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ABSTRACT

Exponentially weighted moving average
(EWMA) or double EWMA controllers are often
employed to deal with various stochastic time-series
disturbances for run-to-run control. If the disturbance
model is known, then the best EWMA or double
EWMA controller can be obtained by minimizing
output variance with respect to controller parameters.
However, from the theoretical view point, results are
only sub-optimum because the control scheme may
not be the best control scheme for the underlying
stochastic disturbance. Therefore, investigating the
best control scheme for the process disturbance
following the general ARIMA time series process is
worthwhile. In this paper, the predictive disturbance
observer (PDOB) is developed based on minimum
variance control for various ARIMA(p,r,q) stochastic
disturbances. If the ARIMA(p,r,q) disturbance model
is known, then the PDOB scheme generates one-step
ahead prediction for this disturbance and then feeds it
back to compensate the effect of stochastic
disturbance on the system output; as a result, the
system generates the minimum output variance or
simply white noise variance.

INTRODUCTION

Run-to-run  control (RtR) technology in
advanced process control has been studied extensively.
With the characteristic outputs of the previous runs
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being analysed, the RtR controller continuously
modifies the model and then updates the input recipe
for the next run to reduce variations between the
process output and the target. Owing to the simplicity
and robustness, the EWMA controller has been the
most commonly used RtR controller in semiconductor
manufacturing. In 1974, Box and MacGregor (1974)
introduced the exponentially weighted moving
average (EWMA) controller with proper weights to
reduce variations between the process output and the
target. Sachs et al. (1995) proposed the RtR control
scheme based on the EWMA statistic. They used
linear static models to design a feedback-based RtR
controller, and the EWMA statistic was used as an
estimate of the process. The scheme can reject shift
disturbance but produce an offset in the process
output by the drift disturbance. To compensate the
offset produced by the EWMA controller, a
predictor-corrector controller (PCC) and a double
EWMA controller were developed by Bulter (1994)
and Guo et al. (2000). The EWMA controller and the
PCC controller can be represented by using the
internal model control (IMC) structure. Adivikolanu
and Zafiriou (2000) applied the IMC structure to
extend the EWMA controller.

The system stability of several RtR controllers
has been studied in the literature. Ingolfsson and
Sachs (1993) studied the conditions of the stability of
the EWMA controller and showed the allowable
range of model mismatch where the process could
remain stable. Tseng et al. (2002) extended the
stability analysis to a MIMO EWMA controller. Del
Castillo (1999) discussed the necessary conditions of
weights to ensure closed-loop stability. Good and Qin
(2006) investigated the effect of metrology delay on
the closed-loop stability of a MIMO EWMA
controller. Recently, Lee et al. (2011) unified the
framework of EWMA, double EWMA, and PCC
controllers on the basis of the concept of output
disturbance observer (ODOB). They designed and
analysed the tuning parameters of the ODOB
controller to meet the performance and stability for
the processes.
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With regard to the optimization issue, Box and
Jenkins (1990) proved that the EWMA statistic is a
minimum mean-square error (or minimum variance)
controller for the process disturbance following an
IMA(1,1) time series process. Del Castillo (1999)
proposed a trade-off solution for the double EWMA
weights between long-run variance and short-run
transient performance. Tseng (2003) derived explicit
expressions for the optimal variable discount factors
when the disturbance follows the ARMA(1,1) process
or the IMA(1,1) process. Ma and Li (2015) improved
Tseng’s method by using the auto-covariance of the
time-series model to design the variable EWMA
controller. However, the method can only be applied
to a special type of ARIMA disturbances only. So far,
many individuals, including researchers and
practicing engineers, use EWMA or double EWMA
controllers to deal with various stochastic time-series
disturbances. If the disturbance model is known,
which could be estimated by open-loop experimenta-
tions (Box and MacGregor, 1974; Pan and Del
Castillo, 2001), then the best EWMA or double
EWMA weights for the best controller can be
obtained by minimizing the output variance with
respect to weights. However, results may be
sub-optimum from a theoretical point of view because
the above control schemes may not be the best
controller for the underlying stochastic disturbance. In
the literature, the EWMA controller is the best control
scheme that enables the IMA(1,1) process disturbance
to produce the minimum variance output (1994); Del
Castillo (1999) further extended this scheme to obtain
optimum weights and included the factor of model
mismatch. As for the double EWMA controller, Box
and Jenkins (1990) have shown that it is a minimum
variance controller for the process disturbance
following an IMA(2,1) or IMA(2,2) time series
process without considering the model mismatch.
This paper investigated the best control scheme for
the process disturbance following the general ARIMA
time series process.

