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ABSTRACT 

 
Exponentially weighted moving average 

(EWMA) or double EWMA controllers are often 
employed to deal with various stochastic time-series 
disturbances for run-to-run control. If the disturbance 
model is known, then the best EWMA or double 
EWMA controller can be obtained by minimizing 
output variance with respect to controller parameters. 
However, from the theoretical view point, results are 
only sub-optimum because the control scheme may 
not be the best control scheme for the underlying 
stochastic disturbance. Therefore, investigating the 
best control scheme for the process disturbance 
following the general ARIMA time series process is 
worthwhile. In this paper, the predictive disturbance 
observer (PDOB) is developed based on minimum 
variance control for various ARIMA(p,r,q) stochastic 
disturbances. If the ARIMA(p,r,q) disturbance model 
is known, then the PDOB scheme generates one-step 
ahead prediction for this disturbance and then feeds it 
back to compensate the effect of stochastic 
disturbance on the system output; as a result, the 
system generates the minimum output variance or 
simply white noise variance.  
 

INTRODUCTION 
 

Run-to-run control (RtR) technology in 
advanced process control has been studied extensively. 
With the characteristic outputs of the previous runs    
b  

being analysed, the RtR controller continuously 
modifies the model and then updates the input recipe 
for the next run to reduce variations between the 
process output and the target. Owing to the simplicity 
and robustness, the EWMA controller has been the 
most commonly used RtR controller in semiconductor 
manufacturing. In 1974, Box and MacGregor (1974) 
introduced the exponentially weighted moving 
average (EWMA) controller with proper weights to 
reduce variations between the process output and the 
target. Sachs et al. (1995) proposed the RtR control 
scheme based on the EWMA statistic. They used 
linear static models to design a feedback-based RtR 
controller, and the EWMA statistic was used as an 
estimate of the process. The scheme can reject shift 
disturbance but produce an offset in the process 
output by the drift disturbance. To compensate the 
offset produced by the EWMA controller, a 
predictor-corrector controller (PCC) and a double 
EWMA controller were developed by Bulter (1994) 
and Guo et al. (2000). The EWMA controller and the 
PCC controller can be represented by using the 
internal model control (IMC) structure. Adivikolanu 
and Zafiriou (2000) applied the IMC structure to 
extend the EWMA controller. 

The system stability of several RtR controllers 
has been studied in the literature. Ingolfsson and 
Sachs (1993) studied the conditions of the stability of 
the EWMA controller and showed the allowable 
range of model mismatch where the process could 
remain stable. Tseng et al. (2002) extended the 
stability analysis to a MIMO EWMA controller. Del 
Castillo (1999) discussed the necessary conditions of 
weights to ensure closed-loop stability. Good and Qin 
(2006) investigated the effect of metrology delay on 
the closed-loop stability of a MIMO EWMA 
controller. Recently, Lee et al. (2011) unified the 
framework of EWMA, double EWMA, and PCC 
controllers on the basis of the concept of output 
disturbance observer (ODOB). They designed and 
analysed the tuning parameters of the ODOB 
controller to meet the performance and stability for 
the processes. 

Paper Received June, 2019. Revised September, 2019, Accepted
October, 2019, Author for Correspondence: An-Chen Le 

 
* Professor, Department of Mechanical Engineering, National Chiao

Tung University, Hsinchu, Taiwan 30010, ROC. 
 
** Graduate Student, Department of Mechanical Engineering,

National Chiao Tung University, Hsinchu, Taiwan 30010, ROC. 



