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ABSTRACT 

Gears are an indispensable element of industrial 
equipment and power transmission in a wide range of 
manufacturing machinery. When faults occur on one 
or more gear teeth, the performance of the gear train 
deteriorates and the efficiency decreases. Vibration 
signal processing and analysis is one of the best 
preferred means to diagnose the planetary gearbox 
fault, but Vibration signal of gears is often submerged 
in a large amount of noise, leading to the decrease of 
fault diagnosis accuracy. In order to determine the 
faulty feature frequency of weak gear signals, a hybrid 
fault diagnosis method of planetary gear based on 
Second-generation wavelet (SGW), ensemble 
empirical mode decomposition (EEMD) and Time-
Spectral Kurtosis (TSK) is proposed in this paper. 
Firstly, SGW denoising is employed to filter the initial 
signal then extract the signal of interest from the 
background noise. Next, decompose the filtered signal 
into IMFs and reduce modal aliasing using the EEMD 
approach. After that, the correlation coefficient and 
TSK are used to identify the faulty IMFs, which are 
subsequently used to reconstruct the last signal.  
Finally, the envelope spectrum of the reconstructed 
signal is used to detect the characteristic frequency. 
The results can ensure that characteristics of gear 
failures are included in the selected IMFs and confirm 
the effectiveness and superiority of the proposed 
adaptive method in gear fault diagnosis. 
 
 

 
 
 

 

INTRODUCTION 
 

Planetary gearboxes are usually used in aero-
space, automotive and heavy manufacturing applica-
tions to derive benefits from their big transmission 
ratio, solid load-bearing capacity and great transmis-
sion effectiveness (J.Mc et al., 2002). Nevertheless 
these benefits, planetary gearboxes frequently experi-
ence gear tooth damage, such as fatigue cracks and 
missing teeth, due to the demanding operating condi-
tions of heavy duty and intense impact load (F. Chaari 
et al., 2006). The identification of gearbox faults is 
critically significant and has been researched for 
numerous decades. A notable feature of gearbox 
malfunctions is their propensity to produce vibration 
signals characterized by amplitude and/or phase vari-
ation, the rise in sideband components surrounding the 
associated meshing frequencies and their harmonics 
(Upadhyay et al., 2017; Iatsenko et al., 2015). 
Consequently, feature extraction-based signal 
processing techniques continue to be crucial in the 
field of gear malfunction diagnostics. Time–
Frequency Analysis (Lei et al., 2020; F. Li et al., 2018). 
Wavelet Transform (WT) (Yu, G et al., 2020;J. Pan et 
al., 2008; S. Chen et al., 2018).Spectral Kurtosis (SK) 
(Qin et al., 2019; Elforjani et al., 2018; Braun et al., 
1986).Empirical Mode Decomposition (EMD) . 
Prediction models (Wang et al., 2024; Ta-Jen Peng et 
al., 2024). Variational Mode Decomposition (VMD) 
(Xuejun Chen et al., 2019) and other signal processing 
techniques have been used in gear defect feature 
extraction. Sparse decomposition (SD) exhibits better 
feature extraction performance when compared to the 
aforementioned techniques. By choosing a small num-
ber of atoms from a suitable dictionary, SD can repre-
sent the fault feature signal sparsely. This technique 
has been effectively used in the diagnosis of gear faults 
(Cheng et al., 2008; Dragomiretskiy et al., 2014). 
Adaptive signal analysis techniques for non-stationary 
signals have garnered a lot of attention lately. These 
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techniques can adaptively break down a complex 
signal into several modes based on the signal's 
inherent characteristics and offer strong instruments 
for diagnosing gear faults and extracting periodic 
impulses. For instance, empirical mode decomposition 
(EMD) has been extensively researched and used in 
the identification of mechanical faults (L. Hui et al., 
2006; Z. P. Feng et al., 2005). Nevertheless, the mode 
mixing issue is a significant liability. As a result, the 
ensemble EMD (EEMD) and other enhanced EMD 
techniques are introduced to mitigate the mode mixing 
issue in the EMD and have been extensively utilized 
for rotating machinery defect diagnosis (Amarnath et 
al., 2016; Smith et al., 2005). Mode mixing and over-
decomposition are two issues brought on by 
background noise that impair these techniques' 
processing capabilities. In the field of signal 
processing, the issue of signal denoising has always 
been the focus of attention. Examining existing 
wavelet-based denoising techniques, particularly 
SGWs, is the goal of this research in order to demon-
strate how well these techniques handle noisy 
remotely sensed data. The topic of spectrum noise 
elimination is covered in detail (Fan et al., 2007; Cao 
et al., 2005). The sensitive IMF with fault information 
is crucial for speeding up processing once the signal 
has been decomposed. The correlation coefficient-
based sensitive IMF selection method that has been 
proposed. The defective signal is then reconstructed 
via the faulty IMFs, which are found using the TSK. 
An enhanced method and its use in planetary gearbox 
problem diagnosis are examined in this research. 
(EEMD), kurtosis and (SGW) are the foundations of 
the hybrid approach that is suggested. 