In this paper, the analysis is based on the
ODOB structure (2011), which provides a unified
framework of EWMA, double EWMA, and PCC
controllers. The predictive disturbance observer
(PDOB) structure illustrated in the box with
grey-based color of Fig. 1 is adopted to develop a
minimum variance RtR controller, which replaces the
original Q’-filter in the original ODOB structure
(2011) by using a one-step ahead predictor F-filter.
As shown in Fig. 1, T is the process target, U, is

the process output (input recipe), Y, is the process

output, 7, is the output disturbance, P is the

process gain (or actual plant), P, is the nominal
plant, « is the process intercept term, and subscript
k is the batch index. The one-step ahead predictor,

F-filter, functions as an observer to estimate the
disturbance one step ahead and then feeds it back to
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diminish the effect of stochastic disturbance on the
system output. With the implementation of F-filter,
the PDOB control scheme can produce minimum
output variance or only white noise variance if the
process disturbance follows the general ARIMA time
series process as will be discussed in the following
sections.

The rest of this paper is organized as follows:
the second section explains the essence of the PDOB
structure in the RtR control scheme and develops the
one-step ahead predictor based on minimum variance
control. Then, the third section analyses the system
output mean and variance under the IMA(1,1),
ARMA(1,1), and ARIMA(1,1,1) disturbance in the
PDOB RtR control scheme. In simulation section,
some cases are presented using the proposed control
structure in comparison with the EWMA controller or
double EWMA for the different disturbances. The
conclusion is drawn in the final section.

7, |
7: |
Fig. 1. Predictive disturbance observer structure.

PDOB STRUCTURE APPLIED TO RTR
CONTROL

PDOB Structure

The PDOB structure is described in Fig. 1,
where a unit delay operator is combined with the
F-filter in the feedback loop because of the RtR
process characteristic; this unit delay is different from
any additional metrology delays. The closed-loop
transfer functions in the z-domain can be obtained as

- P P(I-Fz")
Y@= P, +(P—P,)Fz" T P, +(P—P,)Fz" a(z). )
RU-FZ) oy PR

P +(P—P)Fz P +(P—P)Fz"

If the F-filter is designed as F(z)~1 in the low

frequency range with DC gain being equal to one, i.e.,
F(Z)L:l =1 , then the first term on the right-hand

side (RHS) of Eq. (1) reveals that the transfer function
from T to y, will be equal to one in the low

frequency range with the steady-state output Yy,

being equal to the process target T . Otherwise, if the
DC gain of F-filter is not equal to one, then the
process output will produce an offset from the target.
In the second term on the RHS of Eq. (1), the process
intercept term is an unknown constant. Thus,
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(1-Fz"a =0 if F()=1 and therefore has no

effect on the output. Otherwise, an offset will be
present in the output. Furthermore, in the third term
on the RHS of Eq. (1), if the F-filter can optimally
estimate the disturbance one step ahead in a minimum
variance sense, then this term becomes an innovation,
i.e., it will constitute a white noise time series.
Therefore, the PDOB structure provides the function
of disturbance rejection. Furthermore, if the
measurement noise exists, then the F-filter designed
such that F(z) =0 in the high frequency range will

filter out the noise. Furthermore, without loss of
generality, process target is set to zero due to the
superposition property of linear systems.

F-filter Design

The one-step ahead predictor F(z) in the
PDOB structure is first developed based on minimum
variance control (1997). An inherent unit delay exists
in the feedback loop of the PDOB structure for the
RtR control. Thus, the block diagram of the structure
in Fig. 1 is converted into its equivalent diagram
shown in Fig. 2 to make itself suitable for the
development of the minimum variance controller

scheme. Once the one-step ahead predictor F(z) in
the PDOB structure is obtained, we focus on how the
predictor is composed in comparison with the EWMA
and double EWMA controllers. Assume that general
ARIMA time series disturbance 7, in (I.1) may be
represented as the output of a linear system driven by
white noise or

C(w C'(ah)
k)= k)= k), 2
n(K) A(q)e( ) x (q*‘)e( )
where C(q) and A(q) are polynomials in

forward-shift operator, C*(q™') and A'(q"') are
polynomials in backward-shift operator, and e(k) is

a sequence of independent or uncorrelated random
variables with zero mean and standard deviation o .
Consider a process represented as

