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ABSTRACT 

 
Robot manipulators with flexible links are 

made of light materials with low rigidity/stiffness. On 
one hand, low rigidity makes the flexible robot 
manipulator safer than the rigid robot manipulator 
during operation. On the other hand, low rigidity also 
results in vibration occurring at the endpoint of the 
flexible link. As a result, the motion accuracy of the 
flexible robot manipulator is often much worse than 
that of the rigid robot manipulator. One effective way 
to deal with the vibration problem is to design a 
model-based control scheme. Consequently, this 
paper aims at conducting an in-depth study on the 
derivation of the mathematical model of the flexible 
robot manipulator with slender links made of uniform 
materials. In particular, the Euler-Bernoulli equation, 
the Euler-Lagrange equation, and the lumped 
parameter method are employed in deriving the 
mathematical model. Several experiments and 
computer simulations have been conducted. 
Experimental results indicate that the discrepancy 
between the natural frequency obtained from the real 
single-link flexible robot manipulator and that of the 
mathematical model derived using the proposed 
approach is very small. In addition, results of 
computer simulations verify the effectiveness of the 
proposed approach. 
 

INTRODUCTION 
 

Robot manipulators with flexible links are made 
of light materials with low rigidity/stiffness. Since the 

flexible links are lighter than the rigid links, 
compared with the rigid robot manipulator, the 
required power of the servomotors that actuate the 
flexible robot manipulator can be smaller, resulting in 
lower cost and less energy consumption. In addition, 
the mass and inertia of the flexible link are smaller; 
as such, the possibility of endangering the safety of 
users/operators is less likely. 

However, low rigidity results in vibration 
occurring at the endpoint of the flexible link. As a 
result, the motion accuracy of the flexible robot 
manipulator is often much worse than that of the rigid 
robot manipulator. To facilitate the use of flexible 
robot manipulators, finding an effective way to deal 
with the vibration problem is essential. One of the 
promising approaches to cope with the 
aforementioned problem is the model-based control 
scheme. As a result, this paper aims at conducting an 
in-depth investigation on issues related to the 
kinematics and dynamics of the flexible robot 
manipulator. In particular, the Euler-Bernoulli 
equation, the Euler-Lagrange equation, and the 
lumped parameter method are employed in deriving a 
mathematical model for the flexible robot 
manipulator with slender links made of uniform 
materials. 

According to the past studies in flexible robot 
manipulators (Book, 1990; Theodore & Ghosal, 1995; 
Dwivedy & Eberhard, 2006; Zhang et al., 2007; Gao 
& Wang, 2012; Lochan et al., 2016; Sharifnia & 
Akbarzadeh, 2017; Meng et al., 2018), in addition to 
the kinematic energy generated by the motion, 
various types of potential energy can be stored in 
robot joints (i.e. servomotor, harmonic drive and 
spring), transmission components (i.e. belt) and links. 
In particular, the compliance caused by a joint can be 
approximated by a spring. In addition, due to its low 
moment of inertia, the transmission component can 
be approximated by a lumped spring. In general, the 
forces due to a link include torsion, bending and 
compression. This paper only considers the bending 
force of a flexible link.  

The Timoshenko beam equation and the 
Euler-Bernoulli equation (Theodore & Ghosal, 1995; 
Meirovitch, 1997; Tokhi & Azad, 2008) are two of 
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the most popular approaches in studying the 
mathematical model of the deformation of a flexible 
link. Since the Timoshenko beam equation takes into 
account the link’s shear force, it is more suitable for 
studying the case of a short and thick flexible link 
that has a significant shear force (Gao & Wang, 2012). 
In contrast, the Euler-Bernoulli equation is more 
suitable for studying the case of a slender link. In this 
case, the shear force is very small and can be 
neglected. Since the flexible link investigated in this 
paper is slender, the Euler-Bernoulli equation is 
adopted in this paper. 

 The commonly used approaches for solving the 
Euler-Bernoulli equation are the Finite Element 
Method (FEM) (Theodore & Ghosal, 1995; Sharifnia 
& Akbarzadeh, 2017), the Assumed Mode Method 
(AMM) (Theodore & Ghosal, 1995; Sharifnia & 
Akbarzadeh, 2017) and the lumped parameter method 
(Sakawa et al., 1985; Hastings & Book, 1987; Benati 
& Morro; 1988; Chapnik, et al., 1991; Luca & 
Siciliano, 1991; Feliu, et al., 1992; Matsuno et al., 
1994; Ge et al., 1997; Zhu et al., 1999; Subudhi & 
Morris, 2002; Martins et al., 2003; Faris et al., 2009; 
Sun et al., 2017; Hong et al., 2017). Among the above 
three methods, the lumped parameter method requires 
the least computation resources.  In particular, when 
using the lumped parameter method, the energy 
caused by the deformation of the flexible robot 
manipulator is approximated by the energy generated 
by a system consisting of a point mass, a spring and a 
damper. The modeling accuracy of the lumped 
parameter method may not be as good as the other 
two methods; nevertheless, its computation time is 
shorter and may prove to be a big advantage over the 
other two methods in practice.  