Our paper's strategy is as listed below: 
Section 2 provides a brief overview of the basic 

concepts of EEMD, SGW, and time-spectral kurtosis 
(TSK). The Signal analysis procedure is briefly pre-
sented in Sec.2. In Sec. 4, the frequencies of vibration 
features are provided, and Sec. 5 displays the experi-
mental setup.  The research results validate the effec-
tiveness of the suggested approach in Sec. 6. Lastly, 
the paper is concluded in Sec. 7 
 

BRIEF OVERVIEW OF THE BASIC 
CONCEPTS OF SGW, EEMD AND 

(TSK). 
 

The denoising procedure 
Second-generation wavelet (SGW) is a new 

wavelet model that has appeared in latest years. The 
development of SGW circumvents the Fourier 
transform, unlike the traditional wavelet (Gleich et al., 
2010; Na et al., 2016). Vibration data from bearings 
and gears are denoised and features are extracted using 
this technique. Figures1 illustrate principle of SGW 
transform. 

1) Divide: the signal 𝑌𝑌 = {𝑦𝑦[𝑚𝑚], 𝑚𝑚 ∈ 𝑍𝑍} separated 
into the odd sample 𝑌𝑌0={𝑦𝑦0[𝑚𝑚], 𝑚𝑚 ∈ 𝑍𝑍 } and the 
even sample set 𝑌𝑌e={𝑦𝑦𝑒𝑒[𝑚𝑚], 𝑚𝑚 ∈ 𝑍𝑍 } 
𝑦𝑦0[𝑚𝑚] = 𝑦𝑦[2𝑚𝑚 + 1]                    (1) 
𝑦𝑦𝑒𝑒[𝑚𝑚] = 𝑦𝑦[2𝑚𝑚]

  

                      (2) 
2) Use the prediction operator 𝑄𝑄(𝑋𝑋𝑒𝑒) to estimate 𝑌𝑌0 

on the even sample. Next, the estimate error 
between 𝑦𝑦0[𝑚𝑚] and 𝑄𝑄(𝑋𝑋𝑒𝑒) reveals 𝐸𝐸[𝑚𝑚]: 
𝐸𝐸[𝑚𝑚] = 𝑥𝑥0[𝑚𝑚] − 𝑄𝑄(𝑋𝑋𝑒𝑒)

                 

(3) 
3) The detail coefficients 𝐸𝐸 = {𝑒𝑒[𝑚𝑚], 𝑚𝑚 ∈ 𝑍𝑍}  can 

be updated by using the update operator V. then 
add the result 𝑉𝑉(𝐸𝐸) to 𝑦𝑦𝑒𝑒[𝑚𝑚]; the approximation 
coefficients 𝑓𝑓[𝑚𝑚] can be achieved: 
𝑓𝑓[𝑚𝑚] = 𝑦𝑦𝑒𝑒[𝑚𝑚] + 𝑉𝑉(𝐸𝐸)                  (4) 

4) Following the three procedures mentioned above, 
the detail coefficients 𝐸𝐸 = {𝑒𝑒[𝑚𝑚], 𝑚𝑚 ∈ 𝑍𝑍}  and 
the approximation coefficients 𝐹𝐹 = {𝑓𝑓[𝑚𝑚], 𝑚𝑚 ∈
𝑍𝑍} are achieved.  