—d,,r C*(qil)
K =Pz u(k)+ 9 k). 3)
y(k) =Pz U()+A(q,)e()

Then, for predicting d-step ahead at y(k+d), it
follows from (3) that

Py
yk+d) = Pu'ck) + 9 ek 1 a)

A : @)

* -1

—H (@ Meck+d)+ 29 ek 1 Purck)

A7)
where the polynomial H'(q') and q°G*(q™")
are the quotient and the remainder when dividing
C'(a") by A(@),ie,

C'(@)=A@"HH (@H+q G (@) , (5)
where
A@=1+aqg"'+--+a,,q"", (6)

C@)=1+cq " ++cq ", ™)
H'(@")=1+hg" +--+h,_q"", ®)
G'(@)=0,+9,q" ++g,,a"" ©)
n:{pw ifp+rzq (10)
q ifp+r<q
24
N ey
bl g W e W W IR E
r
by
L R ok
F(z)

minimum variance control

Fig. 2. Minimum variance control applied to the
PDOB structure

The first term on the RHS of ,(4) is independent of the
data available at time k and thus also of the second
and third terms. The second term can be computed
exactly in terms of data available at time K. To
perform this computation, the variable e(k) is
obtained from Eq. (3), that is,
A@)) A@)

e(k)—C*(qfl)y(k)—C*(qfl)Pz u'(k) - an
Using this expression for e(k), one can write Eq. (4)

as
y(k+d)=H (g ek +d)

G*(q_l) G*(q_l) —d, .’ '
t— K)———=-Pz"u'(k)+ Pu'(k
C(q’)Y()C(q) (k) (k)
- G'(@)
=H ek +d)+— k
(@ )e( ) C(q“)y()
A@OH @) b
C)
Now, let u'(k) be an arbitrary function of y(k),
y(k-1),...and u'(k-1), u'(k-2),.... Then,
Ey*(k+d)=E[H" (@ ek +d) ]
+E G:(q:]) A*(qf*)Hil(qf ) Pu'(k)
c @) c @)
The mixed terms vanish because

. (12)

» (13)
y(k)+ } :
e(k+d) ,...,
e(k+1) are independent of y(k), y(k-1),... and
u'k=1), u'(k—2),.... The last term in Eq. (13) is
nonnegative. Therefore,

Ey*(k+d)=[1+h’ +---+h} ]o" . (14)
As shown in Fig. 2, the grey box represents the

minimum variance controller that needs to be obtained.
The delay, d, is equal to one in this case. Therefore,

the inequality is expressed as Ey’(k+1) > o, where
equality is obtained for
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-G'(@) G(a)z
A(@HH (@")P (C(q)-G(q)P
which is the desired minimum variance control law
and Ey’(k+1)=0".

The control law from y(k) to u’(k) in the PDOB
structure of Fig. 2 can be obtained as

u'(k) = (q) R (16)

“F@r y(k) -
From Eqs. (15) and (16), the predictor is obtained as
Fq)=— 2@z (17)
A@H (@S +G(a)
where & is the model mismatch defined as
E=P/P,.
In the following, the one-step ahead predictor
F(z) for various time-series disturbance will be
investigated. If the disturbance follows IMA(I,1),
then we obtains C(z)=z-6 and A(z)=z-1, so
H(z)=1 and G(z)=1-6. Thus, the predictor for
IMA(1,1) is
1—

(2)= (-0/&z 22

1+(1-¢-0)/¢ 7-(1-2)
where A0 (1-6)/&. This predictor is equivalent to
the EWMA controller with the optimum weight for
the minimum output variance; the same result is
obtained in reference (Castillo, 1999). Note that the
DC gain is always equal to one even when a model
mismatch exists.
For the case of ARMA(1,1), we can obtain the
predictor as
F(Z): ((¢_0)/§)Z .

2+(p(1-8)-0) /¢
This predictor is not equivalent to the EWMA
controller, thereby revealing that EWMA controller is
not the best controller for ARMA(1,1) stochastic
disturbances. Also, note that the DC gain is not equal
to one when a model mismatch exists, thereby
indicating that an offset will be produced at the

u'(k) = y(k) = y(k), (15)

; (18)

(19)

output.
For the case of IMA(2,2), the predictor is
2-6, . -1-06,,
¢ g
F(z)=
222072, “1-0+e (20)
¢ 3
(4 +4)7 =(4)2
(—A-R)e+(1-4)
where A4, 0(1+6,)/& and A4,0(0-6,-6,)/¢ .