In addition to studying the deformation of a 
flexible link, this paper also investigates the forward 
kinematics and differential kinematics of the flexible 
robot manipulator. For a flexible robot manipulator of 
low degree-of-freedom, one can exploit the geometric 
relations and trigonometric functions to study 
forward kinematics and differential kinematics. 
However, it will be very difficult, if not impossible, 
for high dimensional cases. In this paper, the popular 
Denavit–Hartenberg (DH) parameters (Denavit & 
Hartenberg, 1955; Fu et al., 1987) are exploited to 
cope with high dimensional cases. In particular, this 
paper introduces a coordinate transformation matrix 
that takes into account the deflection due to the 
deformation in all directions. By combining the 
coordinate transformation matrix introduced in this 
paper with the coordinate transformation matrix 
suitable for the rigid robot manipulator defined by the 
DH parameters, one can construct the kinematics 
model for a general flexible robot manipulator.   

The rest of the paper is organized as follows. 
Section 2 introduces the mathematical model for 
describing the deformation of the flexible robot 
manipulator. Section 3 derives the kinematics model, 

while the dynamic model is obtained in Section 4.  
Simulation and experimental results are provided in 
Section 5.  Conclusions are given in Section 6. 

MODELING OF THE DEFORMATION 
OF THE FLEXIBLE ROBOT 

MANIPULATOR 

In this section, the mathematical model for 
describing the deformation of the flexible robot 
manipulator will be derived.  

Euler-Bernoulli equation 

In this paper, the Euler-Bernoulli equation that 
ignores the effects of torsion and shear force is used 
to describe the deformation of the flexible link. Fig. 1 
illustrates two typical one-link flexible robots—the 
revolute joint and the prismatic joint. Fig. 2 shows 
the deflection of the position of the endpoint for a 
revolute-type flexible robot manipulator due to 
deformation.  

    
Fig. 1. Typical single-link flexible robots (left: revolute 
joint; right: prismatic joint). 

 
Fig. 2. Deflection of the position of the endpoint for a 
revolute-type flexible robot manipulator due to deformation 
(y: displacement of the endpoint from the horizontal axis; w: 
deflection due to deformation). 

Eq. (1) is the partial differential equation that 
describes the relationship between the deflection 
wi(x,t) of the endpoint of a flexible link due to 
deformation and time t, as well as position x.  
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where x:  position; t: time; Ei: Young’s modulus of 
the ith link; Ii: second axial moment of area of the ith 
link;  EiIi: rigidity of the ith link; i: linear density of 
the ith link. 

The total displacement yi(x,t) of a point x of the 
ith link in the world frame, i.e. the sum of the 
movement by the rigid link and the deformation due 
to flexibility, can be expressed as Eq. (2).  
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For the revolute-type flexible manipulator 
shown in Fig. 1, the displacement on the Z-axis 
(outward of the paper) is x+wy, while the 
displacement on the X-axis and Y-axis are wz and wx, 
respectively. For the prismatic-type flexible 
manipulator shown in Fig. 1, the displacement on the 
X-axis, Y-axis and Z-axis are wx, wy and wz, 
respectively. 

As pointed out in (Matsuno et al., 1994), the 
boundary conditions for the forced Euler-Bernoulli 
equation (i.e. with external force) are very 
complicated. As a result, most existing literatures 
focus on the case of an unforced Euler-Bernoulli 
equation. Namely, only the boundary conditions for 
the case of free vibration will be considered in this 
paper. Note that the mathematical model derived 
using the unforced Euler-Bernoulli equation cannot 
accurately describe the dynamic behavior of the 
flexible link under large external force. Nevertheless, 
for application scenarios such as pick-and-place tasks, 
one of the most important issues is to suppress 
vibration after the target position is reached. It is 
conceivable that the control force (i.e. external force) 
after the target position is reached is much smaller 
than that for a flexible link in motion. Therefore, the 
mathematical model derived using an unforced 
Euler-Bernoulli equation can be used to describe the 
dynamic behavior of the flexible link in a 
pick-and-place task without sacrificing too much 
accuracy. For the case of free vibration, Eq. (1) can 
be rewritten as Eq. (3):  
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Lumped parameter method 
According to (Hastings & Book, 1987; Benati 

& Morro; 1988; Chapnik, et al., 1991; Luca & 
Siciliano, 1991; Matsuno et al., 1994; Subudhi & 
Morris, 2002; Martins et al., 2003; Faris et al., 2009), 
the boundary conditions of the Euler-Bernoulli 
equation for the case of external load can be 
described by Eqs. (4)-(6): 
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where index i represents the ith-axis, 
ipM  is the mass 

of payload for the ith-axis, and 
ipI is the moment of 

inertia of payload for the ith-axis. 
With the boundary conditions given by Eq. 

(4)-(6), one can solve Eq. (3) and yield the following 

transcendental equation for ij. 
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where index i represents the ith-axis and j represents 
the jth mode of the flexible link. 

