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ABSTRACT

Robot manipulators with flexible links are
made of light materials with low rigidity/stiffness. On
one hand, low rigidity makes the flexible robot
manipulator safer than the rigid robot manipulator
during operation. On the other hand, low rigidity also
results in vibration occurring at the endpoint of the
flexible link. As a result, the motion accuracy of the
flexible robot manipulator is often much worse than
that of the rigid robot manipulator. One effective way
to deal with the vibration problem is to design a
model-based control scheme. Consequently, this
paper aims at conducting an in-depth study on the
derivation of the mathematical model of the flexible
robot manipulator with slender links made of uniform
materials. In particular, the Euler-Bernoulli equation,
the Euler-Lagrange equation, and the Iumped
parameter method are employed in deriving the
mathematical model. Several experiments and
computer simulations have been conducted.
Experimental results indicate that the discrepancy
between the natural frequency obtained from the real
single-link flexible robot manipulator and that of the
mathematical model derived using the proposed
approach is very small. In addition, results of
computer simulations verify the effectiveness of the
proposed approach.

INTRODUCTION

Robot manipulators with flexible links are made
of light materials with low rigidity/stiffness. Since the
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flexible links are lighter than the rigid links,
compared with the rigid robot manipulator, the
required power of the servomotors that actuate the
flexible robot manipulator can be smaller, resulting in
lower cost and less energy consumption. In addition,
the mass and inertia of the flexible link are smaller;
as such, the possibility of endangering the safety of
users/operators is less likely.

However, low rigidity results in vibration
occurring at the endpoint of the flexible link. As a
result, the motion accuracy of the flexible robot
manipulator is often much worse than that of the rigid
robot manipulator. To facilitate the use of flexible
robot manipulators, finding an effective way to deal
with the vibration problem is essential. One of the
promising  approaches to cope with the
aforementioned problem is the model-based control
scheme. As a result, this paper aims at conducting an
in-depth investigation on issues related to the
kinematics and dynamics of the flexible robot
manipulator. In particular, the Euler-Bernoulli
equation, the Euler-Lagrange equation, and the
lumped parameter method are employed in deriving a
mathematical model for the flexible robot
manipulator with slender links made of uniform
materials.

According to the past studies in flexible robot
manipulators (Book, 1990; Theodore & Ghosal, 1995;
Dwivedy & Eberhard, 2006; Zhang et al., 2007; Gao
& Wang, 2012; Lochan et al., 2016; Sharifnia &
Akbarzadeh, 2017; Meng et al., 2018), in addition to
the kinematic energy generated by the motion,
various types of potential energy can be stored in
robot joints (i.e. servomotor, harmonic drive and
spring), transmission components (i.e. belt) and links.
In particular, the compliance caused by a joint can be
approximated by a spring. In addition, due to its low
moment of inertia, the transmission component can
be approximated by a lumped spring. In general, the
forces due to a link include torsion, bending and
compression. This paper only considers the bending
force of a flexible link.

The Timoshenko beam equation and the
Euler-Bernoulli equation (Theodore & Ghosal, 1995;
Meirovitch, 1997; Tokhi & Azad, 2008) are two of



the most popular approaches in studying the
mathematical model of the deformation of a flexible
link. Since the Timoshenko beam equation takes into
account the link’s shear force, it is more suitable for
studying the case of a short and thick flexible link

that has a significant shear force (Gao & Wang, 2012).

In contrast, the Euler-Bernoulli equation is more
suitable for studying the case of a slender link. In this
case, the shear force is very small and can be
neglected. Since the flexible link investigated in this
paper is slender, the Euler-Bernoulli equation is
adopted in this paper.

The commonly used approaches for solving the
Euler-Bernoulli equation are the Finite Element
Method (FEM) (Theodore & Ghosal, 1995; Sharifnia
& Akbarzadeh, 2017), the Assumed Mode Method
(AMM) (Theodore & Ghosal, 1995; Sharifnia &
Akbarzadeh, 2017) and the lumped parameter method
(Sakawa et al., 1985; Hastings & Book, 1987; Benati
& Morro; 1988; Chapnik, et al., 1991; Luca &
Siciliano, 1991; Feliu, et al., 1992; Matsuno et al.,
1994; Ge et al., 1997; Zhu et al., 1999; Subudhi &
Morris, 2002; Martins et al., 2003; Faris et al., 2009;
Sun et al., 2017; Hong et al., 2017). Among the above
three methods, the lumped parameter method requires
the least computation resources. In particular, when
using the lumped parameter method, the energy
caused by the deformation of the flexible robot
manipulator is approximated by the energy generated
by a system consisting of a point mass, a spring and a
damper. The modeling accuracy of the lumped
parameter method may not be as good as the other
two methods; nevertheless, its computation time is
shorter and may prove to be a big advantage over the
other two methods in practice.

In addition to studying the deformation of a
flexible link, this paper also investigates the forward
kinematics and differential kinematics of the flexible
robot manipulator. For a flexible robot manipulator of
low degree-of-freedom, one can exploit the geometric
relations and trigonometric functions to study
forward kinematics and differential kinematics.
However, it will be very difficult, if not impossible,
for high dimensional cases. In this paper, the popular
Denavit-Hartenberg (DH) parameters (Denavit &
Hartenberg, 1955; Fu et al., 1987) are exploited to
cope with high dimensional cases. In particular, this
paper introduces a coordinate transformation matrix
that takes into account the deflection due to the
deformation in all directions. By combining the
coordinate transformation matrix introduced in this
paper with the coordinate transformation matrix
suitable for the rigid robot manipulator defined by the
DH parameters, one can construct the kinematics
model for a general flexible robot manipulator.