This predictor is equivalent to the double EWMA
controller with optimum weights A, and A, for the
minimum output variance. If 6, =0 in the case of
IMA(2,1), then Eq. (20) is equivalent to the double
EWMA controller with optimum weights. The special

results were demonstrated in reference (Box et al.,
1994) without the model mismatch. Also, the DC gain
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is always equal to one even when a model mismatch

exists.
Next, the predictor for ARIMA(1,1,1) is

1+¢—922_gz
_ £ £ . @1)
F(2) 2 TEEOEED  #E

This predictor is not equivalent to the double EWMA
controller, thereby implying that the double EWMA
controller is not the best controller for ARIMA(1,1,1)
stochastic disturbances. Also, the DC gain is always
equal to one even when a model mismatch exists.
Finally, we provide a general expression for the
predictor when the stochastic disturbance is ARMA(p,

q) or

(22)

The general expressmn of the predictor for general
ARIMA(p, 1, q) is quite complex. In particular, the
special cases for ARIMA(p,1,q) and ARIMA(p,2,q)
are given as follows:

1+¢I I k < ¢+¢|+1 |+l k—i
0 I S 3)
b 860 4)
4
Z¢|+l i |+1§ §(¢+1 ¢|) Zkfifl
2+¢,-6 ” +—1—2¢51 +¢, -6, S5
4 4
z¢ 2¢|+] i+ k—i-1
F= , (24)
Zk + 2+¢1 _'91 _§(Z+¢1) Zk—l
4
_1_2¢1 +¢z _62 _‘f(_l_2¢1 +¢2) 7k-2
4
Z ¢ 2¢|+1 |+2 SE(¢| _2¢|+1) Zk—i—2
<
where K is the order of the predictor. If p+r>q,
then the order of the predictor is p+r ; if

p+r<q , then the order of the predictor is . The

derivations of Egs. (22), (23), and (24) are given in
Appendix.

VARIANCE ANALYSIS

IMA(1,1)

To prove that the PDOB scheme that can
produce the system minimum output variance, the
state-space approach is used to analyze the
closed-loop system. Consider the IMA(1,1) stochastic
disturbance

nk+1)=nk)+ek+1)—0ek), 25)
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where @ is the coefficient of the moving average
term and e(k) € N(0,5°) is a zero mean white noise
with variance . Recalling Fig. 1 and Eq. (18), the

relationship between the input and output of the
F-filter for IMA(1,1) in time domain is written as

ﬁ(k+l)=—%ﬁ(k)+%5(k) : (26)
Furthermore, the signal of the predictor input is
o(k)=1-nk)+(E=DT +n(k) - (27)

Substituting Eq. (27) into Eq. (26) obtains
Ak +1) =9ﬁ(k)+%n(k)+A,MAT, (28)

where the expression A, =(1-6)&-1)/& . To
solve the system output property, we define state
x(k) =[7(k) KT
disturbance model and system model represented by
Eq. (25) and Eq. (28) into a state-space model as

follows:
x(k +1) = Ax(K) + w(k)

y(k)=C"x(k)+R
where w(k)=[A,,T e(k+1)-6e(k)] , R=£T,

000 s e

Solving the Eq. (29) for x(k), we obtain

variable and combine the

(29)

fa““A.MAT +§(l—9k+‘ )Ej, —€)/ &
x(ky=|"" =0 . (30)

k-1

Z(ej+1 _gej)

=0

The system output is

k-1 k=1
Y(k) = zek_j_l (ej+1 _6ej)_26€0k_j_lA|MAT +<T (31)

=0 i
Thus, the output asymptotic mean and variance can be
obtained as
limE[y(k)]=T (32)

lin; Var[y(k)]=o> . (33)

The system output is on-target with minimum output
variance equalling to white noise variance.

ARMA(1,1)

Consider the case of ARMA(1,1) time series
disturbance represented by
nk+1) =g¢nk)+ek +1)—6e(k) , (34)
where ¢ is coefficient of autoregressive term. The

input/output relationship of the F' predictor with
batch delay for ARMA(1,1) in time domain is written
as

Ak +1):—¢(l_§)_9ﬁ(k)+¢;9§(k) : (33)
Substituting (27) into (35) results in
Ak +1) = -07(K) +%9n<k) AT - (36)

where the expression Ay, =(@-)E-1)/¢E .