By solving Eq. (7) for ij, the resulting 
eigenfunction Fij (x) can be found (Sakawa et al., 
1985; Sun et al., 2017). 
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In addition, according to (Feliu, et al., 1992; Ge 
et al., 1997; Zhu et al., 1999; Hong et al., 2017; Sun 
et al., 2017), the kinetic energy due to the 
deformation of the ith link can be expressed as 
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where n: the total number of links; Te: total kinetic 
energy of all flexible links; ,e iT : kinetic energy of the 

ith flexible link. 
In the case of free vibration for the 

Euler-Bernoulli equation, the rigid displacement due 
to control force is zero. As a result, we have yi=wi. 

Using the 1st order assumed mode method, one 
can rewrite Eq. (2) as Eq. (10). 

( ) ( )i i i iy w F x q t                        (10) 

Now using the concept of the lumped mass 
model (i.e. the lumped parameter method), the kinetic 
energy of link i due to deformation is replaced by the 
kinetic energy of mi numbers of mass, which is 
described by Eq. (11). Similar to the assumed mode 
method, the approximation accuracy depends on the 
number of the mass used to represent a link.  
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where yij is the displacement of the jth mass for link i 
and notation E represents the endpoint. Each link has 
mi numbers of mass, i i iL m  is the length of each 

mass, and Me represents the lumped mass.  
Substituting Eq. (10) into Eq. (11) will yield Eq. 

(12). 
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One can use Eq. (12) to compute the lumped 
mass. With the lumped mass ,e ijM  calculated, one 

can use Eq. (11) to compute the kinetic energy of the 
flexible link.  

Next, using the concept of the lumped spring 
model and exploiting Hooke’s law, the elastic 
potential energy can be expressed as Eq. (13)  
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where Ue is the total elastic potential energy, and Ue,i 
is the elastic potential energy of the ith axis. 

Let i be the deflection angle of the deflection 
wi. The indices x, y and z are defined in the right-hand 
rule, which are described by  
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Substituting Eq. (14) and (15) into Eq. (13) will 
result in the lumped spring constant of the lumped 
spring model described by Eq. (16).  
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The elastic potential energy of the flexible link 
for the lumped spring model can be obtained by 
substituting Eq. (16) into Eq. (13). Now, by 
substituting the kinetic energy and the potential 
energy for the flexible part of the flexible link 
represented in the lumped model into the Euler- 
Lagrange equation, one can derive the dynamic 
equation and the flexible deflection that will be 
elaborated upon later in this paper.  

Since only the 1st order assumed mode is used 
in the above discussion, its computation load is much 
smaller than the pure assumed mode method.  

 
KINEMATICS OF THE FLEXIBLE 
ROBOT MANIPULATOR 

 
Forward kinematics of the flexible robot 
manipulator 

The DH parameters are employed in this paper 
to help derive the forward kinematics of the flexible 
robot manipulator through a product of a sequence of 
coordinate transformation matrices (Book, 1979; 
Chedmail et al., 1991; Yang et al., 2001). 

Suppose that (xi, yi, zi) is a coordinate frame 
established at the ith link and corresponds to the 
(i+1)th joint position or the end-effector position. Now, 

the coordinate transformation matrix for the rigid part 
of the robot manipulator is described by Eq. (17) (Fu 
et al., 1987) 
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With Eq. (17), the position vector from the 
end-effector (i.e. endpoint) to the origin as shown in 
Fig. 3 can be expressed as 

0 0 1 0 1 2 1
1 1 2 1

i i i
i i i i ir A r A A A r  
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where 1i
ir
 is the position vector represented in the 

(i1)th coordinate frame that is mapped from the ith 
coordinate frame and 0

ir  is the position vector 

represented in the base frame (as indicated by the 
green solid line in Fig. 3) that is mapped from the ith 
coordinate frame. 

 

 
 

The deflection displacement/angle due to 
deformation will be derived in a manner similar to 
the derivation of forward kinematics for the rigid part 
of the robot manipulator. In particular, the coordinate 
transformation matrix for the flexible part is 
described by Eq. (19). 
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Based on the above coordinate transformation 
matrix for the flexible part, the position vector from 
the end-effector to the origin of the base frame is 
defined to be the position vector represented in the 
base frame for the rigid part of the robot manipulator 

Fig. 3. Forward 
kinematics for a rigid 
type 2-link robot 
manipulator.

Fig. 4. Forward kinematics 
for a typical flexible 2-link 
robot manipulator. 
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plus the deflection (i.e. position deflection 
displacement) wi due to deformation. The deflection 
angles due to deformation (i.e. flexibility) are 
denoted as x, y and z. By using Eqs. (17)~(20), one 
can obtain the position vector from the end-effector 
to the origin of the base frame for the flexible robot 
manipulator as shown in Fig. 4. 