The rest of the paper is organized as follows.
Section 2 introduces the mathematical model for
describing the deformation of the flexible robot
manipulator. Section 3 derives the kinematics model,
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while the dynamic model is obtained in Section 4.
Simulation and experimental results are provided in
Section 5. Conclusions are given in Section 6.

MODELING OF THE DEFORMATION
OF THE FLEXIBLE ROBOT
MANIPULATOR

In this section, the mathematical model for
describing the deformation of the flexible robot
manipulator will be derived.

Euler-Bernoulli equation

In this paper, the Euler-Bernoulli equation that
ignores the effects of torsion and shear force is used
to describe the deformation of the flexible link. Fig. 1
illustrates two typical one-link flexible robots—the
revolute joint and the prismatic joint. Fig. 2 shows
the deflection of the position of the endpoint for a
revolute-type flexible robot manipulator due to
deformation.

Fig. 1. Typical single-link flexible robots (left: revolute
joint; right: prismatic joint).

Fig. 2. Deflection of the position of the endpoint for a
revolute-type flexible robot manipulator due to deformation
(y: displacement of the endpoint from the horizontal axis; w:
deflection due to deformation).

Eq. (1) is the partial differential equation that
describes the relationship between the deflection
wi(X,t) of the endpoint of a flexible link due to
deformation and time t, as well as position X.

W, (X, 1) O°W, (X, 1)
El o + 0 o =—pX6 = Text,i
for direction of revolute control force of i-th axis (1)
ow(xt) 2w (xt)
El pve +p, pre =0
otherwise
where X: position; t: time; Ei: Young’s modulus of

the i link; I;: second axial moment of area of the i
link; Eili: rigidity of the i link; pi: linear density of
the i link.

The total displacement Yi(x,t) of a point X of the
i" link in the world frame, i.e. the sum of the
movement by the rigid link and the deformation due
to flexibility, can be expressed as Eq. (2).
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X6,(1) + Wi (X.)

<f0r direction of revolute control force of i-th axis

yi (X’t) = <

For the revolute-type flexible manipulator
shown in Fig. 1, the displacement on the Z-axis
(outward of the paper) is Xx&twy, while the
displacement on the X-axis and Y-axis are W; and Wy,
respectively. For the prismatic-type flexible
manipulator shown in Fig. 1, the displacement on the
X-axis, Y-axis and Z-axis are Wy, Wy and W,
respectively.

As pointed out in (Matsuno et al., 1994), the
boundary conditions for the forced Euler-Bernoulli
equation (i.e. with external force) are very
complicated. As a result, most existing literatures
focus on the case of an unforced Euler-Bernoulli
equation. Namely, only the boundary conditions for
the case of free vibration will be considered in this
paper. Note that the mathematical model derived
using the unforced Euler-Bernoulli equation cannot
accurately describe the dynamic behavior of the
flexible link under large external force. Nevertheless,
for application scenarios such as pick-and-place tasks,
one of the most important issues is to suppress
vibration after the target position is reached. It is
conceivable that the control force (i.e. external force)
after the target position is reached is much smaller
than that for a flexible link in motion. Therefore, the
mathematical model derived using an unforced
Euler-Bernoulli equation can be used to describe the
dynamic behavior of the flexible link in a
pick-and-place task without sacrificing too much
accuracy. For the case of free vibration, Eq. (1) can
be rewritten as Eq. (3):

3w (x,1)
El, PV +p,
Lumped parameter method

According to (Hastings & Book, 1987; Benati
& Morro; 1988; Chapnik, et al., 1991; Luca &
Siciliano, 1991; Matsuno et al., 1994; Subudhi &
Morris, 2002; Martins et al., 2003; Faris et al., 2009),
the boundary conditions of the Euler-Bernoulli
equation for the case of external load can be
described by Eqs. (4)-(6):

(2)
W, (X,t)

otherwise

O*W, (X,1)

P

0 fori-th axis (3)

ow, (X, 1)
Wi(Xat)|x:o =0 , T'XZO =0 “)
oW, (x,1) d?
EiliT x=4 :MpIF[\Ni(Xst)] x=L (5)
O*W, (X, 1) d? [ ow,(x,t)

o PR RS A2 I B i AR | 6
R L P dt? OX xh ©
where index i represents the i%-axis, M , 1s the mass

of payload for the i-axis, and I, is the moment of

inertia of payload for the ih-axis.
With the boundary conditions given by Egq.

(4)-(6), one can solve Eq. (3) and yield the following
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transcendental equation for fi.

M,
ﬁul-u +Iﬂij

sinh S;L; cos B; L
—cosh g;L; sin B; L

ij i

0=1+cosh gL cos

ij i

|

p.1

! "Bi; (sinh

(

(7
where index i represents the i"-axis and j represents
the j*" mode of the flexible link.