5) By repeating these three stages SGW is realizable. 
The prediction operator in this case 𝑄𝑄 = [𝑞𝑞(1),
𝑞𝑞(2), . . . . . . . ., 𝑞𝑞(𝑀𝑀)] and update operator 𝑉𝑉 =
[𝑣𝑣(1), 𝑣𝑣(2), . . . . . . . ., 𝑣𝑣(𝑁𝑁)]. 

 
Fig. 1. SGW method; (a). SGW decomposition, (b). 
SGW reconstruction. 

6) The interpolation subdivision method can be used 
to design them and the reconstruction phase of 
SGW is the reverse approach. 

 
Decomposition procedure 

In order to decompose signal (St) into Intrinsic 
Mode Functions (IMFs), Huang et al. introduced EMD 
as an adaptive signal analysis methodology (N. E et al., 
1998; P. Flandrin et al., 2004). 

The following characteristics are met by any 
IMF: 
1) The maximum difference between the number of 

local extrema and zero-crossings is one. 
2) An IMF's upper and lower envelope means values, 

which are determined from local maxima and 
minima, are always zero. 

Input: 𝑆𝑆𝑡𝑡 = {𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑡𝑡}, limit of the cessation 
condition 𝜀𝜀 (usually fixed in [0.2; 0.3] 
Phase of decomposition: 

1. Set 𝑛𝑛 = 1 then 𝑟𝑟0(𝑡𝑡) = 𝑆𝑆𝑡𝑡. 
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2. Excerpt 𝐼𝐼𝐼𝐼𝐼𝐼 𝑛𝑛(𝑡𝑡): 
Pseudo code for EMD decomposition. 

a. Set: 𝑑𝑑𝑚𝑚(𝑡𝑡) = 𝑟𝑟𝑛𝑛−1(𝑡𝑡), while 𝑚𝑚 = 1. 
b. Find the local maxima and minima of 𝑑𝑑𝑚𝑚(𝑡𝑡) , 
𝑊𝑊𝑚𝑚(𝑡𝑡) and 𝑍𝑍𝑚𝑚(𝑡𝑡), correspondingly. 

c. Calculate the envelope: 𝐴𝐴𝑚𝑚(𝑡𝑡) =
�𝑊𝑊𝑚𝑚(𝑡𝑡) + 𝑍𝑍𝑚𝑚(𝑡𝑡)� 2⁄  

d. Make the novel element 𝑑𝑑𝑚𝑚+1(𝑡𝑡)  of the 
following sifting iteration: 
𝑑𝑑𝑚𝑚+1(𝑡𝑡) = 𝑑𝑑𝑚𝑚(𝑡𝑡) − 𝐴𝐴𝑚𝑚(𝑡𝑡)              (5) 

e. Use the following formula to determine the 
difference in squares between two successive 
siftings: 

𝑇𝑇(𝑗𝑗) = ∑ |𝑑𝑑𝑚𝑚+1(𝑧𝑧)−𝑑𝑑𝑚𝑚(𝑧𝑧)|2

|𝑑𝑑𝑚𝑚(𝑧𝑧)|2
𝑡𝑡
𝑙𝑙=1               (6) 

f. When the ending condition 𝑇𝑇(𝑚𝑚) < 𝜀𝜀  is 
confirmed, the novel 𝐼𝐼𝐼𝐼𝐹𝐹𝑛𝑛(𝑡𝑡) = 𝑑𝑑𝑚𝑚+1(𝑡𝑡)  is 
described then proceed to Step 3; If not, follow 
Steps 2.b through 2.f to repeat a sifting cycle then 
update 𝑚𝑚 = 𝑚𝑚 + 1. 

3. The residue should be updated in the following 
approach: 𝑟𝑟𝑛𝑛(𝑡𝑡) = 𝑟𝑟𝑛𝑛(𝑡𝑡) − 𝐼𝐼𝐼𝐼𝐹𝐹𝑛𝑛(𝑡𝑡)  

4. The decomposition procedure terminates when 
there are less than two extrema in 𝑟𝑟𝑛𝑛(𝑡𝑡)  or if 
𝑟𝑟𝑛𝑛(𝑡𝑡) is monotone; if not, perform Step 2 using  
𝑛𝑛 = 𝑛𝑛 + 1. 