0 0 1 ( 2) 1 ( 1)
1 1 1 ( 1)

i i i
i i i ir A E A E r   
                    (20) 

There is a restriction when using the coordinate 
transformation matrix for the flexible part. That is, 
the origin of a frame must be located at the endpoint 
of a flexible link if one wants to use the coordinate 
transformation matrix for the flexible part directly. 
However, based on the definition of DH parameters, 
it is possible that the aforementioned requirement 
will not be satisfied. In order to cope with this 
difficulty, an auxiliary transformation matrix is 
employed in this paper. Fig. 5 illustrates the idea of 
using an auxiliary transformation matrix. In Fig. 5, by 
following the rule of DH parameters, it is easy to find 
that Frame 0 and Frame 1 locate at the same point. As 
a result, there is no frame attached to the endpoint of 
the first link, so the length of the first link will not 
appear in the coordinate transformation matrix for the 
flexibility frame (orange color in Fig. 5). To 
overcome this difficulty, an auxiliary transformation 
matrix Aaux is employed to move Frame 1 to the 
endpoint of the second link. With the auxiliary 
transformation matrix, one can derive the forward 
kinematics for a flexible robot manipulator using Eq. 
(21). 
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The purpose of the auxiliary transformation matrix 
Aaux in Eq. (21) is to ensure that a frame is attached to 
a desired position such as the endpoint of a link.  

Next we will focus on the derivation of the 
position vector of the endpoint, i.e. the position 
vector represented in the ith local frame (the blue 
vectors in Fig. 4 and Fig. 5).  Depending on the type 
of joints, there are two different representations of the 
position vector of the endpoint: 
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i i i i i

i i i i

R
r r


     

 
 

 
     

 
    

(a). The ith joint is a revolute joint  
If the x-axis is the rotational axis, then  

      ,
3 1

1
TT

i i
i i x xi yi zir r w i x w j w k 



       

 
    

If the y-axis is the rotational axis, then 

      ,
3 1

1
TT

i i
i i y xi yi zir r w i w j x w k 



       

 
    

If the z-axis is the rotational axis, then 

      ,
3 1

+ 1
TT

i i
i i z xi yi zir r x w i w j w k 



      

 
     

(b). The ith joint is a prismatic joint 

Step 1. The z-axis is defined to be the direction of 

translation:  zix w k


. 

Step 2. The x-axis (or y-axis) is defined to be 

perpendicular to the z-axis: ( )xiw i


. 

Step 3. With the z-axis and x-axis (or y-axis) 
determined, the y-axis (or x-axis) is determined by 

the right-hand rule: ( )yiw j


. 

      ,
3 1

+ 1
TT

i i
i i z xi yi zir r w i w j x w k 



       

 
 

 
Fig. 5. Illustrative example of using an auxiliary 
transformation matrix. 

                                            
The general form of forward kinematics for the 
flexible robot manipulator can be expressed as Eq. 
(22) 

1
0 0 ( 1) 1 ( 1)

0( 1)
1

i
i j j i i

i i aux j auxj j i ii
j

r T r A A A E r

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  
      

   
   (22) 

where the transformation matrix has the following 
forms 

1
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
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  



 

  
 

   
     
    


        
    

             







     

and p is any frame other than the base frame.  
 
Forward velocity kinematics of the flexible robot 
manipulator 

The time derivatives for both the coordinate 
transformation matrices for the rigid part and flexible 
part of the flexible robot manipulator are essential in 
deriving the forward velocity kinematics of the 
flexible robot manipulator.  
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where  or i r dQ Q Q  
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,

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

r dQ Q

   
   
    
   
   
   

 

 

   
 

3 13 3

1 3 1 1

3 3 3 3
3 1

3 3

1 3 1 1

( ) ( ) ( ) 0

0 0

0

0 0

x x y y z zi
i

x x y z x x y y z y

x y z z z

d
R R R

E dt

Q R R R R Q R R

R R Q R

  

 






 

 




 

 
 
 
  

  
  
     
  



 



  (24) 

where 
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From Eq. (23) and Eq. (24), the linear velocity 
of the end-effector to the origin of the base frame is 
expressed as 

 0 0 ( 1)

( 1)

i i
i i i ii

d
r T r V r

dt
 

   
                   (25) 

where Vi described by Eq. (26) is the transformation 
matrix after differentiation, and p= or d.  

0 ( 1) ( 1)1
( 1) ( 1) 0 ( 1)

( 1)0 ( 1) ( 1)
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      







(26) 
The linear velocity can be used to compute the 
kinetic energy of the flexible robot manipulator.  

The derivation of the angular velocity of the 
end-effector of the flexible robot manipulator will be 
elaborated upon in the following. Due to the fact that 
the link of a flexible robot manipulator is not ideally 
rigid, the velocity of the starting point of a link will 
not be perfectly synchronized with the velocity of the 
endpoint of a link. As shown in Fig. 6, the payload 
for the first link is the actuator (i.e. motor) of the 
second link. As a result, the angular velocity of the 
motor is in fact the angular velocity of the payload. In 
addition, the part colored blue in Fig. 6 represents the 
bearing of the second link.  

