Journal of the Chinese Society of Mechanical Engineers, Vol.46, No.5, pp561~568 (2025)

Investigation of Planetary Gearbox Vibration
Signal Characteristics and Failure Diagnosis
Using Time-Spectral Kurtosis (TSK) and
Ensemble Empirical Mode Decomposition
(EEMD)

T- Bensana“, M-FNIDES", L- BOURAGBI™ and M-MIHOUB™**

Keywords: planetary gearbox, vibratory diagnostics,
Second-generation wavelet (SGW), ensemble
empirical mode decomposition (EEMD), time-
spectral kurtosis (TSK).

ABSTRACT

Gears are an indispensable element of industrial
equipment and power transmission in a wide range of
manufacturing machinery. When faults occur on one
or more gear teeth, the performance of the gear train
deteriorates and the efficiency decreases. Vibration
signal processing and analysis is one of the best
preferred means to diagnose the planetary gearbox
fault, but Vibration signal of gears is often submerged
in a large amount of noise, leading to the decrease of
fault diagnosis accuracy. In order to determine the
faulty feature frequency of weak gear signals, a hybrid
fault diagnosis method of planetary gear based on
Second-generation  wavelet (SGW), ensemble
empirical mode decomposition (EEMD) and Time-
Spectral Kurtosis (TSK) is proposed in this paper.
Firstly, SGW denoising is employed to filter the initial
signal then extract the signal of interest from the
background noise. Next, decompose the filtered signal
into IMFs and reduce modal aliasing using the EEMD
approach. After that, the correlation coefficient and
TSK are used to identify the faulty IMFs, which are
subsequently used to reconstruct the last signal.
Finally, the envelope spectrum of the reconstructed
signal is used to detect the characteristic frequency.
The results can ensure that characteristics of gear
failures are included in the selected IMFs and confirm
the effectiveness and superiority of the proposed
adaptive method in gear fault diagnosis.
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INTRODUCTION

Planetary gearboxes are usually used in aero-
space, automotive and heavy manufacturing applica-
tions to derive benefits from their big transmission
ratio, solid load-bearing capacity and great transmis-
sion effectiveness (J.Mc et al., 2002). Nevertheless
these benefits, planetary gearboxes frequently experi-
ence gear tooth damage, such as fatigue cracks and
missing teeth, due to the demanding operating condi-
tions of heavy duty and intense impact load (F. Chaari
et al., 2006). The identification of gearbox faults is
critically significant and has been researched for
numerous decades. A notable feature of gearbox
malfunctions is their propensity to produce vibration
signals characterized by amplitude and/or phase vari-
ation, the rise in sideband components surrounding the
associated meshing frequencies and their harmonics
(Upadhyay et al., 2017; latsenko et al., 2015).
Consequently, feature extraction-based signal
processing techniques continue to be crucial in the
field of gear malfunction diagnostics. Time-—
Frequency Analysis (Lei et al., 2020; F. Li et al., 2018).
Wavelet Transform (WT) (Yu, G et al., 2020;J. Pan et
al., 2008; S. Chen et al., 2018).Spectral Kurtosis (SK)
(Qin et al., 2019; Elforjani et al., 2018; Braun et al.,
1986).Empirical Mode Decomposition (EMD)
Prediction models (Wang et al., 2024; Ta-Jen Peng et
al., 2024). Variational Mode Decomposition (VMD)
(Xuejun Chen et al., 2019) and other signal processing
techniques have been used in gear defect feature
extraction. Sparse decomposition (SD) exhibits better
feature extraction performance when compared to the
aforementioned techniques. By choosing a small num-
ber of atoms from a suitable dictionary, SD can repre-
sent the fault feature signal sparsely. This technique
has been effectively used in the diagnosis of gear faults
(Cheng et al., 2008; Dragomiretskiy et al., 2014).
Adaptive signal analysis techniques for non-stationary
signals have garnered a lot of attention lately. These
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techniques can adaptively break down a complex
signal into several modes based on the signal's
inherent characteristics and offer strong instruments
for diagnosing gear faults and extracting periodic
impulses. For instance, empirical mode decomposition
(EMD) has been extensively researched and used in
the identification of mechanical faults (L. Hui et al.,
2006; Z. P. Feng et al., 2005). Nevertheless, the mode
mixing issue is a significant liability. As a result, the
ensemble EMD (EEMD) and other enhanced EMD
techniques are introduced to mitigate the mode mixing
issue in the EMD and have been extensively utilized
for rotating machinery defect diagnosis (Amarnath et
al., 2016; Smith et al., 2005). Mode mixing and over-
decomposition are two issues brought on by
background noise that impair these techniques'
processing capabilities. In the field of signal
processing, the issue of signal denoising has always
been the focus of attention. Examining existing
wavelet-based denoising techniques, particularly
SGWs, is the goal of this research in order to demon-
strate how well these techniques handle noisy
remotely sensed data. The topic of spectrum noise
elimination is covered in detail (Fan et al., 2007; Cao
et al., 2005). The sensitive IMF with fault information
is crucial for speeding up processing once the signal
has been decomposed. The correlation coefficient-
based sensitive IMF selection method that has been
proposed. The defective signal is then reconstructed
via the faulty IMFs, which are found using the TSK.
An enhanced method and its use in planetary gearbox
problem diagnosis are examined in this research.
(EEMD), kurtosis and (SGW) are the foundations of
the hybrid approach that is suggested.