The initial time series 𝑥𝑥𝑡𝑡 is decomposed by 
the procedure of sifting into: 

𝑆𝑆𝑡𝑡 = ∑ 𝐼𝐼𝐼𝐼𝐹𝐹𝑛𝑛(𝑡𝑡) + 𝑟𝑟𝑅𝑅(𝑡𝑡)𝑅𝑅
𝑛𝑛=1              (7) 

EMD is hampered by mode-mixing, a phenom-
ena in which nearly identical oscillations persist in dif-
ferent IMFs. EEMD has been developed in order to 
solve these issues. Using an ensemble of IMFs by add-
ing a white Gaussian noise is the fundamental concept 
of EEMD. By using the hybrid filter bank of the EMD, 
the impact of including white Gaussian noise lessens 
the mode-mixing issue. (P. Flandrin et al., 2004). 

Pseudo code for EEMD decomposition 
Input: 𝑆𝑆𝑡𝑡 = {𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑡𝑡}. 

Output: A set of ensemble 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼{𝐼𝐼𝐼𝐼𝐹𝐹𝑛𝑛�������(Λ)},
(𝑛𝑛 = 1,2, … ,𝑅𝑅;  𝑚𝑚 = 1,2, … ,𝑀𝑀) 

1. Create the time series with noise:  
𝑆𝑆𝑛𝑛𝑚𝑚 = 𝑆𝑆𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑚𝑚,𝑚𝑚 = 1,2, . . . ,𝑀𝑀  
With 𝑀𝑀  is the predetermined number of noise 
realizations and 𝑏𝑏𝑛𝑛𝑚𝑚  realizations of white 
Gaussian noise. 

2. For each time series 𝑆𝑆𝑛𝑛𝑚𝑚 , execute 1 to get the 
corresponding {𝐼𝐼𝐼𝐼𝐹𝐹𝑛𝑛(𝑡𝑡)} , (𝑛𝑛 = 1,2, … ,𝑅𝑅;  𝑚𝑚 =
1,2, … ,𝑀𝑀) 

3. Average the 𝐼𝐼𝐼𝐼𝐹𝐹𝑛𝑛(𝑡𝑡) to estimate 𝐼𝐼𝐼𝐼𝐹𝐹𝑛𝑛�������(Λ): 

𝐼𝐼𝐼𝐼𝐹𝐹𝑛𝑛(𝑡𝑡) = 1
𝑀𝑀
∑ 𝐼𝐼𝐼𝐼𝐹𝐹𝑛𝑛𝑚𝑚(𝑡𝑡)𝑀𝑀
𝑚𝑚=1             (8) 

The initial time series 𝑆𝑆𝑡𝑡 is decomposed by the 
EEMD to R IMFs plus a residue: 

𝑆𝑆𝑡𝑡 = ∑ 𝐼𝐼𝐼𝐼𝐹𝐹𝑛𝑛(𝑡𝑡) + 𝑟𝑟𝑅𝑅(𝑡𝑡)𝑅𝑅
𝑛𝑛=1              (9) 

After the signal has been decomposed, the 
sensitive IMF containing fault information is essential 
to accelerating processing. The suggested sensitive 
IMF selection technique based on correlation 
coefficients is as follows: 

Determine the kurtosis value using the formula 
below: 

    𝑅𝑅𝑛𝑛 = 1
𝑀𝑀
∑ �𝑥𝑥𝑛𝑛−𝑥𝑥�

𝛽𝛽
�
4

𝑀𝑀
𝑛𝑛=1                  (10) 

Where x , β, M, and nx  are average values, 
the signal's standard deviation, the number of samples 
and the signal's specific (P. Nguyen et al., 2016). 

