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ABSTRACT 
 

A modified Smith predictor with a periodic 
disturbance reduction method for linear systems with 
small time delays is proposed in this paper. With this 
method it is not necessary to estimate unknown 
disturbance frequencies. The main control structure is 
provided by Astrom’s modified Smith predictor. The 
proposed method consists of a disturbance reduction 
controller (DRC) and a residual disturbance observer 
(RDO). The DRC, which is composed of an inverse plant 
model and an integrator with a nonnegative gain, 
compensates for unknown load disturbances and 
exhibiting uncertainties in stable or unstable systems. The 
disturbance reduction performance of the proposed 
method is enhanced by combining the DRC with the RDO 
to suppress undesired residual signals including residual 
disturbances and residual uncertainties. Simulation 
examples demonstrate the effectiveness of the proposed 
periodic disturbance reduction method for linear uncertain 
systems with time delays, under periodic or non-periodic 
unknown load disturbances. 

 
INTRODUCTION 

 
A method for periodic disturbance reduction is 

required in many industrial engineering applications, 
particularly for control systems of rotating machines.  
Obviously, the system performance is influenced by the 
periodic load disturbances. Many studies have been 
devoted to the issue of disturbance rejection and how to 
avoid the degradation of system performance that results 

from periodic load disturbances (Muramatsu, 2018; Chen, 
2018; Tan, 2018; Shen, 2014; Karanam,2013).  

Muramatsu (2018) proposed an adaptive periodic-
disturbance observer to compensates a frequency-varying 
periodic disturbances. An adaptive notch filter was used 
to estimate the fundamental frequency of the periodic 
disturbance. Chen et al. (2018) combined equivalent-
input-disturbance (EID) theory with the internal model 
principle is applied to achieve periodic disturbance 
rejection in input-time-delay systems. The EID estimator 
was constructed by inserting appropriate time-delay 
elements to compensate for the total influence of the 
input-time-delay and the periodic disturbance. Tan (2018) 
proposed a multiple periodic disturbance rejection under 
the Smith predictor configuration for processes with long 
dead-time. One feedback loop was added to compensate 
periodic disturbance while retaining the advantage of the 
Smith predictor. Shen (2014) designed a periodic 
disturbance rejection controller based on the Smith 
predictor for process with long dead-time. By adding two 
feedback loops and the online spectrum analysis, multiple 
periodic disturbances can be suppressed effectively in 
existence of long dead-time. Karanam (2013) proposed a 
modified Smith predictor control scheme for step and 
periodic disturbance rejection for unstable processes with 
time delay. A periodic disturbance rejection controller was 
designed to improve nominal and robust performances for 
step and periodic disturbances and also improved closed-
loop performances. 

In process control, small time delays between system 
output and sensor output are a common occurrence, 
however the occurrence of such time delays may 
complicate the design of the control system (Richard, 
2003; Watanabe, 1981;). Smith (1959) proposed a 
predictor scheme for the control of stable processes with 
time delays. The Smith predictor scheme includes a plant 
model and a conventional controller. In the scheme, the 
time delay can be taken out of the closed-loop 
characteristic equation when the plant model perfectly 
matches the real plant. In short, the control performance 
of the Smith predictor is relative to the plant model. 
Modeling uncertainties, which are caused by the 
inevitable mismatch between the real plant and the plant 
model, are regarded as an additional load disturbance in 

Paper Received July, 2018. Revised October, 2018. Accepted 
November, 2018. Author for Correspondence:Pi-Cheng Tung. 

 
* Graduate Student, Department of Mechanical Engineering, 

National Central University, Taoyuan, Taiwan 32054, ROC. 
 
** Professor, Department of Mechanical Engineering, National 

Central University, Taoyuan, Taiwan 32054, ROC. 