In the following discussion, there are two 
different velocities—the payload angular velocity (for 
the endpoint of a link) and the hub angular velocity 
(for the starting point of a link). 

 

 

Fig. 6. Linkage between the first link and the second link. 

Similar to the derivation of the robot Jacobian 
for the rigid robot manipulator (Spong et al., 2006), 
the angular velocity for the hub and the angular 
velocity for the payload are described by Eq. (27) and 
Eq. (28), respectively.  
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where ,
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r
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
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Fig. 7 shows the angular velocity for the case of 
the planar 2-DOF flexible robot manipulator. 

 

 

 
Moment of inertia in the base frame 

Since the Euler-Lagrange equation is employed 
in this paper to derive the dynamic model, one needs 
to calculate in advance the kinetic and potential 
energies associated with moment of inertia for 
bearings and payloads. In the previous subsection, 
one can derive the forward velocity kinematics 
represented in the base frame.  In the following, we 
will derive the moment of inertia for bearings and 
payloads represented in the base frame so that one 
can develop the correct formulas for kinetic and 

Fig. 7. Angular velocity for 
the case of the planar 
2-DOF flexible robot 
manipulator.

Fig. 8. Moment of inertia 
for axis OQ. 
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potential energies associated with moment of inertia 
for bearings and payloads in the base frame.  

By definition, the moment of inertia for an 
arbitrary axis OQ shown in Fig. 8 is expressed as 

 2 22 ˆsinOQI dm r dm r dm       
 

  (29) 

where dm is the infinitesimal mass element, 

ˆ
T

x y z        is the unit vector in the direction 

of the OQ axis,  Tr x y z


 is the vector 

pointing in the direction of point P, and  is the angle 
between ̂  and r


.  

By expanding Eq. (29), one will have 

     2 2 2 2 2 2, ,

 ,  ,

xx yy zz

xy xz yz

I y z dm I x z dm I x y dm

I xydm I xzdm I yzdm

     

     

  
  

 (30) 

2 2 2 2 2 2OQ x xx y yy z zz x y xy x z xz y z yzI I I I I I I               

(31) 

Using Eq. (31), one can convert the moment of 
inertia represented in the local frame into the moment 
of inertia represented in the base frame. The 
procedure is detailed in the following. 

 
Step 1. Assign OQ axis as the x-axis, y-axis and z-axis 
of the base frame, respectively.  
Step 2. The x-axis, y-axis and z-axis of the base frame 
are converted and represented in a local frame.  
Step 3. Calculate the moment of inertia of the base 
frame. 
                                                                    
The above three steps can be described by Eq. (32). 

, , ,, ,T T T
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where Ii is the inertia tensor for the bearing/payload. 
Note that the local frame for the hub and payload are 
the same, therefore they have the same inertia tensor 
formula.  
          

DYNAMICS OF THE FLEXIBLE 
ROBOT MANIPULATOR 

 
In order to use the Euler-Lagrange equation to 

derive the dynamic equation that describes the 
dynamics of the flexible robot manipulator, one must 
calculate the potential energy and kinetic energy of 
the flexible robot manipulator in advance.  

Energy equation 

The energy equation for the flexible robot 
manipulator is derived based on the existing 

researches on the assumed modes method and the 
lumped parameter method. The kinetic energy 
generated by these components will be dissipated by 
work due to non-conservative forces such as viscous 
force and heat. The rest of the energy is due to 
conservative forces such as gravitational force and 
spring force that will generate potential energies such 
as gravitational potential energy and elastic potential 
energy. In the flexible robot manipulator, in addition 
to the motor rotor, other components will also 
contribute gravitational potential energy. In particular, 
in addition to the potential energy, the link also 
contains elastic potential energy due to the fact that 
its rigidity is not high. In order to derive a dynamic 
model that can faithfully describe the dynamic 
behaviors of the flexible robot manipulator, this paper 
will calculate the kinetic energy of the link, kinetic 
energy of the rotor, kinetic energy of the hub/payload, 
elastic potential energy of the link, gravitational 
potential energy of the link, and gravitational 
potential energy of the hub/payload. In the following, 
a lumped parameter-based approach will be exploited 
to study these energies, in which a single link is 
approximated by a set of lumped parameters. 

Firstly, we will calculate the kinetic energy of 
the link. According to (Meirovitch, 1988), the kinetic 
energy of any point mass on the robot manipulator is 
calculated using the time derivative of the position 
vector in the base frame. By definition, the sum of the 
kinetic energy of all point masses is the kinetic 
energy of the whole system. As a result, the kinetic 
energy Tlink for all links in a flexible robot 
manipulator can be expressed as 

0 0

0
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1
( ) ( ) ( )
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i
n L T

link i i i
i

T r r d    


                (33) 

where n is the total number of links in a flexible robot 
manipulator, and index i is the ith link.  