 
J. CSME Vol.41, No.4 (2020) 

 -392-

With regard to the optimization issue, Box and 
Jenkins (1990) proved that the EWMA statistic is a 
minimum mean-square error (or minimum variance) 
controller for the process disturbance following an 
IMA(1,1) time series process. Del Castillo (1999) 
proposed a trade-off solution for the double EWMA 
weights between long-run variance and short-run 
transient performance. Tseng (2003) derived explicit 
expressions for the optimal variable discount factors 
when the disturbance follows the ARMA(1,1) process 
or the IMA(1,1) process. Ma and Li (2015) improved 
Tseng’s method by using the auto-covariance of the 
time-series model to design the variable EWMA 
controller. However, the method can only be applied 
to a special type of ARIMA disturbances only. So far, 
many individuals, including researchers and 
practicing engineers, use EWMA or double EWMA 
controllers to deal with various stochastic time-series 
disturbances. If the disturbance model is known, 
which could be estimated by open-loop experimenta-
tions (Box and MacGregor, 1974; Pan and Del 
Castillo, 2001), then the best EWMA or double 
EWMA weights for the best controller can be 
obtained by minimizing the output variance with 
respect to weights. However, results may be 
sub-optimum from a theoretical point of view because 
the above control schemes may not be the best 
controller for the underlying stochastic disturbance. In 
the literature, the EWMA controller is the best control 
scheme that enables the IMA(1,1) process disturbance 
to produce the minimum variance output (1994); Del 
Castillo (1999) further extended this scheme to obtain 
optimum weights and included the factor of model 
mismatch. As for the double EWMA controller, Box 
and Jenkins (1990) have shown that it is a minimum 
variance controller for the process disturbance 
following an IMA(2,1) or IMA(2,2) time series 
process without considering the model mismatch. 
This paper investigated the best control scheme for 
the process disturbance following the general ARIMA 
time series process. 

In this paper, the analysis is based on the 
ODOB structure (2011), which provides a unified 
framework of EWMA, double EWMA, and PCC 
controllers. The predictive disturbance observer 
(PDOB) structure illustrated in the box with 
grey-based color of Fig. 1 is adopted to develop a 
minimum variance RtR controller, which replaces the 
original Q’-filter in the original ODOB structure 
(2011) by using a one-step ahead predictor F-filter. 
As shown in Fig. 1, T  is the process target, ku  is 

the process output (input recipe), ky  is the process 

output, k  is the output disturbance, P  is the 

process gain (or actual plant), nP  is the nominal 

plant,   is the process intercept term, and subscript 
k  is the batch index. The one-step ahead predictor, 
F-filter, functions as an observer to estimate the 
disturbance one step ahead and then feeds it back to 

diminish the effect of stochastic disturbance on the 
system output. With the implementation of F-filter, 
the PDOB control scheme can produce minimum 
output variance or only white noise variance if the 
process disturbance follows the general ARIMA time 
series process as will be discussed in the following 
sections. 

The rest of this paper is organized as follows: 
the second section explains the essence of the PDOB 
structure in the RtR control scheme and develops the 
one-step ahead predictor based on minimum variance 
control. Then, the third section analyses the system 
output mean and variance under the IMA(1,1), 
ARMA(1,1), and ARIMA(1,1,1) disturbance in the 
PDOB RtR control scheme. In simulation section, 
some cases are presented using the proposed control 
structure in comparison with the EWMA controller or 
double EWMA for the different disturbances. The 
conclusion is drawn in the final section. 
 

 
Fig. 1. Predictive disturbance observer structure. 

 
PDOB STRUCTURE APPLIED TO RTR 

CONTROL 
 
PDOB Structure 

The PDOB structure is described in Fig. 1, 
where a unit delay operator is combined with the 
F-filter in the feedback loop because of the RtR 
process characteristic; this unit delay is different from 
any additional metrology delays. The closed-loop 
transfer functions in the z-domain can be obtained as 
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If the F-filter is designed as ( ) 1F z   in the low 

frequency range with DC gain being equal to one, i.e., 

1
( ) 1

z
F z


  , then the first term on the right-hand 

side (RHS) of Eq. (1) reveals that the transfer function 
from T  to ky  will be equal to one in the low 

frequency range with the steady-state output ky  

being equal to the process target T . Otherwise, if the 
DC gain of F-filter is not equal to one, then the 
process output will produce an offset from the target. 
In the second term on the RHS of Eq. (1), the process 
intercept term is an unknown constant. Thus, 
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1(1 ) 0Fz    if (1) 1F   and therefore has no 

effect on the output. Otherwise, an offset will be 
present in the output. Furthermore, in the third term 
on the RHS of Eq. (1), if the F-filter can optimally 
estimate the disturbance one step ahead in a minimum 
variance sense, then this term becomes an innovation, 
i.e., it will constitute a white noise time series. 
Therefore, the PDOB structure provides the function 
of disturbance rejection. Furthermore, if the 
measurement noise exists, then the F-filter designed 
such that ( ) 0F z   in the high frequency range will 

filter out the noise. Furthermore, without loss of 
generality, process target is set to zero due to the 
superposition property of linear systems. 
 