 
J. CSME Vol.39, No.6 (2018) 

 
 

-556- 
 

the control system by Tian (1998). However, the Smith 
predictor shows poor capability for rejecting load 
disturbances, including modeling uncertainties.  
Although much work has been carried out to improve the 
disturbance rejection performance of the Smith predictor 
(Watanabe, 1981; Tian, 1998; Hang, 1979; Astrom et al., 
1994; Mataušek, 1999; Chien et al., 2002; Stojić et al., 
2001; Kaya, 2004; Zheng et al., 2010; Chen et al., 2007; 
Tsai, 2010;), few methods based on the Smith predictor 
have been proposed to attenuate periodic load 
disturbances introduced into delay systems (Zheng et al., 
2010; Chen et al., 2007; Tasi, 2010; Tsai, 2012; Tsai, 
2012). Tsai (2010) designed a control structure based on 
Astrom's modified Smith predictor with a disturbance 
reduction scheme and an artificial neural network (ANN). 
Tsai (2012) presented a robust disturbance reduction 
scheme using an artificial neural network (ANN) for 
linear systems with small time delays. Tsai (2012) 
proposed an input disturbance reduction controller using 
an artificial neural network (ANN) to reduce unknown 
load disturbances and modeling uncertainties in stable 
systems and unstable systems. 

The purpose of this study is to develop a periodic 
disturbance reduction method to reduce periodic or non-
periodic unknown load disturbances introduced into a 
delay system with modeling uncertainties. The control 
structure of the proposed scheme is based on Astrom’s 
modified Smith predictor (Astrom et al., 1994). With the 
proposed method there is no need to estimate the 
disturbance frequencies when applied to control systems. 
A disturbance reduction controller (DRC) and a residual 
disturbance observer (RDO) are included in the proposed 
method. The DRC is composed of an inverse plant model 
and an integrator with a nonnegative gain and is proposed 
to reduce the unknown load disturbances and modeling 
uncertainties. The unknown real plant can be modeled as 
a stable plant model with modeling uncertainties even if 
the unknown real plant is unstable. Since the DRC cannot 
completely cancel out the unknown load disturbances and 
modeling uncertainties, residual disturbances and residual 
uncertainties exist in the control system which will affect 
the system performance. To enhance the disturbance 
reduction performance, an RDO, based on a disturbance 
observer (Sastry, 1994), is combined with the DRC. The 
RDO is designed to reduce residual signals including 
disturbances and uncertainties. As a consequence, the 
unknown load disturbances and modeling uncertainties 
are significantly compensated for by the proposed method 
used in the modified Smith predictor for delay systems. 

The rest of the paper is organized as follows. The 
Smith predictor and the Astrom’s modified Smith 
predictor are described in Section 2. The proposed 
periodic disturbance reduction method, consisting of the 
DRC and the RDO, is discussed in Section 3. In Section 4, 
we discuss simulation results obtained under different 
conditions that show the effectiveness of the proposed 
scheme. Some brief conclusions are presented in Section 
5. 

 
THE SMITH PREDICTOR AND THE 

MODIFIED SMITH PREDICTOR 
 

The predictor scheme proposed by Smith (1959) is 
an effective time-delay compensator and can be used to 
control stable processes with time delays. A block diagram 
of the Smith predictor is shown in Fig. 1(a), where C(s) is 
the main controller. When a delay-free plant model G�(s) 
with an estimated time delay 𝐿𝐿� is identical to a delay-free 
real plant G(s) with a real time delay L for this predictor, 
i.e., G�(s)e-L�s = G(s)e-Ls , the transfer function from the 
reference command R(s) to the system output Y(s) is given 
by 
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It can be seen in Eq. (1) that the Smith predictor 

removes the time delay term in a characteristic equation 
from a closed-loop system. Therefore, the main controller 
C(s) can make use of a simple conventional controller 
(such as the PI or PID). Good set-point responses to 
reference commands are obtained using the Smith 
predictor scheme. The transfer function from the input 
disturbance D(s) to the system output Y(s) is given by 
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In Eq. (2) it can be observed that the performance of 

the disturbance response depends on the poles of the 
delay-free plant G(s). When the poles of the delay-free 
plant G(s) are near the imaginary axis, the input 
disturbance D(s) introduces a steady-state error into the 
output response which will affect the system performance.  
Therefore, the input disturbance cannot be cancelled out 
by an integrator process which uses the Smith predictor 
(Hang, 1979). Watanabe (1981) proposed a modified 
Smith predictor scheme for the integrator processes. 
However, one drawback of the Watanabe’s modified 
Smith predictor is that the resulting set-point response 
tends to be very slow. Astrom et al. (1994) also developed 
a new modified Smith predictor for the improvement of 
the control performance. Astrom’s modified Smith 
predictor is shown in Fig. 1(b). The set-point transfer 
function and the disturbance transfer function are given 
respectively by 
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Since the Astrom’s modified Smith predictor 

decouples the set-point transfer function Eq. (3) from the 
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disturbance transfer function Eq. (4), the two transfer 
functions can be optimized independently. The 
compensator M(s) in the Astrom’s modified Smith 
predictor can be designed by the user to improve the 
disturbance response. In this study, the proposed periodic 
disturbance reduction method is employed in the Astrom’s 
modified Smith predictor to deal with the input 
disturbance introduced into the process with the time 
delay. 

