shortages. Lee et al. 
(2022) developed a hybrid approach that combined 
artificial neural networks (ANNs) and RSM to 
optimize Antrodia cinnamomea culture conditions. 
ANN was used to efficiently identify the dominant 
factors of biomass production, while RSM explored 
the optimal process response. Kumar et al. (2020) 
constructed a reaction surface of tetraethyl lead, 
aircraft engine knocks, and human carcinogenic 
compounds to explore ways of mitigating the sources 
of severe health effects. Yi et al. (2019) developed an 
RSM-based mathematical model for the ventilation 
rate and gas emission rate of livestock houses. They 
also investigated the animal husbandry conditioning 
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room’s climate and the livestock house’s gas emission 
rate. Xie et al. (2022) examined heat exchanger 
efficiency by constructing a mathematical model of 
the response surface. The length, arc angle, and attack 
angle were chosen as design parameters, with the 
Nusselt number and friction coefficient as the target 
variables. This finding has the potential to reduce the 
environmental effects of limited energy access and 
excessive energy consumption. Chen et al. (2021) 
found that the Taguchi method and RSM were both 
suitable for analyzing aerosol deposition in the lungs. 
The Taguchi method predicts higher aerosol 
deposition in aerosol flow distribution. Hou et al. 
(2007) used the Taguchi method, RSM, and genetic 
algorithm to optimize the parameters during the 
nanoparticle grinding process. They then used the 
orthogonal array design to obtain accurate reaction 
measurements.   

A different modeling approach for 
unregulated patent data points:  Patent data are 
becoming increasingly important in a variety of fields, 
including technology, business, and science (Legner et 
al., 2017; Cappa et al., 2021). However, the absence of 
an interpolation modeling approach in scholarly 
literature for unregulated patent data points presents 
challenges in analyzing and interpreting it. To address 
this issue, a standard framework is useful for 
managing patent datasets within the same structure. 
This framework is based on the widely adopted 
CRISP-DM standard data mining process, which 
facilitates the exploration of unregulated patent data 
points by integrating the Taguchi method and 
biharmonic spline interpolation. This methodology is 
anticipated to yield a better comprehension of 
unregulated patent data points and enhance the 
modeling process. 

 

METHODOLOGY 
 

This study investigates patent data 𝑥௜ ሺ𝑖 ൌ
1,2,3, … , 𝑚ሻ  with n parameters to create patent data 
clusters. To accomplish this, we create the patent data 
matrix, as shown in Equation (1), in which 𝑀  is a 
matrix that includes patent data values with m rows 
and n columns. 

 
𝑀 ൌ 〈𝑥௠ൈ௡; 𝑖 ൌ 1,2,3, … , 𝑚 ; 𝑗 ൌ 1,2,3, … , 𝑛〉 (1) 

 
To avoid singular values, 𝑀  is normalized using 
Equation (2). In this equation, 𝜒௜௝  represents the 

normalized value of the patent data element 𝑥௜௝ . 

Moreover, we introduced a constant, 𝛽, which ranges 
between 0 and 1. 

 

𝜒௜௝ ൌ
௫೔ೕି௫೘೔೙ ሺ೔ሻ

௫೘ೌೣ ሺ೔ሻି௫೘೔೙ ሺ೔ሻ
𝛽 ൅ ሺ1 െ 𝛽ሻ  

0 ൏ 𝛽 ൏ 1  (2) 
 

To define technological diversity for the patent data 
matrix 𝜒௜௝ , we draw upon Blau’s (1977) definition. 

Specifically, each unique subclass 𝐼𝑃𝐶 code assigned 
to each patent data is denoted by 𝐼𝑃𝐶௨. 