By solving Eq. (7) for fij, the resulting
eigenfunction Fjj (X) can be found (Sakawa et al.,
1985; Sun et al., 2017).

cosh f3;X —cos ;X
F(x) = KL B cosh(f;L;) + cos(B;L)
! sinh(B;L;) +sin(B;L,)

;L cos B; L +cosh ;L sin ;L )

4
+ M p.i I p,iﬂij

P 1—cosh gL cos

ij i

BL)

®)

(sinh ;x—sin B;X)

2
i = [, Fy00°0x= ['“’ [ ]
JL i M =0
In addition, according to (Feliu, et al., 1992; Ge
et al., 1997; Zhu et al., 1999; Hong et al., 2017; Sun

et al, 2017), the kinetic energy due to the
deformation of the i link can be expressed as

L [ax T=YT, )
i=1

ity
where n: the total number of links; Te: total kinetic
energy of all flexible links; T, : kinetic energy of the

i" flexible link.

In the case of free vibration for the
Euler-Bernoulli equation, the rigid displacement due
to control force is zero. As a result, we have yi=wi.

Using the 1% order assumed mode method, one
can rewrite Eq. (2) as Eq. (10).

yi =W, = F()g;() (10)

Now using the concept of the lumped mass
model (i.e. the lumped parameter method), the kinetic
energy of link i due to deformation is replaced by the
kinetic energy of m; numbers of mass, which is
described by Eq. (11). Similar to the assumed mode
method, the approximation accuracy depends on the
number of the mass used to represent a link.

_ 1 Lo, 1 .
T = Epi L W, "dx = 5 M.;Yie
1 & 1 &
2;Puf< 2; i Yii
where yjj is the displacement of the j mass for link i

and notation E represents the endpoint. Each link has
m; numbers of mass, /; = L;/m, is the length of each

where

=

p L2 [ 1+cosh g cos B,

+ 2
M p.iﬁij

sinh f; sin f3;

Te

(11)

j/I

i=De;

) _
W “dx =

mass, and M. represents the lumped mass.
Substituting Eq. (10) into Eq. (11) will yield Eq.
(12).



i 2

_ Pij -[(i—wf. F (x)"dx
F(it)’

One can use Eq. (12) to compute the lumped

mass. With the lumped mass M_. calculated, one

(12)

eij

el
can use Eq. (11) to compute the kinetic energy of the
flexible link.

Next, using the concept of the lumped spring
model and exploiting Hooke’s law, the elastic
potential energy can be expressed as Eq. (13)

m 1 Jfl " 2 d m 1 )
U, = ZE-[(J'—U’. Eql (Wij ) X= ZE KeiW;
j=1 j=t

Ue = iue,i
i=l

where U, is the total elastic potential energy, and Ue;
is the elastic potential energy of the i axis.

Let ¢ be the deflection angle of the deflection
wi. The indices X, y and z are defined in the right-hand
rule, which are described by

(13)

w=ld . 4 z%zwﬁ = F/(0g() (14)
Wxi EIﬁ'¢yi b Wyi = Li¢zi H Wzi = Li¢xi (15)

Substituting Eq. (14) and (15) into Eq. (13) will
result in the lumped spring constant of the lumped
spring model described by Eq. (16).

ij

[ ool
o {F{(M)—E'[(i—lﬂi]}z

The elastic potential energy of the flexible link
for the lumped spring model can be obtained by
substituting Eq. (16) into Eq. (13). Now, by
substituting the kinetic energy and the potential
energy for the flexible part of the flexible link
represented in the lumped model into the Euler-
Lagrange equation, one can derive the dynamic
equation and the flexible deflection that will be
elaborated upon later in this paper.

Since only the 1% order assumed mode is used
in the above discussion, its computation load is much
smaller than the pure assumed mode method.

it

_Eily i1

(16)

e,ij

KINEMATICS OF THE FLEXIBLE
ROBOT MANIPULATOR

Forward kinematics of the flexible robot
manipulator

The DH parameters are employed in this paper
to help derive the forward kinematics of the flexible
robot manipulator through a product of a sequence of
coordinate transformation matrices (Book, 1979;
Chedmail et al., 1991; Yang et al., 2001).

Suppose that (X;, Vi, Zj) is a coordinate frame
established at the i link and corresponds to the

(i+1)" joint position or the end-effector position. Now,
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the coordinate transformation matrix for the rigid part
of the robot manipulator is described by Eq. (17) (Fu
et al., 1987)

A~ =Trans, (d,)-Rot, (6)-Trans, (b)-Rot, (&)
where
6,: angle between X, , and X, that rotates about z; |

(17)

d, : distance between X, , and X; alongz, ,
o, :angle between z, | and z; that rotates about X;
b, : distance between z;_, and z; along X;

With Eq. (17), the position vector from the
end-effector (i.e. endpoint) to the origin as shown in
Fig. 3 can be expressed as

A R

0 = 2,01
where 1"~

Rt

(18)

1
"lis the position vector represented in the

(i-1)™ coordinate frame that is mapped from the i®
0

I
represented in the base frame (as indicated by the
green solid line in Fig. 3) that is mapped from the i

coordinate frame.

coordinate frame and is the position vector

End Effector

End Effecior

= e

Fig. 4. Forward kinematics
for a typical flexible 2-link
robot manipulator.

Fig. 3. Forward
kinematics for a rigid
type 2-link robot
manipulator.

The deflection displacement/angle due to
deformation will be derived in a manner similar to
the derivation of forward kinematics for the rigid part
of the robot manipulator. In particular, the coordinate
transformation matrix for the flexible part is
described by Eq. (19).