By following the derivation process of the 
dynamic equation for a rigid robot manipulator in (Fu 
et al., 1987), the investigation of the kinetic energy of 
a link is divided into the rigid part and the flexible 
part in this paper. In particular, the kinetic energy of 
the flexible part is derived using the lumped 
parameter method. That is, the kinetic energy of the 
flexible part can be regarded as if it were generated 
by a virtual mass. By satisfying the assumption 
described by Eq. (15), deviations due to deformation 
wx, wy, wz, can be expressed in the form of 

xL , yL , zL , respectively. As a result, one can 

rewrite Eq. (33) into Eq. (34) as 
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Secondly, the kinetic energy of the rotor can be 
expressed as 

 2 2
,
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n

rotor r i i i
i

T I  

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where i is the moment of inertia of the rotor.  
As for the calculations of kinetic energy for the 

hub and payload, one can apply Konig's theorem 
described by Eq. (36). Similar to the case of a link, 
the kinetic energy of a system is equivalent to the 
sum of the kinetic energy of all point masses of the 
system. It is also equivalent to the sum of the kinetic 
energy of the center of mass for conducting a 
translational motion and the kinetic energy of the 
moment of inertia relative to the center of mass of the 
system for conducting a rotational motion.    
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where notation “c” represents “center of mass”. 
Similar to the above discussions, the 

calculation of kinetic energy of hub and payload is 
also divided into two parts—kinetic energy due to 
translational motion and kinetic energy due to 
rotational motion.  

As for the case of kinetic energy due to 
translational motion, in this paper it is assumed that 
the hub of the ith axis and the payload of the (i1)th 
axis have the same center of mass. Therefore, the sum 
of their kinetic energies due to translational motion is 
equivalent to the kinetic energy due to translational 
motion of the sum of these two masses. As a result, to 
simplify, one can combine these two cases as 
described by Eq. (37): 
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Note that there is no kinetic energy due to 
translational motion for the hub of the 1st axis, while 
there is no kinetic energy due to rotational motion for 
the last axis. 

As mentioned in Section 3, the rotational 
velocity of the hub and the rotational velocity of the 
payload are not the same. Therefore, the kinetic 
energy due to rotational motion for the case of the 
hub and that for the case of the payload will be 
discussed separately. Using Eq. (27), Eq. (28) and Eq. 
(32), one can obtain  

 0 2
, , , 3 1

1

1

2

n

hub inertia h i h i
i

T I  


              (38) 

 0 2
, , , 3 1

1

1

2

n

payload inertia p i p i
i

T I  


              (39) 

where Thub is the kinetic energy of the hub due to 
rotational motion and ,payload inertiaT  is the kinetic 

energy of the payload due to rotational motion. In 
addition,

, , , ,h i hx i hy i hz iI I I I    , , , , ,p i px i py i pz iI I I I    . 

「  」 is called the Hadamard product (i.e. the 
entrywise product), in which 

 
 

0 2 0 2 0 2 0 2
, , , ,

0 2 0 2 0 2 0 2
, , , ,

T

h i hx i hy i hz i

T

p i px i py i pz i

   

   

    


    




 

The elastic potential energy and the 
gravitational potential energy for the flexible robot 
manipulator will be elaborated in the following. We 
will start with the calculation of the elastic potential 
energy for the link. Similar to the discussion on the 
kinetic energy of the link, the elastic potential energy 
for each link is described by a lumped spring model 
as shown in Eq. (40).  

2 2

1

1

2

n

elastic i i i
i

U K L


                     (40) 

where  , , ,=i e xi e yi e ziK K K K    

Finally, we will calculate the gravitational 
potential energy. Since the deviation due to flexibility 
is very small for a link, in this paper only the 
gravitational potential energy of the link due to 
rigidity will be discussed. Its general expression is 
described by Eq. (41): 
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  
 

0
, 0

1

0 ( 1)

( 1)
1

( ) ( )
i

n L

gravity link i i i i rigid
i

n
i

i ii
i

U x g r x dx

gT
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




 




 
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


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      (41) 

where 
0

( )
iL i

i i i rigid
r d       , 

, , , or   or  i i x i y i z     
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, , ,0 0

( ) 0 0 ( )

0 ( ) 0 ( )
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    

    

    

 

 

 

 

 or or

0 0 0 , 0 0 0 ,

0 0 0

x y z

x y

z

g g g g

g g g g

g g



       
   

   

 



 

As mentioned previously, it is assumed that the 
hub of the ith axis and the load of the (i1)th axis have 
the same center of mass. As a result, to simplify, one 
can combine these two cases as described by Eq. 
(42): 

 

 

0
, , , 1 ,

1

0 ( 1)
, 1 , ( 1)

1

( )

( )

n

gravity hub gravity payload h i p i i i
i

n
i i

h i p i i i ii
i

U U m m g r L

m m g T r L





  



  

  








(42) 

Note that there is no gravitational potential energy for 
the hub of the 1st axis and the last axis. 