 

𝑇ሺ𝜒௜௝ሻ ൌ 1 െ ∑௨ ቀ
௡௨௠௕௘௥ ௢௙ூ௉஼ೠ

 ்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ூ௉஼
ቁ

ଶ
 (3) 

 
Taguchi method: In 1950, Taguchi Genichi 

devised the Taguchi method, a widely used approach 
across diverse fields. This methodology offers a 
distinct advantage by enabling the selection of 
multiple factors and their corresponding levels that 
influence the target value. Moreover, it allows for the 
observation of various factors while simulating and 
optimizing the process. The Taguchi method can be 
categorized into three significant aspects: (1) 
establishing factors and their levels, (2) designing the 
Taguchi orthogonal table, and (3) using the orthogonal 
array design to structure the dataset of dependent 
factors. 
 Identified factors and levels using the 
Taguchi method: To implement the Taguchi method 
effectively, the initial step involves defining the factors 
and levels that impact the final response parameter. In 
this context, factors are operational parameters that 
can influence output, whereas levels denote different 
variations in the operational factor. 
 Using the orthogonal array design to 
structure the dataset of dependent factors: The 
Taguchi method utilizes an orthogonal array design to 
obtain data and reduce the number of experimental 
groups required for optimization. This approach saves 
both time and money. The specification for the 
orthogonal array design is written as 𝑂𝐴௔ሺ𝐿௖ሻ. Here, a 
represents the number of cases, L represents the level 
combination, and c represents the maximum number 
of control factors that can be accommodated. 
Essentially, it is an array experiment ሺ𝑎 ൈ 𝑐ሻ. Then, an 
orthogonal array design is used to structure the dataset 
of dependent factors. 
 Biharmonic spline interpolation method: 
The method is capable of interpolating the irregular 
data points of the dataset of six patent clusters (Ω1-Ω6) 
and facilitating the analysis of the patent data 
ecosystem. The irregular surface through the 𝑛  data 
points is expressed as follows: 

 
𝜓ሺ𝑝ሻ ൌ ∑𝑛

𝑗ൌ1 𝑤𝑗𝜙𝑚ሺ𝑝, 𝑝𝑗ሻ   (4) 

 
where the data point is 𝑝௝ ൌ ሺ𝑥௝, 𝑦௝ሻ, 𝑤௝ is the weight 
of the data point 𝑗 . 𝜙௠ሺ𝑝, 𝑝௝ሻ  is the form in m 
dimensions of the Green’s function. 
Furthermore, Green’s functions and corresponding 
gradients are continuous in 1 and 2 dimensions. The 
irregular surface can be constructed through the linear 
combination of Green’s functions (Sandwell,1897) 
[50].  
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CASE STUDY 
 

To ensure precision and effectiveness in our 
analysis, the CRISP-DM is used as a framework for 
organizing the patent dataset. The Taguchi method is 
utilized to identify the orthogonal array design, which 
allows us to conduct only nine cases out of a possible 
(34). The biharmonic interpolation method is used to 
interpolate irregulated data points and construct a 
patent interpolation surface. 
 Understanding the response goals: In this 
study, the Global Patent Search System is used as our 
primary search tool to analyze the patent data cluster 
related to carbon emissions. Our search criteria 
employed “(carbon emission) @DE,” which can 
generate the patent dataset. From these data, a total of 
3,770 patents are identified and categorized into three 
groups, denoted as G1 through G3. Patent applications 
are categorized into six patent clusters (from Ω1 to Ω6), 
as illustrated in Table 1. Ω1 comprises all 3,770 
assignees, while G2 and G3 are divided into Ω2 (2,914) 
and Ω3 (856), Ω4 (2,452), Ω5 (744), and Ω6 (574), 
respectively.  
 
Table 1. Clusters and Patent Applications 

Groups Patent Applications Clusters Levels 

G1 
1,216 

Ω1 (3,770) 
L1

1,153 L2
1,401 L3

G2 

883 
Ω2 (2,914) 

L1
953 L2

1,078 L3
333 

Ω3 (856) 
L1

200 L2
323 L3

G3 

684 
Ω4 (2,452) 

L1
845 L2
923 L3
339 

Ω5 (744) 
L1

172 L2
233 L3
193 

Ω6 (574) 
L1

136 L2
245 L3

 
Table 2. Independence factors and levels for patent 
clusters 

Independence 
factors 

Levels 

(2008–2012) (2013–2017) (2018–2022)

𝑥ଵ L1 L2 L3

𝑥ଶ L1 L2 L3

𝑥ଷ L1 L2 L3

𝑥ସ L1 L2 L3 

 
 Identified the independent and dependent 
factors as well as corresponding levels: Table 2 
shows the independence and dependence factors, as 
well as the corresponding levels that would be used for 
further data processing. Four factors are considered: 
China National Intellectual Property Administration 

(𝑥ଵ), the European Patent Office (𝑥ଶ), the USPTO (𝑥ଷ), 
and the World Intellectual Property Organization (𝑥ସ), 
each of which has three different levels: L1 (2008–
2012), L2 (2013–2017), and L3 (2018–2022).  