Eii’ _ Rx(¢xi)Ry(¢yi)RZ(¢zi) 3 Wilsa (19)
0 1x3
where 1’ represents the frame after flexibility
transformation and
(1 0 0 cosg; 0 sing,
R(#)=|0 cosg, -sing, |, R (4,)= 0 1 0
|0 sing, cosg, —sing; 0 cosg,
[cosg, —sing, 0
R,(¢,)=|sing, cosg; 0| W :|:Wxi Wy Wzi]T.
0 0 1

Based on the above coordinate transformation
matrix for the flexible part, the position vector from
the end-effector to the origin of the base frame is
defined to be the position vector represented in the
base frame for the rigid part of the robot manipulator
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plus the deflection (i.e. position deflection
displacement) w; due to deformation. The deflection
angles due to deformation (i.e. flexibility) are
denoted as ¢, ¢ and ¢. By using Eqgs. (17)~(20), one
can obtain the position vector from the end-effector
to the origin of the base frame for the flexible robot
manipulator as shown in Fig. 4.

R =AE-ATEG R (20)

There is a restriction when using the coordinate
transformation matrix for the flexible part. That is,
the origin of a frame must be located at the endpoint
of a flexible link if one wants to use the coordinate
transformation matrix for the flexible part directly.
However, based on the definition of DH parameters,
it is possible that the aforementioned requirement
will not be satisfied. In order to cope with this
difficulty, an auxiliary transformation matrix is
employed in this paper. Fig. 5 illustrates the idea of
using an auxiliary transformation matrix. In Fig. 5, by
following the rule of DH parameters, it is easy to find
that Frame 0 and Frame 1 locate at the same point. As
a result, there is no frame attached to the endpoint of
the first link, so the length of the first link will not
appear in the coordinate transformation matrix for the
flexibility frame (orange color in Fig. 5). To
overcome this difficulty, an auxiliary transformation
matrix Aaw iS employed to move Frame 1 to the
endpoint of the second link. With the auxiliary
transformation matrix, one can derive the forward
kinematics for a flexible robot manipulator using Eq.

@1).

r;?:[rX o, 1]T =A’A E'r,

100 0

010 0 2D
M=l 0 1 L

000 1

The purpose of the auxiliary transformation matrix
Aaux in Eq. (21) is to ensure that a frame is attached to
a desired position such as the endpoint of a link.

Next we will focus on the derivation of the
position vector of the endpoint, i.e. the position
vector represented in the i™ local frame (the blue
vectors in Fig. 4 and Fig. 5). Depending on the type
of joints, there are two different representations of the
position vector of the endpoint:

(a). The i™ joint is a revolute joint
If the x-axis is the rotational axis, then

i -7 '
r= [{( O +(x+wy )] (Wzi)k}3xl 1}

If the y-axis is the rotational axis, then

= [{(wxi )+ (wyi ) J+(x+w,) IZ};1 I]T

If the z-axis is the rotational axis, then

0
1

R(ifl)’
0

3x1

=R where RV 2[

1x3 Ix1

=r

'
I I

41-

=r k

T
b 1

Step 1. The z-axis is defined to be the direction of
translation: (X +w, )k .

= [{(x + W, ) T+ (wy ) J+ (wy)

(b). The i*" joint is a prismatic joint

Step 2. The x-axis (or y-axis) is defined to be
(Wxi )r

Step 3. With the z-axis and x-axis (or Y-axis)
determined, the y-axis (or x-axis) is determined by
the right-hand rule: (W,;)J .

perpendicular to the z-axis:

.
. . T
1 1 T
= r=r, :|:{(WXI)I (WYI)J +(x+wzi)k}3x1 1}
Frame2
e
0 N
-I1 ]
m End effector =T
B vector h
Frame0,
EL z
Aux framel
[1] “.f
// L :
: . W S
"Iam-l
Fig. 5. Illustrative example of using an auxiliary

transformation matrix.

The general form of forward kinematics for the
flexible robot manipulator can be expressed as Eq.
(22)

=T’
i (ll)l

(I v |:Aaux0 [H AJ - AauXJ EJ J:| (I v r|I (22)

where the transformation matrix has the following

et s

i-1

H Al] Aau)q EJ

j=p+1

P
(-1y

Tigl = |:A§ux0 (ﬁ Aqu ' Aauxj ' E]l’ J A(—ifz), : Aaluxiljl
Ti—pl = |:( ﬁ Aqu ' Aauxj ' Ejj’JA(ilz), : Aaluxiljl

j=p+l

and p is any frame other than the base frame.

Forward velocity kinematics of the flexible robot
manipulator

The time derivatives for both the coordinate
transformation matrices for the rigid part and flexible
part of the flexible robot manipulator are essential in
deriving the forward velocity kinematics of the
flexible robot manipulator.