Follow the above steps to get the system output, or
k-1 _ o .
y(k) = ng""(ew _eej)_zégkililAARMAT LeT 37)
=0 ~

The output asymptotic mean and variance can be
obtained as

lim E[y(k)]:(%+§jT , (38)

lim Var{y(k)] = o . (39

The system output apparently always produces the
minimum output variance but with an offset from the
target when a model mismatch exists.

ARIMA(1,1,1)

Consider the ARIMA(1,1,1)
disturbance represented by
nk+1) = 1+@)nk) - gnk-1)+ek)-dek-1).  (40)
Then, the input/output relationship of the F'
predictor with batch delay for ARIMA(1,1,1) in time
domain can be written as
Ak +1) = _1+¢*9*§(¢+1)ﬁ(k)_ #E-1) Ak —1)
9 4 L (41)
5(k)—§5(k -1

time series

+1+¢—9

Substituting (27) into . (41) yields
2920 0L o1
s , (42)

n(k+1) = 0n(k)+

+ AAFZIMA T

where the expression A,ua =(1-0)(E-1)/& . Now,
we define the state variable
x(K)=[Ak) Ak-1) nk) nk-1)]" and follow
the above steps to get the system output

k-1 . k-1 _
Y =Y 017 6y, ~08) = 3 0" A T +£T - (43)
j=0 j=0

The output asymptotic mean and variance can be
obtained as
lim E[y(k)] =T (44)

lim Varfy(k)] =o” - (45)

The system output is on-target with minimum
variance.

So far, we have demonstrated that the proposed
PDOB structure can obtain the minimum output
variance under general ARIMA disturbance. Table 1
summarizes an assessment of on-target and output
variance for EWMA, double EWMA, and PDOB
under various stochastic time-series disturbances. One
can see that the steady-state output produces an offset
from the target if the stochastic disturbance is
ARMA(p, q) when model mismatch occurs. This
problem can be easily solved by employing a PI
controller in the outer loop of the PDOB scheme to
compensate for the offset. The control structure is
shown in Fig. 3.
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Table 1. The output properties of different controllers under the different stochastic disturbances

EWMA controller
IMA(1,1) | ARMA(,1) ARIMA(1,1,1) Other ARIMA(p, 1, q)
On-target 0 0 O X(except =0, 1)
Minimum variance 0 X X X
Double EWMA controller
On-target 0 0 O X(except =0, 1, 2)
Minimum variance 0 X X X (except IMA(2,1) and IMA(2,2))
PDOB

O X(&#1) O (except ARMA(p, q) 1)

n-target 0(s=1) p p.q), &
Minimum variance 0] O o

Fig. 3. The PDOB with PI outer controller structure
SIMULATION

In this section, some simulations are presented
to illustrate the differences of output performance
using the EWMA, double EWMA, and PDOB
controllers under different time-series based
disturbances. Table 2 presents the numerical results
for given values of model mismatch &, optimal

weights for the EWMA and double EWMA
controllers, the target T, a zero mean white noise
with variance, and the coefficients of the time series
model. An estimate of the variance is

variance = %Zn: =% (46)
k=1

where n is the batch of the process, Yy, is the

process output, ¥, is the mean of the process output,

and Kk is the number batch of the process.

For the IMA(1,1) disturbance in Case I of Table
2, the system output achieved minimum output
variance no matter what the model mismatch is. The
EWMA controller with optimum parameters is
equivalent to the PDOB for the IMA(1,1). Thus, the
results of the two controllers are identical.

For the ARMA(1,1) disturbance in Case II of
Table 2, the output responses of the system using the
EWMA controller and PDOB are shown in Fig. 4. We
can observe that the performance of the controlled

system using the PDOB has faster transient response
and less oscillation under model mismatch; moreover,
it produces minimum output variance. However, the
system output produces an offset, as we noted before.