The level of correlation between two signals can 
be calculated using the correlation coefficient (CC) by: 

𝐶𝐶𝐶𝐶 = ∑ (𝑥𝑥𝑛𝑛−𝑥𝑥�)𝑀𝑀
𝑛𝑛=0 (𝑦𝑦𝑛𝑛−𝑥𝑥�)

�∑ (𝑥𝑥𝑛𝑛−𝑥𝑥�)2𝑀𝑀
𝑛𝑛=0 (𝑦𝑦𝑛𝑛−𝑥𝑥�)2

              (11) 

In this case, ny   and y   are the signal's particular 
and average values [24]. The precision of the 
reconstructed signal may be impacted by the end effect 
of the EEMD process, which can result in certain 
undesired IMFs, particularly at lower frequencies. A 
lower value suggests that the IMF's assistance was 
negligible, therefore are taken out before the 
reconstruction (Wang et al., 2016). 

 
Time-spectral kurtosis (TSK)  

The TSK is used to precisely identify the gear 
fault after the shaft IMFs have been eliminated. It is 
independent of time information and depends only on 
the statistical distribution of amplitude series. 
Defective signals really show up in vibration signals 
on a periodic basis. The defective signal is then recon-
structed via the faulty IMFs, which are found using the 
TSK (Antoni et al., 2006; B. Chen et al., 2014). 
Because of its ability to tolerate sparse interference im-
pulses, the TSK approach is used to adaptively deter-
mine resonance, as specified by: 

𝑇𝑇𝑇𝑇𝑇𝑇(𝑘𝑘, 𝑓𝑓) = |(𝐺𝐺�(𝑚𝑚,𝑓𝑓),|𝑌𝑌STFT (𝑘𝑘,𝑓𝑓)|)|4

|(𝐺𝐺�(𝑚𝑚,𝑓𝑓),|𝑌𝑌STFT (𝑘𝑘,𝑓𝑓)|)|2
− |𝐺𝐺�(𝑚𝑚,𝑓𝑓)|4

|𝐺𝐺�(𝑚𝑚,𝑓𝑓)|2
, 𝑓𝑓 ≠ 0 

(12) 
The calculated Gaussian series, 𝐺𝐺�(𝑚𝑚, 𝑓𝑓) is de-

rived from the initial signal's STFT amplitude series 
|𝑌𝑌STFT (𝑘𝑘, 𝑓𝑓)|. By looking for the TSK's highest peak, 
we can identify the resonance. In accordance with this, 
the fault IMFs for the fault signal reconstruction is se-
lected from the resonance band. The following suc-
cinctly describes detailed TSK. 
First, the raw vibration signal's STFT is computed. 
Step 2: Entropy for the STFTAS is used to preprocess 
the outliers. 
Step 3: Preprocessed STFT are used to estimate the 
Gaussian component 𝐺𝐺�(𝑚𝑚, 𝑓𝑓). First, the STFT ampli-
tude series mean value is determined. Next, choose 
points whose amplitude is smaller than the n-times 
mean, and use these points to create a new series. The 
goal series with an approximate Gauss distribution can 
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be generated by a number of iterative calculations. 
Step 4: Using |𝑌𝑌(𝑘𝑘,𝑓𝑓)| and 𝐺𝐺(𝑚𝑚, 𝑓𝑓), the TSK value of 
the k-th frame signal at frequency 𝑓𝑓  is determined 
using Equation (12). 
Step 5: The TSK value is used to design the filter 
𝐻𝐻(𝑘𝑘, 𝑓𝑓) 

𝐻𝐻(𝑘𝑘, 𝑓𝑓) = � 1  TSK ≥  Threshold
0.01  TSK <  Threshold   (13) 

Step 6: Reconstructing the signal by multiplying the 
STFT values by 𝐻𝐻(𝑘𝑘, 𝑓𝑓). 
Step 7: The Hilbert transformation is used to demodu-
late the reconstructed signal. 

The signal analysis algorithm 

Gear damage diagnosis is an extremely 
challenging endeavor. This study combines the SGW 
and EEMD algorithms to identify the defect feature 
frequency of weak gear signals. The numerical 
approach's steps are clarified below:  
Step 1: Filtering the original signal and extracting the 

signal of interest from the noise using SGW 
denoising. 

Step 2: Apply the EEMD technique to suppress modal 
aliasing and decompose the purified signal into 
IMFs. 