(i1 . . -
%ﬁi =QA"™g =R"" revolute

A1) = 23
’ ﬂd.:QA(i'”'d. prismatic )
od T '
where Q, =Q, or Q,
0 -1 00 0000
1 0 00 000 0
%=l 0 00| %o o0 01
0 0 00 0000
d
o E(RX<¢X>RY<¢y>RZ<¢Z>)3X3 0,
01><3 lel
(QXRXRYRZ)M ¢X+(RXQyRyRZ)M 4, . (24)
= +(RR,QR,), . 4 ¥
01><3 lel
where
00 0 0 0 1
Q;%: 00 -1 , Qy=£= 0 0 0
o1 o0 iolo1 0 0
[0 -1 0
szizl 0 0
0f: 0 1 0

From Eq. (23) and Eq. (24), the linear velocity
of the end-effector to the origin of the base frame is
expressed as

o= ST e
dt \ d-r
where Vi described by Eq. (26) is the transformation
matrix after differentiation, and p=6or d.

[T((J)II)VQJ' A}H)’ pj Acxuxj E jT ! 'ER:H)’

J=vin (25)

i1

g

j a1

+TS AT AL BT RO

= G-nHY uxj = (i-1y

]+T<?,),Qi A6
(26)

The linear velocity can be used to compute the

kinetic energy of the flexible robot manipulator.

The derivation of the angular velocity of the
end-effector of the flexible robot manipulator will be
elaborated upon in the following. Due to the fact that
the link of a flexible robot manipulator is not ideally
rigid, the velocity of the starting point of a link will
not be perfectly synchronized with the velocity of the
endpoint of a link. As shown in Fig. 6, the payload
for the first link is the actuator (i.e. motor) of the
second link. As a result, the angular velocity of the
motor is in fact the angular velocity of the payload. In
addition, the part colored blue in Fig. 6 represents the
bearing of the second link.

In the following discussion, there are two
different velocities—the payload angular velocity (for
the endpoint of a link) and the hub angular velocity
(for the starting point of a link).

|
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Linkl

Link2
S E g Hub

|
Fig. 6. Linkage between the first link and the second link.

Similar to the derivation of the robot Jacobian
for the rigid robot manipulator (Spong et al., 2006),
the angular velocity for the hub and the angular
velocity for the payload are described by Eq. (27) and
Eq. (28), respectively.

1
0 0 &
Whi = O +Z(RJ’—1CDH + wi) @7
=
i
0 _ 04
o =3 (R, +0,) (28)
i=1
where
. . . R R? d?
cDi:|:¢x,i ¢y,i ¢z,i:| , Tjoz{( J)M ( J)M
01><3 1lxl
C e
O;R,,)4, revolute
=0
. = r- xV. . n . .
i ’_02’ > where v; =d;R{_ 4, prismatic
i
7]
0_T0 (- _T0 (-D'pi (i
where 1 =T5 0 =T, %77, _(ri’)rigid

Fig. 7 shows the angular velocity for the case of
the planar 2-DOF flexible robot manipulator.

Tip of link 2 @', =0+§+0,+¢

Fig. 8. Moment of inertia
for axis OQ.

Fig. 7. Angular velocity for
the case of the planar
2-DOF flexible robot
manipulator.

Moment of inertia in the base frame

Since the Euler-Lagrange equation is employed
in this paper to derive the dynamic model, one needs
to calculate in advance the kinetic and potential
energies associated with moment of inertia for
bearings and payloads. In the previous subsection,
one can derive the forward velocity kinematics
represented in the base frame. In the following, we
will derive the moment of inertia for bearings and
payloads represented in the base frame so that one
can develop the correct formulas for kinetic and
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potential energies associated with moment of inertia
for bearings and payloads in the base frame.

By definition, the moment of inertia for an
arbitrary axis OQ shown in Fig. 8§ is expressed as

log = [ dm = [([F[sine)” dm = [|77x F[" dm

the

ﬁ=[’7x n, T is the unit vector in the direction

29

where dm is infinitesimal mass element,

of the OQ axis, F:[X y Z]T is the vector

pointing in the direction of point P, and « is the angle
between 7 and T .

By expanding Eq. (29), one will have

[ :j(y2+zz)dm, I, :j(x2+zz)dm, l, :J(x2+y2)dm (30)

IW=—Ixydm, Ixz=—Ixzdm, IW=—Iyzdm

log =1 Vo +1,7 Ny +1,° 1, + 20, ) +20,m,1,, + 2,1,
(31

Using Eq. (31), one can convert the moment of
inertia represented in the local frame into the moment
of inertia represented in the base frame. The
procedure is detailed in the following.

Step 1. Assign OQ axis as the x-axis, y-axis and z-axis
of the base frame, respectively.

Step 2. The x-axis, y-axis and z-axis of the base frame
are converted and represented in a local frame.

Step 3. Calculate the moment of inertia of the base
frame.

The above three steps can be described by Eq. (32).

I_X,i :ﬁXiTIi ﬁxi’ I_Y‘i :ﬁ(iTIi ﬁwa Iz,i :ﬁnTIi ﬁZi (32)
where
B =(R) T=[ae By Bae) 1y, 1y, 1,
T =(Ri0)T jz[ﬁv.x Ty Thi T =l Ty

where ljis the inertia tensor for the bearing/payload.
Note that the local frame for the hub and payload are
the same, therefore they have the same inertia tensor
formula.

DYNAMICS OF THE FLEXIBLE
ROBOT MANIPULATOR

In order to use the Euler-Lagrange equation to
derive the dynamic equation that describes the
dynamics of the flexible robot manipulator, one must
calculate the potential energy and kinetic energy of
the flexible robot manipulator in advance.