Patent data clusters Ω1–Ω6 are analyzed by 
considering independent and dependent factors and 
corresponding levels 1–3, as shown in Figures 1–3. 
For example, Figure 1 presents the total number of 
patent applications for Ω1 at L1. The calculations are 
conducted for both independent factors (𝑥ଵ,  𝑥ଶ, 𝑥ଷ, 𝑥ସ) 
and dependent factor (patent applications). The results 
of the calculations are as follows: 𝑥ଵ (4), 𝑥ଶ (138), 
𝑥ଷ(821),  𝑥ସ(253), and total patent applications (1,216). 
Similarly, Figure 2 presents the total patent assignees 
in Ω1 at L1. The results are disclosed as follows: 𝑥ଵ (3), 
𝑥ଶ(90), 𝑥ଷ (495), 𝑥ସ(212), and the total patent assignees 
(703). Figures 3–4 present the total number of 
International Patent Classification (IPC) and unique 
subclass codes in Ω1 at L1. According to the results, 
IPC and unique subclass codes include 𝑥ଵ 9(6), 𝑥ଶ 380 
(237), 𝑥ଷ 2,217 (1,467), 𝑥ସ 696 (450), and a total IPC 
with unique subclass 3,302 (2,160). 
 

 
Figure 1. Patent applications of the dataset classified 
for independence and dependence corresponding to 
levels 1–3 
 

 
Figure 2. Patent assignees of the dataset classified for 
independence and dependence corresponding to levels 
1–3 
 

Using the orthogonal array design to 
structure the dataset of dependent factors: An 
insufficient interpolation node is a significant issue 
with biharmonic spline interpolation because it may 
result in either over-smoothing or discontinuity of the 
interpolation surface. This means that without enough 
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interpolation nodes, the surface can become too 
simplified and lose important details, or it may have 
gaps or abrupt changes in the surface that do not 
accurately represent the underlying data. To address 
this issue, the Taguchi method and orthogonal array 
design can be used to improve the smoothness and 
continuity of interpolation nodes. However, the patent 
data model developed based on 34 cases would be 
prohibitively expensive for the dataset of patent 
clusters Ω1–Ω6. To improve this, we use the orthogonal 
array design 𝑂𝐴ଽሺ3ସሻ  to structure the datasets of 
patent applications, patent assignees, and 
technological diversity.  The datasets for patent 
applications, patent assignees, and technological 
diversity are normalized using Equations (2) and (3), 
respectively. The normalized datasets are presented in 
Tables 4–6. 

 
Figure 3. IPC codes of the dataset classified for 
independence, dependence, and clusters 
corresponding to levels 1–3 
 
 Enhancing modeling and facilitating 
comprehension: Figures 1–4 illustrate the normalized 
dataset of the independent factors (𝑥ଵ , 𝑥ଶ , 𝑥ଷ , 𝑥ସ ) and 
dependent factors: patent applications ሺ𝑌ଵሻ , patent 
assignees ሺ𝑌2ሻ,  and technological diversity ሺ𝑌3ሻ. 
Regression analysis and analysis of variance (ANOVA) 
were used to identify significant factors and create 
first-order regression equations for three parameters—
patent applications ሺ𝑌ଵሻ , patent assignees ሺ𝑌ଶሻ , and 
technological diversity ሺ𝑌ଷሻ  However, it is 
challenging to observe the harmonic traps using the 
first-order regression equation (5). ሺ𝑅ଶ ൌ 0.982 , 
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅ଶ ൌ 0.964). 
 

𝑌ଵ ൌ 0.1096 ൅ 0.6459𝑌ଶ ൅ 0.6494 𝑌ଷ (5) 
 
Table 3. The ANOVA of the patent cluster model 

Source Coeff. 
Std. 