 
Fig. 1 (a) A schematic diagram of the Smith predictor 
controller and (b) A schematic diagram of the Astrom’s 
modified Smith predictor controller. 
 
PROPOSED PERIODIC DISTURBANCE 

REDUCTION METHOD 
 
Disturbance reduction controller (DRC) 

A block diagram of the proposed periodic 
disturbance reduction method consisting of the DRC and 
the RDO is shown in Fig. 2(a). It is not necessary to 
measure unknown disturbance frequencies when the 
proposed method is applied to the control system. In Fig. 
2(a), the unknown real plant P(s) can be modeled as a 
stable plant model 𝑃𝑃�(s)  with modeling uncertainties 
even if the unknown real plant P(s) is unstable. The DRC 
should be properly designed in order to reject the 
measurement noise (Sastry, 1994). The DRC consists of 
an inverse plant model P�-1(s) and an integrator with a 
nonnegative gain  K1 . The compensative force D�1(s) 
generated from the DRC can be given by 
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where D�2(s)  is a compensative force of the RDO; 
and D2(s) is an unknown load disturbance. For 
convenience of derivation, in Eq. (5), a modeling error 
function ∆(s) and a parametric error function ρ(s) are 
defined respectively as 
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where ∆(s) is assumed to satisfy the matching condition. 
Therefore, Eq. (5) can be rewritten as 
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For convenience of interpretation, the sum of the 

unknown load disturbance DL(s) and the unknown 
parametric error function ρ(s) in Eq. (8) is defined as an 
input disturbance D(s), i.e., D(s) = DL(s) + ρ(s) .  
Hence, a simplified form of Eq. (8) can be written as 
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Since the transient response of Eq. (9) resembles that 

obtained by a first-order system, the compensative force 
D�1(s) can track the unknown input disturbance D(s) when 
a nonnegative gain K1 is properly specified. This is to say, 
the compensative force D�1(s) can compensate for both 
the unknown load disturbance DL(s) and the modeling 
uncertainties that arise due to the parametric error function 
ρ(s). The residual signal H(s) introducing into the process 
can be expressed as 
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A block diagram equivalent to that in Fig. 2(a) is 

shown in Fig. 2(b). It can be seen in Eq. (10) and Fig. 2(b) 
that the DRC performs similarly to a high-pass filter 
introduced between the process and the unknown input 
disturbance. Hence, the DRC can reduce an unknown 
input disturbance whose frequency is less than the 
nonnegative gain K1. 
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Fig. 2 (a) A schematic diagram of the proposed method 
composed of the DRC and the RDO and (b) An 
equivalent structure of (a). 
 

In order to apply the DRC to the Astrom’s modified 
Smith predictor for the delay system (P(s)=G(s)e-Ls), the 
compensator M(s) in Eq. (4) could be selected as follows: 
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Then the corresponding disturbance response can be 

written as 
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Since the nonnegative gain 𝐾𝐾𝐼𝐼  is related to the 

control system stability, an appropriate nonnegative gain 
value can be obtained using the root locus stability method.  
Similarly, the compensator M(s) in Eq. (4) could be 
chosen in another manner as follows: 
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Now the corresponding disturbance response has the 

form, 
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However, the leading time term eL�s  in Eq. (13) 

requires future data. Since future data cannot be estimated 

exactly, a proper approximation equation Eq. (15) is used 
to substitute the leading time term (Hong, 1998),                                  
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where τ is a small positive number. Since the residual 
signal H(s) in Eq. (10) cannot be canceled out completely 
by the DRC, the RDO is combined with the DRC to deal 
with the residual signal H(s). The development of the 
RDO is described in the next section. 
 
Residual disturbance observer (RDO) 

 
Fig. 3 A schematic diagram of the RDO. 
 