Energy equation

The energy equation for the flexible robot
manipulator is derived based on the existing
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researches on the assumed modes method and the
lumped parameter method. The kinetic energy
generated by these components will be dissipated by
work due to non-conservative forces such as viscous
force and heat. The rest of the energy is due to
conservative forces such as gravitational force and
spring force that will generate potential energies such
as gravitational potential energy and elastic potential
energy. In the flexible robot manipulator, in addition
to the motor rotor, other components will also
contribute gravitational potential energy. In particular,
in addition to the potential energy, the link also
contains elastic potential energy due to the fact that
its rigidity is not high. In order to derive a dynamic
model that can faithfully describe the dynamic
behaviors of the flexible robot manipulator, this paper
will calculate the kinetic energy of the link, kinetic
energy of the rotor, kinetic energy of the hub/payload,
elastic potential energy of the link, gravitational
potential energy of the link, and gravitational
potential energy of the hub/payload. In the following,
a lumped parameter-based approach will be exploited
to study these energies, in which a single link is
approximated by a set of lumped parameters.

Firstly, we will calculate the kinetic energy of
the link. According to (Meirovitch, 1988), the kinetic
energy of any point mass on the robot manipulator is
calculated using the time derivative of the position
vector in the base frame. By definition, the sum of the
kinetic energy of all point masses is the kinetic
energy of the whole system. As a result, the kinetic
energy Tink for all links in a flexible robot
manipulator can be expressed as

T =5 2] A@[R] [16)]d

where n is the total number of links in a flexible robot
manipulator, and index i is the i link.

By following the derivation process of the
dynamic equation for a rigid robot manipulator in (Fu
et al., 1987), the investigation of the kinetic energy of
a link is divided into the rigid part and the flexible
part in this paper. In particular, the kinetic energy of
the flexible part is derived using the Iumped
parameter method. That is, the kinetic energy of the
flexible part can be regarded as if it were generated
by a virtual mass. By satisfying the assumption
described by Eq. (15), deviations due to deformation
Wy, Wy, W; can be expressed in the form of
Lg,,Ld, ., Lg,, respectively. As a result, one can

rewrite Eq. (33) into Eq. (34) as
1 Lo
Tik = EZ{Trace(Vi.]iviT )+ M.;L; ((I)iT(I)i +PT pl)} (34)

i=1

(33)

where
W, =W, =W, =0

(e =V (V) = ()0 = ()i,

M |:Me,xi I\/Ie,yi Me,zi:| H d)iT:[¢x,i &y,i ¢Ez‘i ]T

e,
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_[ pl(é)[ ’:| r|g|d|: i]-:igid dé:’

‘]i :‘]i,x

)0,0 , revolute joint

prismatic joint

and or J;, or J;,

g 1s the rotation matrix R in E

R

R ‘ w0 Tepresents the rotation matrix R in AV
[ p@zds 0 0 ["p 0]
3 = 0 00 0
ix 0 0 0 0
_IOL‘p”(é:)gdg 00 Iohpi,x(é)deg_
0 0 0 0 1
|0 Deaosds 0 [ @0
iy — 0 0 0 0
0 [ oy ©2ds 0 J.OL‘pi’y(f)df_
[0 0 0 0
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Secondly, the kinetic energy of the rotor can be
expressed as

Z'r.(.

where y is the moment of inertia of the rotor.

As for the calculations of kinetic energy for the
hub and payload, one can apply Konig's theorem
described by Eq. (36). Similar to the case of a link,
the kinetic energy of a system is equivalent to the
sum of the kinetic energy of all point masses of the
system. It is also equivalent to the sum of the kinetic
energy of the center of mass for conducting a
translational motion and the kinetic energy of the
moment of inertia relative to the center of mass of the
system for conducting a rotational motion

1
ZK z;mivizz total Ve +Z mv
i=1

(35)

rotor -

total

1 L.
= 2 Mwlalv + 21 (36)
= kinetic energy of translation and rotation

where notation “C” represents “center of mass”.
Similar to the above discussions, the

calculation of kinetic energy of hub and payload is
also divided into two parts—Kkinetic energy due to
translational motion and kinetic energy due to
rotational motion.
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As for the case of kinetic energy due to
translational motion, in this paper it is assumed that
the hub of the i axis and the payload of the (i—1)®
axis have the same center of mass. Therefore, the sum
of their kinetic energies due to translational motion is
equivalent to the kinetic energy due to translational
motion of the sum of these two masses. As a result, to
simplify, one can combine these two cases as
described by Eq. (37):

23 (Mg My R

i=1

T

hub,mass

+T

CI

payload ,mass =

Z%Z(Mp,i +Mh,i+1)riE(Li)T VTV, (L)

Note that there is no kinetic energy due to
translational motion for the hub of the 1% axis, while
there is no kinetic energy due to rotational motion for
the last axis.

As mentioned in Section 3, the rotational
velocity of the hub and the rotational velocity of the
payload are not the same. Therefore, the kinetic
energy due to rotational motion for the case of the
hub and that for the case of the payload will be
discussed separately. Using Eq. (27), Eq. (28) and Eq.
(32), one can obtain

)

Thub,inertia = l Zn: I_h,i (a)f?,ioz
Is)

Z'p.( ;

where Thyp is the kinetic energy of the hub due to
rotational motion and T is the kinetic

(3%

(39

payload inertia — ~

payload ,inertia
energy of the payload due to rotational motion. In
addition’ I7h,i :|:Tl1x,i I7hy,i I7r1z,i:| > I_p,i :|:|_px,i I_py,i I_pz,i:| N

o | is called the Hadamard product (ie. the
entrywise product), in which

(a)r?,ioz) = I:a)r?x,iz a’f?y,iz a’f?z,iz]T

(") =[ o )

p.l

The elastic potential energy and the
gravitational potential energy for the flexible robot
manipulator will be elaborated in the following. We
will start with the calculation of the elastic potential
energy for the link. Similar to the discussion on the
kinetic energy of the link, the elastic potential energy
for each link is described by a lumped spring model

as shown in Eq. (40).