For the ARIMA(2,2,2) disturbance in Case III
of Table 2, the output responses of the system using
the double EWMA controller and PDOB, respectively,
are shown in Fig. 5. The results depict different
performances of the two controllers; the output of
PDOB achieves minimum variance and is on target no
matter what the model mismatch is. According to the
internal model principle, the controlled output rejects
disturbance without steady-state error if the reciprocal
of the disturbance is modelled into the controller.
Note that the proposed PDOB is a fourth-order
controller in this case rather than a second-order
controller in double EWMA.

The ARI(3,1) disturbance observed in the
sputter deposition process (Chen et al., 2007) and the
historical data series is plotted in Fig. 6. In this
illustration, the model mismatch is one, and the
reference target is zero. The variance for double
EWMA and PDOB is 1.2777 and 1.1725, respectively,
with a variance reduction of approximately 8%.

Furthermore, simulation results are presented
when a PI outer loop is added to the PDOB structure
to compensate for the offset. Fig. 7 illustrates the
controlled performance using the EWMA controller
or double EWMA and the PI plus the PDOB
controller, respectively, under IMA(1,1), ARMA(L,1),
and ARIMA(2,2,2) disturbances, as used in the
previous study. The simulation considered the case
that the model mismatch is £=1.5 and the PI

controller is 5Z/(z—1). The results showed that the

PI plus the PDOB controller not only can supresses
the offset but also reduces the output variance.
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Table 2. Simulation results for various controllers under various disturbances

Performance Improvement
Controller £ a Variance Var[EWMA] - VarPDOB]
Var[ EWMA] °
Casel:0=0.7, =0, T =20, e(k) ~ N(0,1), IMA(1,1)
0.5 0.6 1.0206 0%
iﬁﬁﬁnﬁﬁﬁi ‘Sontroller I 0.3 1.0206 0%
1.5 0.2 1.0206 0%
Casell: =07, $=0.8, T =20, e(k) ~ N(0,1), ARMA(1,1)
0.5 0.045 1.3114 N/A
EWMA controller 1 0.023 1.1785 N/A
1.5 0.015 1.2611 N/A
0.5 N/A 1.0206 22.17%
minimum variance controller | 1 N/A 1.0206 13.40%
1.5 N/A 1.0206 19.07%
Caselll: 6,=6,=0.1, ¢ =0.2, 4, =0.7, T =20, e(k) ~ N(0,1), ARIMA(2,2,2)
I 4 =07693 2.46 N/A
A, =0.99 '
Double EWMA controller
15 A =03653 1.5799 N/A
’ A, =0.99 )
minimum variance controller L N/A 10213 >8.48%
1.5 N/A 1.0213 35.36%
CaselV: ¢ =-0.021, ¢, =—-0.088, ¢, =0.088, T =20, e(k) ~ N(0,1), ARI(3,1)
=0.97
Double EWMA controller 1 4 12771 N/A
A, =0.01
minimum variance controller | 1 N/A 1.1725 8.23%
(a)£=0.5
30: T T ——predictor
---EWMA
250 T=20 |

Process cutput
)
=3

YNRYZTAY —"—"\,,‘Ir“a-'." VA
&0 &0

s AT A
20 40

1 50 200

A A u ot -
ATt A A A
WY
140 160 1

o 100 120
Run
(b) =1

a0 i i : : - - - - T—predictor
H ~~~EWMA
£ 25¢ —T=20
8 4
R A/ a7 /\N_A/*MW\N\/J\WW\MMM
g
E 15 —

10, | | | 1 1 1 1 1 1 |

0 20 40 860 80 100 120 140 160 180 200
Run
{c)5=15
T T

30 ]
F W/WWVMWWWMM
= 25 |
3 v h )";"\"‘ A SN Y LT - &~ sen B N,
E 20 ! My T EEE A WA V¥ A | ‘\“;\.\f,‘ T e e A
8 —predictor
& 15 ---EWMA

| T=20
10 I | I I L L I I i |
0 20 40 &0 &0 100 120 140 160 180 200

Run

Fig. 4. The process output of PDOB and EWMA for different model mismatch under ARMA(1,1)
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Fig. 5. The process output of PDOB and EWMA for different model mismatch under ARIMA(2,2,2)

ARI(3,1) disturbance obtained in sputter deposition
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Fig. 6. ARI(3,1) disturbance obtained in sputter deposition process (Chen et al., 2007)
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Fig. 7. The process output using EWMA (or double EWMA) and PI+PDOB respectively, under
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CONCLUSION