Derivation of the dynamic equation for a flexible 
robot manipulator 

Substituting all the kinetic energies and 
potential energies derived in Section 4.1 into the 
Lagrangian L of the Euler-Lagrange equation 
described by Eq. (43), one can derive the dynamic 
equation of the flexible robot manipulator based on 
the lumped parameter method: 

, 0 , 1, 2, ,

0 , 0

k
k k xkxk

yk zkyk zk

d L L d L L
k n

dt p p dt

d L L d L L

dt dt




  

   
    

  
   

   
  



 

(43) 
where k denotes the kth link in an n-DOF flexible 
robot manipulator. 

Since the kinematic energy terms and the 
potential energy terms contained in the Lagrangian L 
are decoupled, one can substitute the kinematic 
energy and the potential energy term by term into the 
Eq. (43) to yield eight dynamic equations in total for 
the flexible robot manipulator. Each dynamic 
equation consists of inertia force, Coriolis force, 
centrifugal force, gravitational force and spring force. 
By rewriting these eight dynamic equations into a 
matrix form, one can obtain Eq. (44): 

1
4 4 4 1 4 1

3 1 Inertia force Coriolis and 
centrifugal force

4 1 4 4 4 1 4 4 4 1

Gravity force Damping force Spring force

( ) Q (Q,Q)
0

(Q) Q Q

n
n n n n

n

n n n n n n n

M Q C

G D K

 
  



    

 
  

 

  

 
 


  

         (44) 

where  1 , 1 , 1 , 1Q
T

n x n y n z np           . 

Note that by removing the flexible part of the robot 
manipulator, Eq. (44) can be also used to derive the 
dynamic model for the rigid robot manipulator.  
 
SIMULATIONS AND EXPERIMENTAL 

RESULTS 
 

In order to verify the effectiveness of the 
proposed approach, a single-link flexible robot 
manipulator is adopted in the simulation performed 
using MATLAB. In addition, the real experiment of 
the single-link flexible robot manipulator is also 
conducted. Note that in all simulations, the gear ratio 
 is set to 50. In addition, a PD-like control law 
described by Eq. (45) is adopted and the 
corresponding control block diagram is shown in Fig. 
9.  

 cmd pv pp cmdK K p p p                   (45)               

where Kpp=70, Kpv=50. 
 

 
Fig. 9. Control block diagram of the flexible robot 
manipulator used in all simulations. 

 
Single-link flexible robot manipulator 

A single-link flexible robot manipulator 
provided by Delta Electronics Inc. shown in Fig. 10 
is used as the experimental platform. In the 
experiment, the frequency domain analysis approach 
is employed to obtain the natural frequency of the 
flexible robot manipulator. The obtained results are 
compared with the results obtained using the lumped 
parameter method to verify the validity of the 
dynamic model derived using the proposed approach. 
Table 1 shows the system parameters of the 
single-link flexible robot manipulator used in the 
experiment, in which the joint is actuated by a 400W 
Delta AC servomotor (ECMC-CW0604). 

The frequency response of the actuator (i.e. 
driven oscillator) for the single-link flexible robot 
manipulator shown in Fig. 11 has an anti-resonance 
frequency around 8.24 Hz, which indicates that the 
natural frequency (i.e. resonance) of the single-link 
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flexible robot manipulator is around 8.24 Hz (Belbasi 
et al., 2014). Subsequently, the proposed approach is 
used in the simulation (system parameters are listed 
in Table 1). After calculation, the lumped mass is 
0.008634 kg and the lumped spring constant is 
96.7425 kg/s2. Since the moment of inertia of the 
rotor and gear ratio are irrelevant to the natural 
frequency of the link, their values are set to I1=0.002 
kgm2 and 1=50, while the damping coefficient 1 is 
set to 0.0005. A step response that corresponds to the 
position input of the motor from 10 to 30 is 
conducted. The initial deformation angle is assumed 
to be zero. The simulation results for all three 
directions are shown in Fig. 12. The primary 
vibration direction in the simulation is the z-axis. The 
step response z shown in Fig. 12 (e) indicates that 
the natural frequency of the link is around 
1/(1.963sec1.845sec)=8.4745Hz. The comparison 
between the natural frequency obtained from the real 
single-link flexible robot manipulator experiment and 
that of the simulation is listed in Table 4. In addition, 
from x shown in Fig. 12 (a) (x-axis is the primary 
drooping direction), one can find that there is almost 
no deformation occurring due to its extremely high 
rigidity, 248 Nm2. Table 2 also indicates that the 
discrepancy between the natural frequency obtained 
from the real single-link flexible robot manipulator 
experiment and that of the simulation is very small. It 
suggests that the accuracy of the dynamic model of 
the single-link flexible robot manipulator obtained 
using the proposed approach is satisfactory. 

 
 

 

 
 

In addition, the commonly used assumed mode 
approach is also employed to derive the dynamic 
model of the single-link flexible robot manipulator. In 
particular, the 2nd order assumed mode method is 
used in the computer simulation, for which the 
system parameters used in the simulation are listed in 
Table 3.  Since the primary concern is the motion in 
the z-axis direction, therefore the motion related to 
the other two dimensions is ignored. In the simulation, 
the initial position is set to 0

1 1 1 110 , 0y zw L    .  