Our paper's strategy is as listed below:

Section 2 provides a brief overview of the basic
concepts of EEMD, SGW, and time-spectral kurtosis
(TSK). The Signal analysis procedure is briefly pre-
sented in Sec.2. In Sec. 4, the frequencies of vibration
features are provided, and Sec. 5 displays the experi-
mental setup. The research results validate the effec-
tiveness of the suggested approach in Sec. 6. Lastly,
the paper is concluded in Sec. 7

BRIEF OVERVIEW OF THE BASIC
CONCEPTS OF SGW, EEMD AND
(TSK).

The denoising procedure

Second-generation wavelet (SGW) is a new
wavelet model that has appeared in latest years. The
development of SGW circumvents the Fourier
transform, unlike the traditional wavelet (Gleich et al.,
2010; Na et al., 2016). Vibration data from bearings
and gears are denoised and features are extracted using
this technique. Figuresl illustrate principle of SGW
transform.
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1) Divide: the signal Y = {y[m], m € Z} separated
into the odd sample Y,={y,[m], m € Z } and the
even sample set Y.={y,[m], me€ Z }

Yolm] = y[2m + 1] (1)
Yelm] = y[2m] Q)
2) Use the prediction operator Q(X,) to estimate Y,

on the even sample. Next, the estimate error
between y,[m]and Q(X,) reveals E[m]:

E[m] = xo[m] — Q(X.) 3)

3) The detail coefficients E = {e[m], m € Z} can

be updated by using the update operator V. then

add the result V(E) to y,[m]; the approximation
coefficients f[m] can be achieved:

fIm] = ye[m] + V(E) 4)

4) Following the three procedures mentioned above,

the detail coefficients E = {e[m], m € Z} and

the approximation coefficients F = {f[m], m €
Z} are achieved.

5) By repeating these three stages SGW is realizable.

The prediction operator in this case Q = [q(1),

q(2), ........ , q(M)] and update operator V =

[v(1),v(2), ........ , v(N)].

J i

o
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Fig. 1. SGW method; (a). SGW decomposition, (b).
SGW reconstruction.

6) The interpolation subdivision method can be used
to design them and the reconstruction phase of
SGW is the reverse approach.

Decomposition procedure

In order to decompose signal (S;) into Intrinsic
Mode Functions (IMFs), Huang et al. introduced EMD
as an adaptive signal analysis methodology (N. E etal.,
1998; P. Flandrin et al., 2004).

The following characteristics are met by any
IMF:

1) The maximum difference between the number of
local extrema and zero-crossings is one.

2) An IMF's upper and lower envelope means values,
which are determined from local maxima and
minima, are always zero.