A traditional EWMA controller produces the
system minimum output variance only under an
IMA(1,1) disturbance, and a double EWMA
controller produces the system minimum output
variance only under an IMA(2,1) or IMA(2,2)
disturbance. For general stochastic time-series based
disturbances, both controllers are not the best control
scheme from the output variance viewpoint. In this
paper, we developed a PDOB control scheme based
on the minimum variance control to deal with the
ARIMA(p,r,q) stochastic  disturbance, thereby
producing minimum output variance or only white
noise variance if the disturbance model is known. For
an ARMA(p,q) disturbance, a EWMA controller
cannot obtain the minimum output variance and has
worse transient response when a model mismatch
exists. By contrast, a PDOB controller can produce
minimum output variance but with an offset under an
ARMA(p,q) disturbance when model mismatch
occurs, which can be compensated by the PI outer
loop.
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APPENDIX

The ARIMA(p,r,q) disturbance can be

expressed as

1- quekz

T ariva = kl
™" [1 29 z“j

F(z) can produce the

minimum output variance, it follows that the
disturbance term in (1) can be expressed as

(L1)

=Gpma®

Because the predictor

-l
_ R(-Fz )71 ()= POFE )GARIM]Ae .. (12)
P +(P-P)Fz P +(P-P)Fz
Let
k k-1
F(2)=— b,z kflb'z i b (13)
*+az ' +a,7" ++a,

Substituting (I.1), and (I.3) into (I.2), we can get by
the coefficient comparison method.
For the ARIMA(p,1,q) disturbance,
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1- Zq:ekz

k=1

G arima = 271)1 [1 p 0.1 J '(1.4)
=1
_ -0 -0, —..— 9.7
2 +(_1_¢1)Zk_l +(¢1 _¢2)Zk_2 +"'+(¢p _¢p+1)zk_k
The following equation can be obtained
2+ (-1-4)7" -+ (, — 9,7
k k-1 k-2 k—k
2" -6z -60,7"" -6,z
1 2 k . (IS)
z“+(a, —b)z""---+(a b )z" "

L +(a —b +b&Z -+ (a —b, +b, &)

Then, F(z) can be obtained by the coefficient
comparison method.

1"‘¢1_‘912 kzi ¢+¢|+1 |+1 k=i
F= o =l ° . (L.6)
24 l1+4 -6 -S(+4) 1
¢
+§ _¢ +¢|+1 |+1 5(_¢| +¢|+1)Zk—i—1
= 4
For the ARIMA(p,2,q) disturbance,
l—i@z‘k
G = o
(1-2Y (1_i @Zk] (L7)
k=1
~ -1 -7~ —
L (2-A) T (4247 H(y +20,, 4,07
The following equation can be obtained
(z" +(2-¢)2" + (1424, ¢2)z“J
+‘“+(_¢p +2¢p+] _¢p+2)zkik (18)
7 _glzkfl _szk—z +.“_9kzk7k
2 +(a, -b)z" " +(a, —b)z"*
2 +(a, —b, +b &+ (3 —b, +b &)
Then, F(z) can be obtained as
2+ - Ik -1-2¢+¢, - zk]
4
. (1.9
+§ 0 -2¢,.+4.,-6., 25 ( )
F(z)= ] 4
Fn 2+¢, *‘9155(2*%) 2k
+_l_2¢1 +¢2 _925_5(_1_254 +¢z) Zk-2
*Z 240 +40— zé $(4 26 +4.2) S
For the ARMA(p,q) disturbance,
q
1->6z"
Garima = k?
[l—ch/ﬁka] (1.10)
=1
Zk _elzkfl _gzzk72 _.“_eqzkfk
- Zk _¢lzk71 _¢2Zk72 _.“_¢pzk7k

The following equation can be obtained
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Zk _¢lzk71 _¢22k72 _'“_¢pzk7k
Zk _glzkfl _gzzkfz _'“_gkzkfk
(111
~ 2 +(a -b)z"" +---(a, -b)z’
2 +(a —-b +b&)Z "+ (a —b, +b,E)Z°
Then, F(Z) can be obtained as.
Z¢ 0| k i+l
_ i=1

F(2)= i e 6. — (L.12)

NOMENCLATURE

T process target

U,  process output (input recipe)
Y,  process output

n, output disturbance

P process gain (or actual plant)

P,  nominal plant

a  process intercept term

k  batch index.

F(z) one-step ahead predictor

e(k) a sequence of independent random variables
¢ model mismatch
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