Step 3: To choose the best IMF components, time-
spectral kurtosis (TSK) and correlation 
coefficient of each IMF are then determined. 

Step 4: Lastly, the characteristic frequency is achieved 
through envelope spectrum analysis. The signal 
analysis procedure appears in Fig. 2 and 
MATLAB is employed for analyzing the data 
collected. 

Fig.2. the signal analysis algorithm 

Expérimental Test Setup 

A straightforward test rig is employed to 
illustrate the study conditions and gauge the 
effectiveness of the suggested methodology in order to 
ensure its efficiency and reliability. As shown in 
Figure 3 a (3KW) asynchronous drive motor in three 
phases powers the gearbox. A magnetic powder brake 
is employed to supply load, and speed and torque 
sensors are used to obtain the speed and torque data. 
These parts are joined by couplings. This 
investigational system has a 12,800 Hz sampling 
frequency. Additionally, 6.5 Nm and 13.5 Nm are the 
corresponding loads that are regulated by a controlled 
magnetic brake mechanism. Schematic figure of a 
planetary gearbox and its dynamical model is exposed 
in Fig. 4. Fig. 6 illustrates the arrangement of the 
planetary gearbox's sensors. The damaged gear is 
displayed in Figures 7, respectively. 

The corresponding feature frequency is linked 
to the rotating speed of the defective gear in relation to 
the planet carrier, also when a planetary gearbox has a 
tooth deficiency, the vibration signal experiences 
significant modulation characteristics and periodic 
shocks. Equations (14) and (15) are used to calculate 
the planetary gearbox's characteristic frequencies 
(Qiang et al., 2015). while Table 1 contains a list of 
them. 

𝑓𝑓𝜔𝜔 = 𝑓𝑓𝑛𝑛 − 𝑓𝑓𝑑𝑑 = 𝑓𝑓𝑑𝑑
𝑁𝑁𝑟𝑟
𝑁𝑁𝑛𝑛

  (14) 

𝑓𝑓ℎ = 𝑁𝑁𝑟𝑟𝑓𝑓𝑐𝑐 = 𝑁𝑁𝑝𝑝�𝑓𝑓𝑑𝑑 + 𝑓𝑓𝑝𝑝� = 𝑁𝑁𝑛𝑛(𝑓𝑓𝑛𝑛 − 𝑓𝑓𝑑𝑑)   (15) 
Nn: sun gear's teeth number 
Nr: ring gear's teeth number 
Np: planet gear's teeth number 
fn: frequency of sun gear 
fd: frequency of carrier  
fp: frequency of planet gear  
Fh: frequency of meshing 
fꞷ: the sun gear's frequency in relation to the carrier 

Table 1. Frequency parameters of the planetary 
gearbox. 

Fn Fd Fꞷ Fh 

16.42 4.85 11.57 300.82 

Results and discussions 

The appearance of periodic impulse components 
in vibration signals is a crucial indicator of gear failure 
in the diagnosis of gear faults. However, it is 
challenging to recover the weak periodic impulse 
patterns due to the high background noise. Figures (7-
a) and (7-b) display the time domain of a typical gear
and a broken gear. 

Nevertheless, these features are obscured by 
noise and are not noticeable enough to identify the 
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presence of defects. Time-frequency representations 
(Figures (8-a) and (8-b)) demonstrate that the 
frequency of the normal gear resides in the low-
frequency band, while the cracked gear's frequency is 
focused in the high frequency band. Figures (9-a) and 
(9-b) show the frequency domain of the gear failure. 
However, the fault's associated frequency is obscured, 
which is unable to discern the periodic pulse 
characteristics. making it difficult to find fault 
diagnostic information using the time and frequency 
domains. Consequently, the present research offers a 
potential defect identification approach for gears 
based on EEMD, SGW, and kurtosis to identify 
periodic impulse properties. 
 

 
Fig. 3.  Planetary gear fault test (1) Data acquisition 
system, (2) load system(3) fixed-axis gearbox, (4) vi-
bration sensors, (5) planetary gearbox,(6) Drive motor. 
 