A block diagram of the RDO is shown in Fig. 3, 
where G� -1(s)  is an inverse delay-free plant model.  
Since the compensative force D�1(s) of the DRC cannot 
cancel out the input disturbance D(s), this compensative 
force D�2(s)  is used to reduce the residual signal H(s), 
including residual disturbances and residual uncertainties.  
The transfer functions from the reference command R(s) 
and the residual signal H(s) to the system output Y(s) as 
shown in Fig. 3, can be given respectively by 
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From Eq. (17), it can be observed that Q(s) should be 

chosen to have a unit dc gain for attenuation of the residual 
signal H(s). Moreover, in order to reject measurement 
noise, Q(s) should be selected to be a low-pass filter. In 
view of the two design demands mentioned above, 
therefore, Q(s) is assumed to be a low-pass filter with a 
unit dc gain. Furthermore, the relative degree of Q(s) 
should be designed appropriately such that Q(s)G�  -1(s) is 
proper, as shown in Fig. 3 (Hong, 1998). 

Figure 4 shows a combination of the Astrom’s 
modified Smith predictor and the proposed periodic 
disturbance reduction method consisting of the DRC and 
the RDO. During the implementation of the predictor, the 
RDO provides suitable compensation for various residual 
signals, including approximation errors due to Eq. (15), 
residual disturbances, residual uncertainties, and so on. 
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Fig. 4 A schematic diagram of a modified Smith 
predictor with the proposed method consisting of the 
DRC and the RDO. 
 

SIMULATION RESULTS 
 

In this section, Example 1 illustrates the disturbance 
reduction ability of the proposed method in Fig. 2(a) and 
the rest of examples show the control performance of the 
proposed scheme in Fig. 4. In the simulation, the sampling 
time is 1ms. The leading time term eL�s in the following 
examples is approximated using Eq. (15). Moreover, the 
parameters for the approximation equation Eq. (15), τ and 
n, are chosen to be 0.01 and 1, respectively.  Therefore, 
the approximation equation can have the simplified form, 
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Example 1.  Consider an unstable first order plus dead 
time (FOPDT) process: 
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Fig. 5 Results of Example 1 for an unstable FOPDT 
process. (a) The random unknown load disturbance dL(t), 
(b) the set-point response obtained using the DRC alone 
and (c) the set-point response obtained using the DRC 
and the RDO. 
 

A reference command is set to be zero. A random 
unknown load disturbance dL(t)  shown in Fig. 5(a) is 
introduced at time t=0 and has the form, 
 

0.     t),1.0sin()( ≥+= µttdL                  (20) 
 

where μ is a normally distributed random variable 
and is given by the routine “randn” in MATLAB. In 
addition, the parameters of the routine are normally 
distributed by a mean with an amplitude of 0, a variance 
with an amplitude of 1 (σ2 = 1), and a standard deviation 
with an amplitude of 1 (σ = 1). In the proposed method, 
the plant model is chosen to be stable with modeling 
uncertainties, 
 

.
2.0

1)(ˆ)(ˆ 5.0ˆ ssL e
s

esGsP −−

+
==                   (21) 

Moreover, a 25% error is set between the real time 
delay and the estimated time delay. Therefore, the real 
time delay and the estimated time delay are 0.4 and 0.5 
seconds, respectively. In the DRC, the root locus stability 
method is used to specify the nonnegative gain KI to be 
0.737. The leading time term eL�s(L�=0.5) is approximated 
by Eq. (18). Hence, the compensator )(sM  in the 
proposed method Eq. (13) can be expressed as 
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The low-pass filter Q(s) of the RDO is selected to 

have the following form: 
 

.
15.0

1)(
+

=
s

sQ                               (23) 

 
In Fig. 5(b), it can be seen that the unknown load 

disturbance and modeling uncertainties are effectively 
reduced using the DRC alone. The disturbance reduction 
performance obtained using both of the DRC and the RDO 
is shown in Fig. 5(c). It can be observed in Figs. 5(b) and 
5(c) that the system performance is enhanced by 
combining the DRC with the RDO. As shown in Fig. 5, 
therefore, the proposed method in Fig. 2(a) can effectively 
reduce the random unknown load disturbance introduced 
into an unstable delay system. 