Error 
t p* 

Const. 0.1096 0.02615 4.19274 0.00

𝑌ଶ 0.6459 0.05325 12.13048 0.00

𝑌ଷ 0.6494 0.05364 12.10503 0.00
*Significant at p < 0.005 

 
This means that the challenge of the regression 
analysis was demonstrated by identifying harmonic 
traps in the patent interpolation surface. Nonetheless, 
the regression analysis indicated that three parameters 

(𝑌ଵ- 𝑌ଷ) are capable of creating harmonic traps in the 
patent ecosystem through superposition combinations. 
In the next step, the biharmonic interpolation method 
is used to interpolate irregulated data points (𝑌ଵ, 𝑌ଶ, 𝑌ଷ) 
and construct a patent interpolation surface using 
MATLAB software. The patent interpolation surface 
reveals the superposition of patent applications, patent 
assignees, and technological diversity. The patent 
interpolation surface is expressed by Equation (6). 
 

𝜓ሺ𝑝ሻ ൌ ∑𝑛
𝑗ൌ1 𝑤𝑗𝜙𝑚ሺ𝑝, 𝑝𝑗ሻ ,  (6) 

 
Where  𝑛  is the number of data points. The patent 
interpolation surface is an irregular surface, which is 
useful for forming harmonics, as seen in Figure 5(a). 
In Figure 5(b), three harmonic traps are observed on 
the patent interpolation surface; these traps are formed 
in response to patent applications, patent assignees, 
and technological diversity.  
  

 
Figure 4. Unique subclass codes of the dataset 
classified for independence, dependence, and clusters 
corresponding to levels 1–3 
 

 
(a) Three harmonics formed in conjunction with 

patent applications ሺ𝑌ଵሻ , patent assignees ሺ𝑌ଶሻ , 
and the technological diversity  ሺ𝑌ଷሻ 
 

 
(b) Three harmonics formed at various contour levels 
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Figure 5. The patent interpolation surface is characterized by three parameters: patent applications ሺ𝑌ଵሻ, patent 
assignees ሺ𝑌ଶሻ , and technological diversity ሺ𝑌ଷሻ. (a) Three harmonics formed on the patent interpolation surface. 
(b) Three harmonics formed at various contour levels 
 
Table 4. Normalized datasets of patent applications based on patent clusters 1–6 

The dataset of patent applications (𝑌ଵ)

Exp. Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

1 0.9087 0.7826 0.5742 0.7072 0.5765 0.5212

2 0.8852 0.8091 0.5242 0.7674 0.5140 0.5000

3 0.9758 0.8561 0.5678 0.7973 0.5364 0.5383

4 0.9848 0.8667 0.5663 0.8011 0.5473 0.5326

5 0.8943 0.8110 0.5314 0.7633 0.5231 0.5042

6 0.8894 0.7701 0.5674 0.7098 0.5542 0.5216

7 0.8985 0.8095 0.5371 0.7621 0.5189 0.5136

8 1.0000 0.842 0.6061 0.7636 0.5795 0.5530

9 0.8803 0.7973 0.5311 0.7473 0.5284 0.5008

 
Table 5. Normalized datasets of patent assignees based on patent clusters 1–6 

The dataset of patent assignees (𝑌ଶ)

Exp. Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

1 0.9191 0.7086 0.6239 0.6182 0.5923 0.5354

2 0.8243 0.6972 0.5405 0.6473 0.5038 0.5000

3 0.9279 0.7282 0.6131 0.6561 0.5348 0.5638

4 0.9286 0.7314 0.6106 0.6555 0.5455 0.5544

5 0.8432 0.7042 0.5525 0.6410 0.5221 0.5070

6 0.8976 0.6985 0.6125 0.6271 0.5613 0.5360

7 0.8407 0.6985 0.5619 0.6403 0.5107 0.5228

8 1.0000 0.7427 0.6770 0.6504 0.5942 0.5885

9 0.8268 0.6947 0.5518 0.6327 0.5259 0.5013
 
Table 6. Normalized datasets of technological diversity based on patent clusters 1–6 

The dataset of the technological diversity (𝑌ଷ) 