 

  
Fig. 4. (а) schematic figure of a planetary gearbox, (b) 
dynamical model 
 
 

 
Fig. 5. vibration sensors  

Fig. 6. damaged gear 
 

 
 

 

 
(a) 

 
(b) 

Fig. 7. Time domain of (a) normal gears, (b) broken 
gears. 
 
 

 
(a) 

 

 
(b) 

Fig. 8. time–frequency diagrams of (a) normal gears, 
(b) broken gears. 
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Fig. 9. Spectrum of (a) normal gears, (b) broken gears. 
 

To enhance the denoising impact of the 
vibration signal, a second-generation wavelet (SGW) 
denoising approach has been offered; the results can 
be seen in Fig. 10, from which we observe that noises 
are significantly decreased while the legitimate signal 
amplitude is completely preserved. As a result, we 
may infer that the suggested method produces the best 
denoising performances. 

For the purpose of showing the success of the 
suggested technique, the signal that was collected is 
decomposed using EEMD. As shown in Fig. 11, the 
EEMD approach can decompose non-stationary 
vibration signals including failures in a sum of 
stationary component IMFs, which has the benefits of 
eliminating mode mixing. 

 

 
Fig. 10. Denoising by SGW technique 

 

 
Fig. 11. EEMD decomposing 

 
Fig. 12. The (CC) associated with the IMFs and the 
RFE. 
 

 
Fig. 13. The time-spectral kurtosis 

 

 
Fig. 14. The two-dimensional view 

 
Knowing that the most important components of 

the signal are, the background noise, harmonic 
contributions and a series of fault induced impulses. 
To identify the ideal IMFs, the (CC) associated with 
the IMFs and the reference signals RFE are displayed. 
Through the operation of EEMD, the signal is divided 
into 12 IMFs. Figure 11 shows that when the 
decomposition level increases, the highest values of 
the (CC) drop, as well as the IMF1, IMF2, and IMF3 
are considered to signal reconstruction. We can also 
check this by using TSK in Fig. 13. It is evident that 
the frequency range of 2.3–4.2 kHz is about where the 
resonance caused by the fault appears. therefore, we 
will chooseIMF1, IMF2 and IMF3 as fault IMFs. 



T- Bensana et al.: Investigation of Planetary Gearbox Vibration Signal Characteristics and Failure Diagnosis. 

-567- 
 

Additionally,we can see that more clearly in the two-
dimensional view as shown in Fig. 14. 

A gearbox's vibration signal is made up of a 
variety of factors, including rotational frequency, so is 
not just caused by vibrations in the gear meshing. 
Typically, the gear meshing frequency will be high 
relative to the shaft rotation frequency, which appears 
in the low frequency region. In Fig.15 the meshing 
frequency and the sidebands are evidently discovered. 
These characteristic frequencies are indicating 
damages occurring in the planetary gearbox. Moreover, 
the value of the sidebands is almost equal to the 
rotating frequency of the sun gear, which suggests the 
damage on the sun gear in planetary gearbox. It agrees 
to the value shown in the Table 1.  Correspondingly, 
background noise is effectively decreased since the 
EEMD filtering order is from high frequency to low 
frequency. Hence, these results can guarantee that the 
chosen IMFs include details of gear faults. We deduce 
that the suggested approach can successfully identify 
the planetary gearbox's defects. 
 

 
 

 
Fig. 15.  The reconstructed signal and its Zoom 
spectrum 
 

Conclusions 
 

This work proposes an adaptive strategy to 
address the challenge of weak feature extraction in 
planetary gearbox malfunction diagnosis. different 
concepts can be used to describe the main effects on 
this work. In order to separate the signal of interest 
from the background noise, SGW denoising is first 
used to filter the original signal. After that, decompose 
the filtered signal into IMFs and use the EEMD 
technique to reduce modal aliasing.The best IMF 
components are then chosen by calculating correlation 
coefficient and time-spectral kurtosis (TSK). Finally, 
the characteristic frequency is determined by 
analyzing the reconstructed signal's envelope 

spectrum. We conclude that the proposed method can 
effectively detect defects in the planetary gearbox and 
we hope that the research will assist researchers and 
experts in efficiently applying current damage 
detection algorithms and creating more dependable 
and useful techniques in the field of fault diagnosis. 
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