1< 24 ©2

u —QZ[KiLi b, |

i=l

0 2
py,i

0 2

@ e

[2)

(40)

elastic

where Ki=[Ke’xi Keyi Ke’zi]

Finally, we will calculate the gravitational
potential energy. Since the deviation due to flexibility
is very small for a link, in this paper only the
gravitational potential energy of the link due to
rigidity will be discussed. Its general expression is
described by Eq. (41):
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n

U gravity,link ~ z

i=l

2

where 5 = ["p(&)[n],, d¢> 6=6, or 5, or g,

{Lﬁpxx)g(n%&)mm)dA

0 (i-1y
qTe K5

:I:pi,x(f)éde: 00 J.thi,x(ﬁ)d‘fT

:0 [} pa@ &z 0 jo“pi,y@déT

s.=[0 0 [Ph.@ e [ p@ae]
G=g, or g, or g,

g.=[ls 0 0 o] . g,=[0 g 0 o],
6. =[0 0 o] o

As mentioned previously, it is assumed that the
hub of the i axis and the load of the (i—1)™ axis have
the same center of mass. As a result, to simplify, one
can combine these two cases as described by Eq.
(42):

~ 0
u gravity,hub +U gravity, payload = Z(mh,iﬂ + mpAVi )g ri’ (L|)

i1
n

= Z(mh,m +My; )
i1

Note that there is no gravitational potential energy for
the hub of the 1% axis and the last axis.

(42)

g, R R

Derivation of the dynamic equation for a flexible
robot manipulator

Substituting all the kinetic energies and
potential energies derived in Section 4.1 into the
Lagrangian L of the FEuler-Lagrange equation
described by Eq. (43), one can derive the dynamic
equation of the flexible robot manipulator based on
the lumped parameter method:

d oL oL d oL oL
z’k:—f—_ s = b} :1527 5n

dt p, p, dt 04, Oy

podoL oL o da o

dt og, od, dt og, 04,
(43)

where k denotes the k™ link in an n-DOF flexible
robot manipulator.

Since the kinematic energy terms and the
potential energy terms contained in the Lagrangian L
are decoupled, one can substitute the kinematic
energy and the potential energy term by term into the
Eq. (43) to yield eight dynamic equations in total for
the flexible robot manipulator. Each dynamic
equation consists of inertia force, Coriolis force,
centrifugal force, gravitational force and spring force.
By rewriting these eight dynamic equations into a
matrix form, one can obtain Eq. (44):

(41) {

45-

Tnxl

:| =M (Q)4nx4n Q4nx1 + C(Q» Q)4n><1

3nxd Inertia force

Coriolis and
centrifugal force

+G(Q)4n><1 + D4nx4nQ4nx1 + K4nx4nQ4nx1
—

Gravity force

where QZ[DM Bena Pyna ¢z,nx1T

Note that by removing the flexible part of the robot
manipulator, Eq. (44) can be also used to derive the
dynamic model for the rigid robot manipulator.

(44)

Damping force Spring force

SIMULATIONS AND EXPERIMENTAL
RESULTS

In order to verify the effectiveness of the
proposed approach, a single-link flexible robot
manipulator is adopted in the simulation performed
using MATLAB. In addition, the real experiment of
the single-link flexible robot manipulator is also
conducted. Note that in all simulations, the gear ratio
¥ is set to 50. In addition, a PD-like control law
described by Eq. (45) is adopted and the
corresponding control block diagram is shown in Fig.

9.
Temd = val:Kpp ( Pemg — p)_ p]

Where Kpp:70, va:50.

(45)

Fig. 9. Control block diagram of the flexible robot
manipulator used in all simulations.

Single-link flexible robot manipulator

A single-link flexible robot manipulator
provided by Delta Electronics Inc. shown in Fig. 10
is used as the experimental platform. In the
experiment, the frequency domain analysis approach
is employed to obtain the natural frequency of the
flexible robot manipulator. The obtained results are
compared with the results obtained using the lumped
parameter method to verify the wvalidity of the
dynamic model derived using the proposed approach.
Table 1 shows the system parameters of the
single-link flexible robot manipulator used in the
experiment, in which the joint is actuated by a 400W
Delta AC servomotor (ECMC-CW0604).