F-filter Design 

The one-step ahead predictor ( )F z  in the 

PDOB structure is first developed based on minimum 
variance control (1997). An inherent unit delay exists 
in the feedback loop of the PDOB structure for the 
RtR control. Thus, the block diagram of the structure 
in Fig. 1 is converted into its equivalent diagram 
shown in Fig. 2 to make itself suitable for the 
development of the minimum variance controller 
scheme. Once the one-step ahead predictor ( )F z  in 

the PDOB structure is obtained, we focus on how the 
predictor is composed in comparison with the EWMA 
and double EWMA controllers. Assume that general 
ARIMA time series disturbance k  in (I.1) may be 

represented as the output of a linear system driven by 
white noise or 

1
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( ) ( )
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A q A q
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 
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where ( )C q  and ( )A q  are polynomials in 

forward-shift operator, 1( )C q  and * 1( )A q  are 

polynomials in backward-shift operator, and ( )e k  is 

a sequence of independent or uncorrelated random 
variables with zero mean and standard deviation  . 
Consider a process represented as 
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Then, for predicting d-step ahead at ( )y k d , it 

follows from (3) that 
1
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, (4) 

where the polynomial * 1( )H q  and 1( )dq G q    

are the quotient and the remainder when dividing 
1( )C q   by * 1( )A q , i.e.,  

1 * 1 * 1 1( ) ( ) ( ) ( )dC q A q H q q G q         , (5) 
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Fig. 2. Minimum variance control applied to the 

PDOB structure 
 
The first term on the RHS of ,(4) is independent of the 
data available at time k  and thus also of the second 
and third terms. The second term can be computed 
exactly in terms of data available at time k . To 
perform this computation, the variable ( )e k  is 

obtained from Eq. (3), that is, 
1 1
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Using this expression for ( )e k , one can write Eq. (4) 

as 
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Now, let ( )u k  be an arbitrary function of ( )y k , 

( 1)y k  ,… and ( 1)u k  , ( 2)u k  ,…. Then, 
22 * 1

21 1 * 1

* 1 * 1
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The mixed terms vanish because ( )e k d ,…, 

( 1)e k   are independent of ( )y k , ( 1)y k  ,… and 

( 1)u k  , ( 2)u k  ,…. The last term in Eq. (13) is 

nonnegative. Therefore, 
2 2 2 2

1 1( ) [1 ]dEy k d h h       . (14) 

As shown in Fig. 2, the grey box represents the 
minimum variance controller that needs to be obtained. 
The delay, d , is equal to one in this case. Therefore, 

the inequality is expressed as 2 2( 1)Ey k   , where 

equality is obtained for 
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which is the desired minimum variance control law 
and 2 2( 1)Ey k   . 

The control law from ( )y k  to ( )u k  in the PDOB 

structure of Fig. 2 can be obtained as 
1
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From Eqs. (15) and (16), the predictor is obtained as 
( )
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
, (17) 

where   is the model mismatch defined as 

/ nP P  .  

In the following, the one-step ahead predictor 
( )F z for various time-series disturbance will be 

investigated. If the disturbance follows IMA(1,1), 
then we obtains ( )C z z    and ( ) 1A z z  , so 

( ) 1H z   and ( ) 1G z   . Thus, the predictor for 

IMA(1,1) is 
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where  1 /  � . This predictor is equivalent to 

the EWMA controller with the optimum weight for 
the minimum output variance; the same result is 
obtained in reference (Castillo, 1999). Note that the 
DC gain is always equal to one even when a model 
mismatch exists. 
For the case of ARMA(1,1), we can obtain the 
predictor as 
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This predictor is not equivalent to the EWMA 
controller, thereby revealing that EWMA controller is 
not the best controller for ARMA(1,1) stochastic 
disturbances. Also, note that the DC gain is not equal 
to one when a model mismatch exists, thereby 
indicating that an offset will be produced at the 
output. 
For the case of IMA(2,2), the predictor is 
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where 1 2(1 ) /  �  and 2 1 2(1 ) /    � . 

This predictor is equivalent to the double EWMA 
controller with optimum weights 1  and 2  for the 

minimum output variance. If 2 0   in the case of 

IMA(2,1), then Eq. (20) is equivalent to the double 
EWMA controller with optimum weights. The special 
results were demonstrated in reference (Box et al., 
1994) without the model mismatch. Also, the DC gain 

is always equal to one even when a model mismatch 
exists. 