Example 2.  Consider an integrator plus dead time 
(IPDT) process: 
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A reference command with a unit step signal is 

introduced at time t=0. A periodic unknown load 
disturbance dL(t) is introduced and has the form 
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Under a perfect model match ( G�(s)e-L�s=G(s)e-Ls ), 

the set-point response of the proposed scheme is 
compared with those obtained by the Astrom’s modified 
Smith predictor (Astrom et al., 1994) and the PID 
controller. The conventional controller C(s) in (Astrom et 
al., 1994) was designed as a proportional controller, 
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Moreover, the compensator M(s) in Astrom et al. (1994) 
had the form,  
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where k4=k2+k3 , k1=4, k2=3 and k3=0. An effective 
rule given by the Ziegler-Nichols tuning method is used to 
tune the gain values of the PID controller. According to 
the Ziegler-Nichols rule, therefore, the three gain values 
are  KP=1.88(proportional gain), TI=1.00 (reset time) 
and TD=0.25 (derivative time). In the proposed method, 
the conventional controller C(s)  and the compensator 
M(s) are designed respectively as, 
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where the nonnegative gain KI is specified to be 0.737 by 
using the root locus stability method; and the leading time 
term eL�s(L�=0.5) is approximated by Eq. (18). Moreover, 
the low-pass filter Q(s) in the RDO has the same transfer 
function as that in Eq. (23). The set-point responses 
depicted in Fig. 6 show that the proposed scheme in Fig. 
4 provides the better set-point response and disturbance 
rejection performance. 

 
Fig. 6 Results of Example 2 for an IPDT process. 
 
Example 3. Consider an open-loop stable FOPDT process 
such as the one studied in Chen et al. (2007): 
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A reference command with a unit step signal is 

introduced at time t = 0. Two unknown load disturbances 
in (Chen et al., 2007) are introduced: 
 
Disturbance 1. Assume that the unknown load 
disturbance is given by, 
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Disturbance 2. Assume that the unknown load 
disturbance is given by, 
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In Chen et al. (2007), it was assumed that the real 

plant and the plant model match each other perfectly, i.e.,  
G�(s)e-L�s=G(s)e-Ls. The conventional controller C(s) and 
the compensator M(s) in Chen et al. (2007) was given by 
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where the nonnegative gain KI is estimated to be 1.8 by 
using the root locus stability method; and the leading time 
term e0.2s  is approximated by the grey predictor. In 
comparison, the conventional controller  C(s)  and the 
nonnegative gain KI  for the proposed method are the 
same as those obtained in Chen et al. (2007). In the 
proposed method, however, the leading time term  
eL�s(L�=0.2) is replaced by using the approximation in Eq. 
(18). Therefore, the compensator M(s) in Eq. (13)  
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can be given by,  
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Fig. 7 Results of Example 3 for a stable FOPDT process. 
(a) The periodic unknown load disturbance dL(t) and the 
compensative force d�L(t), (b) The periodic unknown 
load disturbance dL(t) and compensative forces d�1(t)+ 
d�2(t) and (c) the reference command r(t) and the system 
output y(t). 

 
Fig. 8 Results of Example 3 for a stable FOPDT process. 
(a) The multiple periodic unknown load disturbance 
dL(t) and the compensative force d�1(t), (b) the multiple 
periodic unknown load disturbance dL(t)  and 
compensative forces d�1(t)+ d�2(t) and (c) the reference 
command r(t) and the system output y(t). 
 

In the RDO, the low-pass filter Q(s) has the same 
form as that in Eq. (23). The results in Figs. 7(a)-8(a) are 
given to show the disturbance-tracking performance 
obtained by applying the DRC alone with Disturbance 1 

and Disturbance 2 respectively introduced into the control 
system. The effects of using both the DRC and the RDO 
to reduce Disturbance 1 and Disturbance 2 are illustrated 
in Figs. 7(b)-8(b), respectively. In addition, the set-point 
responses presented in Figs. 7c–8c are similar to those 
obtained in Chen et al. (2007); see Figs. 6(b)-7(b) in Chen 
et al. (2007). A comparison of Figs. 7(b)-8(b) with those 
in Chen et al. (2007) shows that the proposed scheme in 
Fig. 4 gives better convergence of the compensative forces 
to the unknown load disturbances; see Figs. 6(a)-7(a) in 
Chen et al. (2007). 
 