Input: S; = {x1, x5, ... x; }, limit of the cessation
condition ¢ (usually fixed in [0.2; 0.3]

Phase of decomposition:

1. Set n =1 then r,(t) = S;.
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2. Excerpt IMF n(t):

Pseudo code for EMD decomposition.

a. Set: d,,,(t) = 1,_1(t), while m = 1.

b. Find the local maxima and minima of d,,(t),
Wy (t) and Z,,(t), correspondingly.

c. Calculate the envelope:
(Win(®) + Zn(8))/2

d. Make the novel element d,,.,(t) of the
following sifting iteration:

dm+1(t) = dm(t) - Am(t) (5)

e. Use the following formula to determine the
difference in squares between two successive
siftings:

N _ vt dmei@-dm@)1?
T =2 0 o (6)

f. When the ending condition T(m) <e is
confirmed, the novel IMFE,(t) = d..(t) is
described then proceed to Step 3; If not, follow
Steps 2.b through 2.f to repeat a sifting cycle then
update m =m + 1.

3. The residue should be updated in the following
approach: 7,(t) = 1, (t) — IMFE,(t)

4. The decomposition procedure terminates when
there are less than two extrema in 7,(t) or if
1,(t) is monotone; if not, perform Step 2 using
n=n+1.

The initial time series x; is decomposed by
the procedure of sifting into:

S¢ = Xn=1 IMF,(£) + (1) (7

EMD is hampered by mode-mixing, a phenom-
ena in which nearly identical oscillations persist in dif-
ferent IMFs. EEMD has been developed in order to
solve these issues. Using an ensemble of IMFs by add-
ing a white Gaussian noise is the fundamental concept
of EEMD. By using the hybrid filter bank of the EMD,
the impact of including white Gaussian noise lessens
the mode-mixing issue. (P. Flandrin et al., 2004).

Pseudo code for EEMD decomposition
Input: S; = {x1, x5, ... X }.

Output: A set of ensemble IMFs{IME,(A)},
n=12,..,R;, m=12,..,.M)

1. Create the time series with noise:
St=S+bym=12,....M
With M is the predetermined number of noise
realizations and b]* realizations of white
Gaussian noise.

2. For each time series S, execute 1 to get the
corresponding {IME,(t)}, (n=1,2,...,R; m =
12,..,M)

3. Average the IME,(t) to estimate TME,(A):

IMF,(£) = - 21 IME(£) (®)

Am(t) =

The initial time series S; is decomposed by the
EEMD to R IMFs plus a residue:

Se = TR IMFE,(t) + 1 (0) 9)

After the signal has been decomposed, the
sensitive IMF containing fault information is essential
to accelerating processing. The suggested sensitive
IMF selection technique based on correlation
coefficients is as follows:

Determine the kurtosis value using the formula
below:

Ry =¥, (X"B_ff (10)

Where X, B, M, and X, are average values,

the signal's standard deviation, the number of samples
and the signal's specific (P. Nguyen et al., 2016).

The level of correlation between two signals can
be calculated using the correlation coefficient (CC) by:

M e oz
CC = Zn=o(xn %) (yn—%) (1 1)
\/Z%:()(xn_f)z(yn_f)z

In this case, y, and } are the signal's particular

and average values [24]. The precision of the
reconstructed signal may be impacted by the end effect
of the EEMD process, which can result in certain
undesired IMFs, particularly at lower frequencies. A
lower value suggests that the IMF's assistance was
negligible, therefore are taken out before the
reconstruction (Wang et al., 2016).

Time-spectral kurtosis (TSK)

The TSK is used to precisely identify the gear
fault after the shaft IMFs have been eliminated. It is
independent of time information and depends only on
the statistical distribution of amplitude series.
Defective signals really show up in vibration signals
on a periodic basis. The defective signal is then recon-
structed via the faulty IMFs, which are found using the
TSK (Antoni et al.,, 2006; B. Chen et al., 2014).
Because of its ability to tolerate sparse interference im-
pulses, the TSK approach is used to adaptively deter-
mine resonance, as specified by:

IGmAIYster RRAODI* 1614
TSR 1) = \Gamprivsrer wppE ~ 16am e | 70
(12)

The calculated Gaussian series, G(m, f) is de-
rived from the initial signal's STFT amplitude series
[Ystrr (k, f)]. By looking for the TSK's highest peak,
we can identify the resonance. In accordance with this,
the fault IMFs for the fault signal reconstruction is se-
lected from the resonance band. The following suc-
cinctly describes detailed TSK.
First, the raw vibration signal's STFT is computed.
Step 2: Entropy for the STFTAS is used to preprocess
the outliers.
Step 3: Preprocessed STFT are used to estimate the
Gaussian component G (m, f). First, the STFT ampli-
tude series mean value is determined. Next, choose
points whose amplitude is smaller than the n-times
mean, and use these points to create a new series. The
goal series with an approximate Gauss distribution can
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be generated by a number of iterative calculations.
Step 4: Using |Y (k, f)| and G (m, f), the TSK value of
the k-th frame signal at frequency f is determined
using Equation (12).