Next, the predictor for ARIMA(1,1,1) is 
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This predictor is not equivalent to the double EWMA 
controller, thereby implying that the double EWMA 
controller is not the best controller for ARIMA(1,1,1) 
stochastic disturbances. Also, the DC gain is always 
equal to one even when a model mismatch exists. 

Finally, we provide a general expression for the 
predictor when the stochastic disturbance is ARMA(p, 
q) or 
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The general expression of the predictor for general 
ARIMA(p, r, q) is quite complex. In particular, the 
special cases for ARIMA(p,1,q) and ARIMA(p,2,q) 
are given as follows: 
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where k  is the order of the predictor. If p r q  , 

then the order of the predictor is p r ; if 

p r q   , then the order of the predictor is q . The 

derivations of Eqs. (22), (23), and (24) are given in 
Appendix. 
 

VARIANCE ANALYSIS 
 
IMA(1,1) 

To prove that the PDOB scheme that can 
produce the system minimum output variance, the 
state-space approach is used to analyze the 
closed-loop system. Consider the IMA(1,1) stochastic 
disturbance 

( 1) ( ) ( 1) ( )k k e k e k       , (25) 
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where   is the coefficient of the moving average 

term and 2( ) (0, )e k N   is a zero mean white noise 

with variance 2 . Recalling Fig. 1 and Eq. (18), the 
relationship between the input and output of the 
F-filter for IMA(1,1) in time domain is written as 

(1 ) 1
ˆ ˆ( 1) ( ) ( )k k k

    
 

  
     . (26) 

Furthermore, the signal of the predictor input is 
ˆ( ) (1 ) ( ) ( 1) ( )k k T k          . (27) 

Substituting Eq. (27) into Eq. (26) obtains 
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where the expression (1 )( 1) /IMA       . To 

solve the system output property, we define state 
variable ˆ( ) [ ( ) ( )]Tx k k k   and combine the 

disturbance model and system model represented by 
Eq. (25) and Eq. (28) into a state-space model as 
follows: 

( 1) ( ) ( )

( ) ( )T

x k Ax k w k

y k C x k R

  

 
, (29) 

where  ( ) ( 1) ( )
T

IMAw k T e k e k    , R T , 

(1 ) /

0 1
A

   
  
 

 , and  1TC   . 

Solving the Eq. (29) for ( )x k , we obtain 
1 1

1 1
1

0 0

1

1
0

(1 )( ) /

( )

( )

k k
k j k j

IMA j j
j j

k

j j
j

T e e

x k

e e

  



 
   


 






     
 
 

 
 

 


. (30) 

The system output is 
1 1

1 1
1

0 0

( ) ( )
k k

k j k j
j j IMA

j j

y k e e T T   
 

   


 

       . (31) 

Thus, the output asymptotic mean and variance can be 
obtained as 
lim [ ( )]
k

E y k T


  , (32) 

2lim Var[ ( )]
k

y k 


  . (33) 

The system output is on-target with minimum output 
variance equalling to white noise variance. 
 
ARMA(1,1) 

Consider the case of ARMA(1,1) time series 
disturbance represented by 

( 1) ( ) ( 1) ( )k k e k e k       , (34) 

where   is coefficient of autoregressive term. The 

input/output relationship of the F   predictor with 
batch delay for ARMA(1,1) in time domain is written 
as 

(1 )
ˆ ˆ( 1) ( ) ( )k k k

      
 
  

     . (35) 

Substituting (27) into (35) results in 

ˆ ˆ( 1) ( ) ( ) ARMAk k k T
   



       . (36) 

where the expression ( )( 1) /ARMA        . 

Follow the above steps to get the system output, or 
1 1

1 1
1

0 0

( ) ( )
k k

k j k j
j j ARMA

j j

y k e e T T   
 

   


 

      .  (37) 

The output asymptotic mean and variance can be 
obtained as 

( )( 1)
lim [ ( )]

1k
E y k T

   


     
 , (38) 

2lim Var[ ( )]
k

y k 


  . (39) 

The system output apparently always produces the 
minimum output variance but with an offset from the 
target when a model mismatch exists. 
 