In the next example we consider the open-loop stable 
FOPDT process with a time-varying delay (Tsai, 2010) 
and Disturbance 1, such that 
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Fig. 9 Results of Example 3 for a stable FOPDT process 
with a time-varying delay. (a) The periodic unknown 
load disturbance dL(t)  and the compensative force 
d�1(t), (b) The periodic unknown load disturbance dL(t)  
and compensative forces d�1(t)+ d�2(t) and (c) The 
reference command r(t) and the system output y(t). 
 

The simulation conditions are the same as those 
mentioned above. The disturbance-tracking results 
obtained using the DRC alone, and using both DRC and 
the RDO, are shown in Fig. 9(a) and 9(b), respectively.  
Moreover, Fig. 9(c) indicates the set-point response. A 
comparison of Fig. 9(b) with Fig. 14 in Tsai (2010) shows 
that the proposed scheme gives better disturbance-
tracking performance to deal with the time-varying delay. 

 
Example 4. Consider the following open-loop stable 
second order plus dead time (SOPDT) process as studied 
in Takehara et al. (1996): 
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Fig. 10 Results of Example 4 for a stable SOPDT 
process. (a) The periodic unknown load disturbance 
dL(t), (b) the set-point response obtained using the DRC 
alone and (c) the set-point response obtained using the 
DRC and the RDO 

 
The reference command is set to be zero. A sine 

unknown load disturbance dL(t) shown in Fig. 10(a) is 
introduced at time t = 0 and has the form, 

 
0.      t),sin()( ≥= ttdL                         (39) 

 
The conventional controller in Takehara et al. (1996) 

was designed as follows: 
 

.10100)(
s
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To compare with Takehara et al. (1996), the proposed 

method uses the same conventional controller as that in 
Eq. (40). When the plant model is exact, the compensator 
M(s) of the proposed method Eq. (13) is given by 
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where the nonnegative gain KI is specified by the 

root locus stability method to be 1.36; and the leading time 
term eL�s(L�=0.3) is approximated by Eq. (18). The low-
pass filter Q(s)  in the RDO has the same transfer 
function as that in Eq. (23). Fig. 10(b) demonstrates the 
effective disturbance reduction provided by the DRC 
alone. It can be seen in Fig. 10(c) that the disturbance 
reduction performance has been enhanced by combining 
the DRC with the RDO. It can be seen in Fig. 10(c) that 
the proposed scheme in Fig. 4 gives the better disturbance 
reduction performance for reducing the sine unknown 

load disturbance; see Fig. 9 in Takehara et al. (1996). 
 

CONCLUSION 
 

This paper proposes a modified Smith predictor for 
controlling linear delay systems with unknown load 
disturbances and modeling uncertainties. A PI controller 
and the proposed periodic disturbance reduction method 
are included in this modified Smith predictor. The 
proposed method does not necessarily estimate the 
disturbance frequencies when it is applied to the control 
system. In addition, the proposed method is composed of 
the DRC and the RDO. The DRC is used to reduce 
unknown load disturbances and modeling uncertainties.  
The residual signals are effectively reduced by the RDO.  
The closed-loop system performance shows that the 
proposed method gives robustness against modeling 
uncertainties, even if the time delay is varying.  
Simulations demonstrate that the proposed scheme 
provides effective disturbance reduction performance and 
simplicity of structure for controlling stable or unstable 
delay systems with periodic or non-periodic unknown 
load disturbances. 
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摘 要 

本文提出一改善之史密斯估測器及一具有降低週期

性干擾的方法，適用於短時間延遲之線性系統，使用這

種方法，不需要估測未知的干擾頻率。主要控制結構是

由 Astrom 改善的史密斯估測器提供。本文所提出的方法

由干擾降低控制器(DRC)與殘留干擾觀察器(RDO)組成，

其中干擾降低控制器是由逆模型和具備非負增益的積分

器組成，能夠補償在穩定或不穩定系統中之未知負載干

擾及模型之不確定性。本文之擾動降低性能是使用干擾

降低控制器結合殘留干擾觀測器來抑制不需要的殘留訊

號，包括殘留干擾訊號與殘留的不確定性訊號。模擬範

例驗證在週期性或非週期性的未知負載干擾下，使用本

文所提出的方法能對短時延遲之線性不確定系統的週期

性擾動進行有效的抑制。 

 