The frequency response of the actuator (i.e.
driven oscillator) for the single-link flexible robot
manipulator shown in Fig. 11 has an anti-resonance
frequency around 8.24 Hz, which indicates that the
natural frequency (i.e. resonance) of the single-link



flexible robot manipulator is around 8.24 Hz (Belbasi
et al., 2014). Subsequently, the proposed approach is
used in the simulation (system parameters are listed
in Table 1). After calculation, the lumped mass is
0.008634 kg and the lumped spring constant is
96.7425 kg/s*. Since the moment of inertia of the
rotor and gear ratio are irrelevant to the natural
frequency of the link, their values are set to 1,,=0.002
kg-m? and =50, while the damping coefficient & is
set to 0.0005. A step response that corresponds to the
position input of the motor from 10° to 30° is
conducted. The initial deformation angle is assumed
to be zero. The simulation results for all three
directions are shown in Fig. 12. The primary
vibration direction in the simulation is the z-axis. The
step response ¢ shown in Fig. 12 (e) indicates that
the natural frequency of the link is around
1/(1.963sec—1.845sec)=8.4745Hz. The comparison
between the natural frequency obtained from the real
single-link flexible robot manipulator experiment and
that of the simulation is listed in Table 4. In addition,
from ¢ shown in Fig. 12 (a) (X-axis is the primary
drooping direction), one can find that there is almost
no deformation occurring due to its extremely high
rigidity, 248 N-m?. Table 2 also indicates that the
discrepancy between the natural frequency obtained
from the real single-link flexible robot manipulator
experiment and that of the simulation is very small. It
suggests that the accuracy of the dynamic model of
the single-link flexible robot manipulator obtained
using the proposed approach is satisfactory.

Al ruler+accelerator

X 2594
)

X824
Y:-1964
-

Magnitude [dB]

-40
10°

10? 10°

Frequency [Hz]

Fig. 10. Single-link o’
flexible robot manipulator

used in the experiment. Fig. 11. Frequency response

of the actuator of the
single-link flexible robot
manipulator.

In addition, the commonly used assumed mode
approach is also employed to derive the dynamic
model of the single-link flexible robot manipulator. In
particular, the 2" order assumed mode method is
used in the computer simulation, for which the
system parameters used in the simulation are listed in
Table 3. Since the primary concern is the motion in
the z-axis direction, therefore the motion related to
the other two dimensions is ignored. In the simulation,
the initial position is set to 4 =10",w, =L, =0.

J. CSME Vol.44, No.1 (2023)

Table 1. System parameters of the single-link flexible robot
manipulator

) Payload
Link length L, 028 m mass M, 0.025607 kg
Line Rigidity  of )
density p, 0.1289kg/m g 248 N-m
Rigidity — of (70656 Rigidity  of  0.70656
link E,l, N-m? link E_l, N-m?
[0.00003 0 0
l,=| 0 0.00023 0 |kg-m?
|0 0 0.00023
[0 0 0
I,={0 0 0 kg-m’
10 0 47575%107

Table 2. Comparison between the natural frequency
obtained from the experiment and that of the simulation

Real experiment  Simulation Discrepancy

Natural

8.24 Hz
frequency

8.4745 Hz 2.767 %

Table 3. System parameters of single-link flexible robot
manipulator for the 2" order assumed mode method

Link Moment of )
length L, 1.0m inertia of rotor I, 0.002 kg-m
Line Damping
density p, 0.1 kg/m coefficient &, 0.1
Rigidity of
2
link E, I, 2.0 N-m Payload mass M 0.2kg
0.2 0.001 0.001 0.001 0.001 0.001
I, =|0.001 0.2 0.001], I,,=|0.001 0.001 0.001unit: kg:m’
0.001 0.001 0.2 0.001 0.001 0.001

Table 4. Simulation results (assumed mode method vs.
lumped parameter method)

ond order
lumped .
assumed Discrepancy
parameter
mode
Natural 0.7937 Hz 0.813 Hz 2.374%
frequency
Amplitude 0.1462 m 0.2032 m 28.05%

Table 5. Comparison of computation time (assumed mode
method vs. lumped parameter method)

nd
2 order lumped Computation
assumed X .
parameter time ratio
mode
Kinematics 2.633 sec 1.323 sec 50.25 %
Dynamics 6.841 sec 4.047 sec 59.16 %
Constant
torque 36.860 sec 23.442 sec 64.60 %
command
Feedback 36.894sec  23.605 sec 63.98 %
control
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Fig. 12. Simulation of step response corresponding to the
position input of the motor from 10° to 30° (a) ¢ (b) Wx
©¢ Dwy (¢ Hw:

The simulation results shown in Fig. 13 and
Table 4 indicates that the discrepancy between the
natural frequency obtained using the proposed
approach and that using the second order assumed
mode method is very small, while the discrepancy in
amplitude is slightly less than 30%. That is, the
system characteristics predicted using these two
methods are similar. According to Table 5, the
computation time for the proposed approach is
smaller than that for the second order assumed mode
method.

Pos of End Effector (Lumped)

a5 5

15 2 25 3 35 4
Time(sec)

Fig. 13. Simulation results of feedback control (assumed
mode method vs. lumped parameter method).

Py B
o o5 1

CONCLUSIONS

This paper employs the lumped parameter
method to derive the mathematical model of the
flexible robot manipulator. The energy equation,
kinematics model and dynamic model of the flexible
robot manipulator derived using the proposed
approach are in general form. Namely, these
equations and models are suitable for arbitrary
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configurations of links, rotational and translational
motions and any number of axes. If the flexible part
is removed, all the equations and models derived
using the proposed approach will degenerate into
those for rigid robot manipulators. Simulations and
experimental results verify the effectiveness of the
proposed approach. Since the proposed approach
does not involve any terms that require real
integration of deformation due to flexibility, its
computation load is reasonable.
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