ARIMA(1,1,1) 

Consider the ARIMA(1,1,1) time series 
disturbance represented by 

( 1) (1 ) ( ) ( 1) ( ) ( 1)k k k e k e k            .  (40) 

Then, the input/output relationship of the F   
predictor with batch delay for ARIMA(1,1,1) in time 
domain can be written as 

1 ( 1) ( 1)
ˆ ˆ ˆ( 1) ( ) ( 1)

1
( ) ( 1)

k k k

k k

       
 

   
 

    
    

 
  

. (41) 

Substituting (27) into . (41) yields 
1

ˆ ˆ( 1) ( ) ( ) ( 1)

              ARIMA

k k k k

T

     
 



 
    




 , (42) 

where the expression (1 )( 1) /ARIMA       . Now, 

we define the state variable 
ˆ ˆ( ) [ ( ) ( 1) ( ) ( 1)]Tx k k k k k       and follow 

the above steps to get the system output 
1 1

1 1
1

0 0

( ) ( )
k k

k j k j
j j ARIMA

j j

y k e e T T   
 

   


 

      . (43) 

The output asymptotic mean and variance can be 
obtained as 
lim [ ( )]
k

E y k T


  , (44) 

2lim Var[ ( )]
k

y k 


  . (45) 

The system output is on-target with minimum 
variance. 

So far, we have demonstrated that the proposed 
PDOB structure can obtain the minimum output 
variance under general ARIMA disturbance. Table 1 
summarizes an assessment of on-target and output 
variance for EWMA, double EWMA, and PDOB 
under various stochastic time-series disturbances. One 
can see that the steady-state output produces an offset 
from the target if the stochastic disturbance is 
ARMA(p, q) when model mismatch occurs. This 
problem can be easily solved by employing a PI 
controller in the outer loop of the PDOB scheme to 
compensate for the offset. The control structure is 
shown in Fig. 3. 
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Table 1. The output properties of different controllers under the different stochastic disturbances 

EWMA controller 
 IMA(1,1) ARMA(1,1) ARIMA(1,1,1) Other ARIMA(p, r, q) 
On-target O O O X(except r=0, 1) 
Minimum variance O X X X 

Double EWMA controller 
On-target O O O X(except r=0, 1, 2) 
Minimum variance O X X X (except IMA(2,1) and IMA(2,2))

PDOB 

On-target O 
X ( 1  ) 

O ( 1  ) 
O O (except ARMA(p, q), 1  ) 

Minimum variance O O O O 
 
 

  
Fig. 3. The PDOB with PI outer controller structure 

 
SIMULATION 

 
In this section, some simulations are presented 

to illustrate the differences of output performance 
using the EWMA, double EWMA, and PDOB 
controllers under different time-series based 
disturbances. Table 2 presents the numerical results 
for given values of model mismatch  , optimal 

weights for the EWMA and double EWMA 
controllers, the target T , a zero mean white noise 
with variance, and the coefficients of the time series 
model. An estimate of the variance is 

2

1

1
ˆvariance ( )

n

k k
k

y y
n 

   , (46) 

where n  is the batch of the process, ky  is the 

process output, ˆky  is the mean of the process output, 

and k  is the number batch of the process. 
For the IMA(1,1) disturbance in Case I of Table 

2, the system output achieved minimum output 
variance no matter what the model mismatch is. The 
EWMA controller with optimum parameters is 
equivalent to the PDOB for the IMA(1,1). Thus, the 
results of the two controllers are identical. 

For the ARMA(1,1) disturbance in Case II of 
Table 2, the output responses of the system using the 
EWMA controller and PDOB are shown in Fig. 4. We 
can observe that the performance of the controlled 

system using the PDOB has faster transient response 
and less oscillation under model mismatch; moreover, 
it produces minimum output variance. However, the 
system output produces an offset, as we noted before. 

For the ARIMA(2,2,2) disturbance in Case III 
of Table 2, the output responses of the system using 
the double EWMA controller and PDOB, respectively, 
are shown in Fig. 5. The results depict different 
performances of the two controllers; the output of 
PDOB achieves minimum variance and is on target no 
matter what the model mismatch is. According to the 
internal model principle, the controlled output rejects 
disturbance without steady-state error if the reciprocal 
of the disturbance is modelled into the controller. 
Note that the proposed PDOB is a fourth-order 
controller in this case rather than a second-order 
controller in double EWMA.  

The ARI(3,1) disturbance observed in the 
sputter deposition process (Chen et al., 2007) and the 
historical data series is plotted in Fig. 6. In this 
illustration, the model mismatch is one, and the 
reference target is zero. The variance for double 
EWMA and PDOB is 1.2777 and 1.1725, respectively, 
with a variance reduction of approximately 8%. 