Exp. Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

1 0.2686 0.2158 0.1221 0.1842 0.1108 0.0786

2 0.4081 0.3756 0.1231 0.3782 0.1259 0.0839

3 0.4633 0.4225 0.1855 0.3936 0.1532 0.1514

4 0.4509 0.4315 0.1919 0.3657 0.1708 0.1544

5 0.4068 0.3477 0.1195 0.3868 0.1149 0.0789

6 0.2939 0.2445 0.1171 0.2241 0.1012 0.0785

7 0.4017 0.3758 0.1180 0.3514 0.1100 0.0855

8 0.3890 0.2927 0.1928 0.3254 0.1516 0.1511

9 0.3862 0.3818 0.1212 0.3179 0.1358 0.0819
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RESPONSE RESULTS AND 
DISCUSSIONS 

 
To gain a better understanding of the goals of 

patent data modeling, we identified six distinct 
clusters, denoted as Ω1–Ω6 in Tables 1–2. This 
procedure enables a more thorough understanding of 
the data and more effective modeling. 
 Identifying independent and dependent 
factors as well as corresponding levels: A 
preliminary analysis of the data is required before 
building the regression models, which is followed by 
the selection of appropriate independent and 
dependent factors and the determination of their 
corresponding levels for further processing. Figures 1–
4 present patent data from six identified clusters 
relating to four independent and three dependent 
factors. The results include datasets pertaining to 
patent applications, patent assignees, IPC code, and 
unique subclass code. Figure 1 shows that the total 
number of patent applications exceeds 103, including 
Ω1 in levels 1–3 (1,216, 1,153, and 1,401) and Ω2 in 
level 3 (1,078). Meanwhile, Figure 3 shows that the 
total number of IPC codes exceeds 103, including Ω1 
in levels 1–3 (3,302, 4,344, and 5,563), Ω2 in levels 1–
3 (2,335, 3,622, and 4,354), Ω3in level 3 (1,209), and 
Ω4 in levels 1–3 (1,831, 3,163, and 3,697). 
Furthermore, as shown in Figure 4, there are more than 
103 unique subclass codes, with Ω1 in levels 1–3 
(2,160, 2,280, and 2,840), Ω2 in levels 1–3 (1,543, 
1,894, and 2,200), and Ω4 in levels 1–3 (1,209, 1,657, 
and 1,862). This framework is necessary to normalize 
irregularly scaled datasets, which streamlines data 
collection, systematization, and analysis by allowing 
the integration of all relevant data sources and analysis 
techniques. 
 Using the orthogonal array design to 
structure the dataset of dependent factors: The 
Taguchi method is used to choose the orthogonal array 
design OA9 (34) for exploring patent data clusters Ω1–
Ω2, as well as to reduce the number of required cases. 
Using this orthogonal array design, we only run 9 
cases out of a possible 81.  
 Enhancing modeling and facilitating 
comprehension: SPSS Statistics 17.0 software is used 
to analyze patent data clusters based on the normalized 
dataset shown in Figures 1–4. The goal is to determine 
the relationship between four independent factors and 
three dependent factors. Table 3 presents the ANOVA 
results for patent applications, patent assignees, 
technological diversity, and patent clusters. The level 
of significance is set at 0.005 to ensure the reliability 
and reproducibility of the regression model. To do so, 
Equation 5 (𝑅ଶ ൌ 0.982) represents the patent cluster 
model with three variables: patent applications (𝑌ଵ ), 
the total number of the assignee ሺ𝑌ଶሻ,  and 
technological diversity (𝑌ଷ ). However, Equation 5 is 
not suitable for forming an interpolation surface by 

interpolating irregular points. Equation 6 is the 
interpolation surface, which is constructed through the 
superposition combination of 𝑌ଶ  and 𝑌ଷ . In Figure 5, 
the patent clusters are characterized using three 
parameters: patent applications, patent assignees, and 
technological diversity. As previously stated, the 
patent interpolation surface would be a useful insight 
for interpolating irregular red data points as shown in 
Figure 5(a). It means that harmonic traps are observed 
when the patent interpolation surface is obtained using 
the biharmonic interpolation method to interpolate the 
irregular points of the patent data ecosystem.  As  a 
result, the patent interpolation surface reveals that the 
harmonic traps formed are associated with a decrease 
in patent applications, patent assignees, and 
technological diversity. Meanwhile, Figure 5(b) is 
observed that the patent interpolation surface is 
divided into Zones 1–4. Zone 1 has a high contribution 
to patent applications, patent assignees, and 
technological diversity, whereas Zone 4 has a low 
contribution to these factors. Three harmonic traps 
observed in Zones 2–4 have levels of 0.8, 0.8, and 0.48, 
as shown in Figure 5(b), respectively.  