Step 5: The TSK value is used to design the filter

H(k, f)
1 TSK = Threshold
Hk, f) = {0.01 TSK < Threshold (13)
Step 6: Reconstructing the signal by multiplying the
STFT values by H(k, f).
Step 7: The Hilbert transformation is used to demodu-
late the reconstructed signal.

The signal analysis algorithm

Gear damage diagnosis is an extremely
challenging endeavor. This study combines the SGW
and EEMD algorithms to identify the defect feature
frequency of weak gear signals. The numerical
approach's steps are clarified below:

Step 1: Filtering the original signal and extracting the
signal of interest from the noise using SGW
denoising.

Step 2: Apply the EEMD technique to suppress modal
aliasing and decompose the purified signal into
IMFs.

Step 3: To choose the best IMF components, time-
spectral  kurtosis (TSK) and correlation
coefficient of each IMF are then determined.

Step 4: Lastly, the characteristic frequency is achieved
through envelope spectrum analysis. The signal
analysis procedure appears in Fig. 2 and
MATLAB is employed for analyzing the data
collected.

Data acquisition

Useful signal

Available
fault
information

Yes

Compare with
| Eenvelope Spectrum |<— [+~
frequency

| Gear fault diagnostics |

Fig.2. the signal analysis algorithm
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Expérimental Test Setup

A straightforward test rig is employed to
illustrate the study conditions and gauge the
effectiveness of the suggested methodology in order to
ensure its efficiency and reliability. As shown in
Figure 3 a (3KW) asynchronous drive motor in three
phases powers the gearbox. A magnetic powder brake
is employed to supply load, and speed and torque
sensors are used to obtain the speed and torque data.
These parts are joined by couplings. This
investigational system has a 12,800 Hz sampling
frequency. Additionally, 6.5 Nm and 13.5 Nm are the
corresponding loads that are regulated by a controlled
magnetic brake mechanism. Schematic figure of a
planetary gearbox and its dynamical model is exposed
in Fig. 4. Fig. 6 illustrates the arrangement of the
planetary gearbox's sensors. The damaged gear is
displayed in Figures 7, respectively.

The corresponding feature frequency is linked
to the rotating speed of the defective gear in relation to
the planet carrier, also when a planetary gearbox has a
tooth deficiency, the vibration signal experiences
significant modulation characteristics and periodic
shocks. Equations (14) and (15) are used to calculate
the planetary gearbox's characteristic frequencies
(Qiang et al., 2015). while Table 1 contains a list of
them.

fo = fo=fa=fay- (14)
fh=Nrfc=Np(fd+fp)=Nn(fn_fd) (15)

Ni: sun gear's teeth number

Nr: ring gear's teeth number

Nj: planet gear's teeth number

fu: frequency of sun gear

fd: frequency of carrier

fp: frequency of planet gear

Fp: frequency of meshing

fo: the sun gear's frequency in relation to the carrier

Table 1. Frequency parameters of the planetary
gearbox.

Fn Fd Fm Fh

16.42 4.85 11.57 300.82

Results and discussions

The appearance of periodic impulse components
in vibration signals is a crucial indicator of gear failure
in the diagnosis of gear faults. However, it is
challenging to recover the weak periodic impulse
patterns due to the high background noise. Figures (7-
a) and (7-b) display the time domain of a typical gear
and a broken gear.

Nevertheless, these features are obscured by
noise and are not noticeable enough to identify the
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presence of defects. Time-frequency representations
(Figures (8-a) and (8-b)) demonstrate that the
frequency of the normal gear resides in the low-
frequency band, while the cracked gear's frequency is
focused in the high frequency band. Figures (9-a) and
(9-b) show the frequency domain of the gear failure.
However, the fault's associated frequency is obscured,
which is unable to discern the periodic pulse
characteristics. making it difficult to find fault
diagnostic information using the time and frequency
domains. Consequently, the present research offers a
potential defect identification approach for gears
based on EEMD, SGW, and kurtosis to identify
periodic impulse properties.