Furthermore, simulation results are presented 
when a PI outer loop is added to the PDOB structure 
to compensate for the offset. Fig. 7 illustrates the 
controlled performance using the EWMA controller 
or double EWMA and the PI plus the PDOB 
controller, respectively, under IMA(1,1), ARMA(1,1), 
and ARIMA(2,2,2) disturbances, as used in the 
previous study. The simulation considered the case 
that the model mismatch is 1.5   and the PI 

controller is 5 / ( 1)z z . The results showed that the 

PI plus the PDOB controller not only can supresses 
the offset but also reduces the output variance. 
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Table 2. Simulation results for various controllers under various disturbances 

Controller   *  Variance 
Performance Improvement 
Var[ ] Var[ ]

100%
Var[ ]

EWMA PDOB

EWMA


  

Case I: 0.7,  0,  20,  ( ) ~ (0,1),  IMA(1,1)T e k N     

EWMA controller & 
minimum variance controller 

0.5 0.6 1.0206 0%
1 0.3 1.0206 0%
1.5 0.2 1.0206 0%

Case II: 0.7,  0.8,  20,  ( ) ~ (0,1),  ARMA(1,1)T e k N     

EWMA controller 
0.5 0.045 1.3114 N/A 
1 0.023 1.1785 N/A 
1.5 0.015 1.2611 N/A 

minimum variance controller 
0.5 N/A 1.0206 22.17% 
1 N/A 1.0206 13.40% 
1.5 N/A 1.0206 19.07% 

Case III: 1 2 1 20.1,  0.2,  0.7,  20,  ( ) ~ (0,1),  ARIMA(2,2,2)T e k N         

Double EWMA controller 

1 
1

2

0.7693

0.99






 2.46 N/A 

1.5 
1

2

0.3655

0.99






 1.5799 N/A 

minimum variance controller 
1 N/A 1.0213 58.48% 
1.5 N/A 1.0213 35.36% 

Case IV: 1 2 30.021,  0.088,  0.088,  20,  ( ) ~ (0,1),  ARI(3,1)T e k N         

Double EWMA controller 1 
1

2

0.97

0.01






 1.2777 
 

N/A 

minimum variance controller 1 N/A 1.1725 8.23% 
 
 

 
Fig. 4. The process output of PDOB and EWMA for different model mismatch under ARMA(1,1) 
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Fig. 5. The process output of PDOB and EWMA for different model mismatch under ARIMA(2,2,2)

 

 
Fig. 6. ARI(3,1) disturbance obtained in sputter deposition process (Chen et al., 2007) 

 

 
Fig. 7. The process output using EWMA (or double EWMA) and PI+PDOB respectively, under  

(a) IMA(1,1), (b) ARMA(1,1), and (c) ARIMA(2,2,2)
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CONCLUSION 
A traditional EWMA controller produces the 

system minimum output variance only under an 
IMA(1,1) disturbance, and a double EWMA 
controller produces the system minimum output 
variance only under an IMA(2,1) or IMA(2,2) 
disturbance. For general stochastic time-series based 
disturbances, both controllers are not the best control 
scheme from the output variance viewpoint. In this 
paper, we developed a PDOB control scheme based 
on the minimum variance control to deal with the 
ARIMA(p,r,q) stochastic disturbance, thereby 
producing minimum output variance or only white 
noise variance if the disturbance model is known. For 
an ARMA(p,q) disturbance, a EWMA controller 
cannot obtain the minimum output variance and has 
worse transient response when a model mismatch 
exists. By contrast, a PDOB controller can produce 
minimum output variance but with an offset under an 
ARMA(p,q) disturbance when model mismatch 
occurs, which can be compensated by the PI outer 
loop. 
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APPENDIX 

 
The ARIMA(p,r,q) disturbance can be 

expressed as 

1

1

1

1

(1 ) 1

q
k

k
k

ARIMA ARIMAp
r k

k
k

z
e G e

z z










 




 

 
  

 




. (I.1) 

Because the predictor ( )F z  can produce the 

minimum output variance, it follows that the 
disturbance term in (1) can be expressed as 

1 1

01 1

(1 ) (1 )
( )

( ) ( )
n n ARIMA

n n n n

P Fz P Fz G
y z e e

P P P Fz P P P Fz


 

 

 
  

   
. (I.2) 

Let 
1

0 1
1 2

1 2

( )
k k

k
k k k

k

b z b z b
F z

z a z a z a



 

  


   



. (I.3) 

Substituting (I.1), and (I.3) into (I.2), we can get by 
the coefficient comparison method. 