 
 

Table 1. System parameters of the single-link flexible robot 
manipulator 

Link length 1L 0.28 m 
Payload 
mass 1pM  0.025607 kg

Line 
density 1  0.1289 kg/m

Rigidity of 
link 1 1x xE I  248  Nm2 

Rigidity of 
link 1 1y yE I  

0.70656 
Nm2 

Rigidity of 
link 1 1z zE I  

0.70656 
Nm2 

2
1

2
1

7

0.00003 0 0

0 0.00023 0 kg m

0 0 0.00023

0 0 0

0 0 0 kg m

0 0 4.7575 10

h

p

I

I


 
   
  
 
   
  

 

 
Table 2. Comparison between the natural frequency 
obtained from the experiment and that of the simulation 

 Real experiment Simulation Discrepancy 

Natural 
frequency

8.24 Hz 8.4745 Hz 2.767 % 

 
 
Table 3. System parameters of single-link flexible robot 
manipulator for the 2nd order assumed mode method 

Link 
length 1L  1.0 m 

Moment of  
inertia of rotor 1rI  0.002 kgm2 

Line 
density 1  0.1 kg/m 

Damping 
coefficient 1  0.1 

Rigidity of 
link 1 1E I  2.0 Nm2 Payload mass 1pM  0.2 kg 

1 1

0.2 0.001 0.001 0.001 0.001 0.001

0.001 0.2 0.001 0.001 0.001 0.001

0.001 0.001 0.2 0.001 0.001 0.001
h pI I

   
       
      

, unit: kgm2 

 

Table 4. Simulation results (assumed mode method vs. 
lumped parameter method) 

 
2nd order 
assumed 
mode 

lumped 
parameter  

Discrepancy 

Natural 
frequency 

0.7937 Hz 0.813 Hz 2.374% 

Amplitude 0.1462 m 0.2032 m 28.05% 

Table 5. Comparison of computation time (assumed mode 
method vs. lumped parameter method) 

 
2nd order 
assumed 
mode 

lumped 
parameter  

Computation 
time ratio 

Kinematics 2.633 sec 1.323 sec 50.25 % 

Dynamics 6.841 sec 4.047 sec 59.16 % 

Constant 
torque 
command

36.860 sec 23.442 sec 64.60 % 

Feedback 
control 

36.894 sec 23.605 sec 63.98 % 

 

Fig. 10. Single-link 
flexible robot manipulator 
used in the experiment. Fig. 11. Frequency response 

of the actuator of the 
single-link flexible robot 
manipulator. 
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A
m
p(
ra
d)

 
(a)                        (b) 

 
(c)                        (d) 

 
(e)                         (f) 

Fig. 12. Simulation of step response corresponding to the 
position input of the motor from 10 to 30 (a) x (b) wx 
(c)y  (d) wy  (e) z  (f) wz 
 

The simulation results shown in Fig. 13 and 
Table 4 indicates that the discrepancy between the 
natural frequency obtained using the proposed 
approach and that using the second order assumed 
mode method is very small, while the discrepancy in 
amplitude is slightly less than 30%. That is, the 
system characteristics predicted using these two 
methods are similar. According to Table 5, the 
computation time for the proposed approach is 
smaller than that for the second order assumed mode 
method.  

 

 
Fig. 13. Simulation results of feedback control (assumed 
mode method vs. lumped parameter method). 

 
CONCLUSIONS 

 
This paper employs the lumped parameter 

method to derive the mathematical model of the 
flexible robot manipulator. The energy equation, 
kinematics model and dynamic model of the flexible 
robot manipulator derived using the proposed 
approach are in general form. Namely, these 
equations and models are suitable for arbitrary 

configurations of links, rotational and translational 
motions and any number of axes. If the flexible part 
is removed, all the equations and models derived 
using the proposed approach will degenerate into 
those for rigid robot manipulators. Simulations and 
experimental results verify the effectiveness of the 
proposed approach. Since the proposed approach 
does not involve any terms that require real 
integration of deformation due to flexibility, its 
computation load is reasonable. 
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基於集總參數法之細長桿

件撓性機械手臂建模研究 
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摘 要 

撓性桿件機械手臂係以較輕且剛性較低之材

質製成。低剛性特性使其在操作上較剛性機械手臂

安全，然而也導致撓性桿件容易產生末端點振動問

題。因此相較於剛性機械手臂，撓性桿件機械手臂

之運動精度通常較差。有鑒於基於模型之控制架構

為解決振動問題之ㄧ有效方法，本文使用 Euler- 
Bernoulli 方程式、Euler-Lagrange 方程式以及集總

參數法等方法，針對具細長撓性桿件之機械手臂之

數學模型推導進行深入研究。我們已進行數個實驗

及電腦模擬。實驗結果顯示，真實單一撓性桿件機

械手臂之自然振動頻率與本文所推導之數學模型

之自然振動頻率相近。另外電腦模擬亦顯示本文所

提方法確實有效。 