 
CONCLUSIONS 

 
The patent data ecosystem can be divided 

into six clusters (Ω1–Ω6) for analyzing patent 
applications, patent assignees, and technological 
diversity. However, the patent data ecosystem contains 
irregular points, making it difficult to develop an 
interpolation surface for patent datasets. To create the 
interpolation surface for patent datasets, regression 
analysis, and ANOVA was used to identify significant 
factors and create first-order regression equations for 
patent applications ሺ𝑌ଵሻ , patent assignees ሺ𝑌ଶሻ , and 
technological diversityሺ𝑌ଷሻ. However, the data points 
obtained from these factors are often irregular, which 
presents a challenge in observing the harmonic traps 
using the first-order regression equation. In this 
version, the superposition described in this study 
involves combining three dependent factors to model 
patent data and then applying the biharmonic 
interpolation method to interpolate irregular data 
points and create an interpolation surface for patents. 
A known issue with biharmonic interpolation is that 
insufficient interpolation nodes lead to over-
smoothing or discontinuity of the interpolation 
surface. Although the use of biharmonic interpolation 
is not new, the specific application of the Taguchi 
method and orthogonal array design to improve the 
interpolation of irregular patent data clusters is an 
innovative approach. High-order polynomial 
regression can fit irregular data points in a dataset, but 
noise can cause noticeable oscillations in the curve. 
Biharmonic spine interpolation is usually a better fit 
for irregularly spaced data points. This is because 
biharmonic spline interpolation uses Green’s function 
to interpolate data points, resulting in a smooth curve 
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that passes through all data points. This study 
improves issues related to irregular data points and 
may be considered an innovative approach to patent 
data modeling and analysis. As a result of variations 
associated with patent applications, patent assignees, 
and technological diversity, three harmonic traps are 
observed on the patent interpolation surface. Three 
harmonic traps located in Zones 2–4 have levels of 0.8, 
0.8, and 0.48, respectively. The results show that the 
biharmonic interpolation method is suitable for fitting 
irregular patent data. 
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𝑎 The number of cases 

𝑐 The maximum number of control 
factors

𝐼𝑃𝐶 International Patent Classification 
𝐼𝑃𝐶௨ Each unique subclass IPC 

𝐿 Level combination 
𝑀 Patent data matrix 
𝑚 Mean experimental value 
𝑁 The unexpected output 
𝑛 The number of data point 

𝑂𝐴 Orthogonal array design 
𝑝௝ The normalized data point 
𝑤௜ The weight of the data point 

𝑥ଵ~𝑥ସ Independent factors 

𝑌ଵ~ 𝑌ଷ 
The normalized datasets of dependent 
factors

𝜒௜௝ Normalized patent data matrix 

𝜓 The general solution 

𝜙௠
The form in m dimensions of the 
Green’s function 

Ω1–Ω6 Patent data clusters 
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摘要 

 
本研究基於專利插值面探討專利數據生態

系統；該數據生態系統有 3,770筆專利數據可分為

六個專利簇。CRISP-DM 模型用於管理專利數據

挖掘過程；田口方法選擇正交陣列設計 OA9(34)；
雙調和插值法對不規則專利數據進行插值，創建

專利插值面。該專利插值面揭示專利申請、專利

受讓人和技術多樣性之疊加關係引發諧波效應。

同時，結果表明專利插值面上觀察到隨著專利申

請、專利受讓人和技術多樣性的變化而出現諧波

陷阱；同時，結果也表明專利插值面被劃分為 1-4
區，形成的諧波陷阱與專利申請、專利受讓人和

技術多樣性的減少有關；區域 2-4中三個諧波陷阱

之水平分別為 0.8、0.8 和 0.48。 
 