For the ARIMA(p,1,q) disturbance, 
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1

1 1

1

1 2
1 2
1 2

1 1 2 1

1

(1 ) 1

( 1 ) ( ) ( )

q
k

k
k

ARIMA p
k

k
k

k k k k k
k

k k k k k
p p

z
G

z z

z z z z

z z z z





  
    





 



  

  





 
  

 
   


       








. (I.4) 

The following equation can be obtained 
1

1 1

1 2
1 2

1
1 1

1
1 1 1

( 1 ) ( )

( ) ( )

( ) ( )

k k k k
p p

k k k k k
k

k k k k
k k

k k k k
k k k

z z z

z z z z

z a b z a b z

z a b b z a b b z

  
  

 

 


  

 

 

     

   

   


     









. (I.5) 

Then, ( )F z  can be obtained by the coefficient 

comparison method. 

 

1
1 11 1

1

11 1 1

1
1 1 1 1

1

1

1 (1 )

k
k k ii i i

i

k k

k
i i i i i k i

i

z z
F

z z

z

   
 
   


     




 






    



   



     

 
      
 
 





. (I.6) 

For the ARIMA(p,2,q) disturbance, 

1

1 2

1

1 2
1 2

1 2
1 1 2 1 2

1

(1 ) 1

( 2 ) (1 2 ) ( 2 )

q
k

k
k

ARIMA p
k

k
k

k k k k k
k

k k k k k
p p p

z
G

z z

z z z z

z z z z





  
     





 



  

  
 




 
  

 
   


         








. (I.7) 

The following equation can be obtained 
1 2

1 1 2

1 2

1 2
1 2

1
1 1

1
1 1 1

( 2 ) (1 2 )

( 2 )

( ) ( )

( ) ( )

k k k

k k
p p p

k k k k k
k

k k k k
k k

k k k k
k k k

z z z

z

z z z z

z a b z a b z
.

z a b b z a b b z

  

  

  

 

 


 

  

 

 

      
        

   

   
     









. (I.8) 

Then, ( )F z  can be obtained as 

 

11 1 1 2 2

2
11 2 2

1

11 1 1

21 2 2 1 2

2
1 2 2 1 2 2

1

2 1 2

2

( )
2 (2 )

1 2 ( 1 2 )

2 2

k k

k
k ii i i i

i

k k

k

k
i i i i i i i k i

i

z z

z

F z

z z

z

z

    
 
   



   


     


       





   








      


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For the ARMA(p,q) disturbance, 
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The following equation can be obtained 
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Then, ( )F z  can be obtained as. 
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NOMENCLATURE 

 
T  process target 

ku  process output (input recipe) 

ky  process output 

k  output disturbance 

P  process gain (or actual plant) 

nP  nominal plant 

  process intercept term 
k  batch index. 

( )F z  one-step ahead predictor  

( )e k  a sequence of independent random variables 

  model mismatch 

 

通用隨機時間序列程序干擾

之最小方差批次控制器 
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摘 要 

指數加權移動平均值(EWMA)或雙EWMA控制器

經常被使用來處理各種隨機時間序列擾動，以實現

批次控制。如果已知擾動模型，則可以通過將控制

器參數的輸出差異最小化來獲得最佳EWMA或雙

EWMA控制器。但是，從理論角度來看，結果只是

次優化，因為控制架構可能不是當下隨機干擾的最

佳控制方案。因此，研究一般ARIMA時間序列之程

序擾動的最佳控制方案是值得的。本文基於最小方

差控制，針對各種ARIMA(p,r,q)隨機擾動開發了預

測擾動觀測器(PDOB)。如果已知ARIMA(p,r,q)干擾

模型，則PDOB方案會針對該干擾生成單步提前預

測，然後將其反饋以補償隨機干擾對系統輸出的影

響，以致系統生成最小輸出方差或僅產生白噪聲方

差。當模型不匹配時，在某些ARMA干擾模型下，

受控系統的輸出可能會產生偏移。但此現象可以通

過使用PI控制器等外環控制器輕鬆糾正此偏移。 