— - : s E

Fig. 3. Planetary gear fault test (1) Data acquisition
system, (2) load system(3) fixed-axis gearbox, (4) vi-
bration sensors, (5) planetary gearbox,(6) Drive motor.

Planet Gear

Ring Gear

Sun Gear

Fig. 4. (a) schematic figure of a planetary gearbox, (b)
dynamical model

Fig. 5. vibration sensors Fig. 6. damaged gear
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To enhance the denoising impact of the
vibration signal, a second-generation wavelet (SGW)
denoising approach has been offered; the results can
be seen in Fig. 10, from which we observe that noises
are significantly decreased while the legitimate signal
amplitude is completely preserved. As a result, we
may infer that the suggested method produces the best
denoising performances.

For the purpose of showing the success of the
suggested technique, the signal that was collected is
decomposed using EEMD. As shown in Fig. 11, the
EEMD approach can decompose non-stationary
vibration signals including failures in a sum of
stationary component IMFs, which has the benefits of
eliminating mode mixing.

50

Amplitude
=)

-50

0 02 04 0608 1 12 14 16 18 2
Time(s)

Fig. 10. Denoising by SGW technique

‘Time(s)

Fig. 11. EEMD decomposing
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Fig. 13. The time-spectral kurtosis

3

-HZ

1

0 0
1 2 3 4 5

Time(s) TSK
Fig. 14. The two-dimensional view
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Knowing that the most important components of
the signal are, the background noise, harmonic
contributions and a series of fault induced impulses.
To identify the ideal IMFs, the (CC) associated with
the IMFs and the reference signals RFE are displayed.
Through the operation of EEMD, the signal is divided
into 12 IMFs. Figure 11 shows that when the
decomposition level increases, the highest values of
the (CC) drop, as well as the IMF1, IMF2, and IMF3
are considered to signal reconstruction. We can also
check this by using TSK in Fig. 13. It is evident that
the frequency range of 2.3—4.2 kHz is about where the
resonance caused by the fault appears. therefore, we
will chooseIMF1, IMF2 and IMF3 as fault IMFs.
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Additionally,we can see that more clearly in the two-
dimensional view as shown in Fig. 14.

A gearbox's vibration signal is made up of a
variety of factors, including rotational frequency, so is
not just caused by vibrations in the gear meshing.
Typically, the gear meshing frequency will be high
relative to the shaft rotation frequency, which appears
in the low frequency region. In Fig.15 the meshing
frequency and the sidebands are evidently discovered.
These characteristic frequencies are indicating
damages occurring in the planetary gearbox. Moreover,
the value of the sidebands is almost equal to the
rotating frequency of the sun gear, which suggests the
damage on the sun gear in planetary gearbox. It agrees
to the value shown in the Table 1. Correspondingly,
background noise is effectively decreased since the
EEMD filtering order is from high frequency to low
frequency. Hence, these results can guarantee that the
chosen IMFs include details of gear faults. We deduce
that the suggested approach can successfully identify
the planetary gearbox's defects.

1 L L L
0.2 0.4 0.6 [X3
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0.3~ Fm
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Fig. 15. The reconstructed signal and its Zoom
spectrum

Conclusions

This work proposes an adaptive strategy to
address the challenge of weak feature extraction in
planetary gearbox malfunction diagnosis. different
concepts can be used to describe the main effects on
this work. In order to separate the signal of interest
from the background noise, SGW denoising is first
used to filter the original signal. After that, decompose
the filtered signal into IMFs and use the EEMD
technique to reduce modal aliasing.The best IMF
components are then chosen by calculating correlation
coefficient and time-spectral kurtosis (TSK). Finally,
the characteristic frequency is determined by
analyzing the reconstructed signal's envelope

spectrum. We conclude that the proposed method can
effectively detect defects in the planetary gearbox and
we hope that the research will assist researchers and
experts in efficiently applying current damage
detection algorithms and creating more dependable
and useful techniques in the field of fault diagnosis.
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