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ABSTRACT 

 
 This study focuses on improving the fatigue 

safety and structural strength of a rail e-clip in 
fastening systems under impact, fatigue, and static 
loads by employing advanced optimization 
techniques. Using the EN 13146-1, EN 13146-2, and 
EN 13146-3 testing standards, von Mises stress in the 
rail e-clip is evaluated via simulations performed in 
ANSYS/Workbench. Additionally, EN 13146-4 
testing simulations assess the fatigue safety factor. 
The multi-objective optimization problem is solved 
using an integrated approach combining the uniform 
design of experiments methodology, Kriging 
interpolation, entropy weighting method, grey 
relational analysis, and the genetic algorithm, leading 
to an optimal design. The improved design shows 
reductions in von Mises stress of 9.9%, 22.12%, and 
28.6% for the EN 13146-1, EN 13146-2, and EN 
13146-3 testing simulations, respectively, compared 
to the original model. Meanwhile, the EN 13146-4 

testing simulation shows a 29.8% improvement in the 
fatigue safety factor, which rises to 6.18. Thus, the 
structural strength and fatigue performance of the rail 
e-clip are significantly improved. Finally, the impact 
of each design variable on the objective functions is 
determined using Sobol sensitivity analysis. 
According to the sensitivity results, the diameter of 
the rail clip has a significant impact on most 
objective functions. 
 

INTRODUCTION 
 

The railway vehicle is widely regarded as the 
best way to transport people and goods efficiently. It's 
important to consider stability and safety when 
designing the rail and fastening system. The rail 
fastening system is crucial for connecting parts and 
keeping the rail aligned, preventing sideways 
movement for a smoother ride and less chance of 
derailment. 

  The structural stress within fastening systems 
has been extensively studied through finite element 
analysis (FEA) by several researchers 
(Mohammadzadeh et al., 2014; Ferreo et al., 2019; 
El-sayed et al., 2021; Hong et al., 2018; Kim et al., 
2021; Cheng et al., 2021). Mohammadzadeh et al. 
(2014) used FEA software to conduct stress analysis 
on SKL14 Vossloh fastening clips under various train 
speeds and axle loads. Ferreo et al. (2019) combined 
experimental methods with FEA to study the 
structural integrity of the elastic clip fastening 
mechanism for the SKL-1. El-sayed et al. (2021) 
employed a three-dimensional finite element railway 
model to investigate the structural stress in railway 
concrete sleepers and fastening systems. Hong et al. 
(2018) assessed the fatigue safety and predictability 
of e-clip fastening systems under cyclic loading using 
ABAQUS software. Kim et al. (2021) investigated 
the structural stress and fatigue performance of 
KR-type rail clips using finite element analysis 
software. Meanwhile, Cheng et al. (2021) analyzed 
the von Mises stress and fatigue safety factor of the 
SKD type rail clip fastening system with the aid of 
ANSYS/Workbench software. 

  The fatigue analysis and testing of rail 
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fastening systems are important research areas that 
have been extensively studied by several researchers 
(Yan et al., 2023; Kim et al., 2022; Choi and Kim, 
2020; Park et al., 2019; Fang et al., 2023; Xiao et al., 
2017; Liu et al., 2021). Yan et al. (2023) investigated 
the static-dynamic characteristics and the mechanism 
of fatigue failure induced by vibration in railway 
fastening clips using finite element analysis. Kim et al. 
(2022) conducted experiments to identify tension 
clamp fractures and performed reliability analyses on 
the fatigue failure of such fractures. Choi and Kim 
(2020) utilized numerical simulations to investigate 
the failure mechanism of rail fastening systems. Park 
et al. (2019) investigated the fatigue strengths, strains, 
and displacements of SKL15 and SKLB15 elastic clip 
fastening systems through a combination of 
experimental measurements and FEA software. Fang 
et al. (2023) evaluated the fatigue performance of the 
SPS9 spring steel commonly used in fastening springs 
and included a sensitivity analysis to identify factors 
influencing shape change in the material. Xiao et al. 
(2017) studied fastener fractures and proposed 
effective repair methods using ABAQUS software. 
Liu et al. (2021) assessed the maximum strain and 
minimum fatigue life of rail clips under dynamic 
cyclic loading using FEA techniques.  

  Multiple studies have investigated the stress 
and fatigue life of rail e-clips (Hong et al., 2018; Xiao 
et al., 2017). However, there has been no specific 
analysis of the impact load testing of the rail e-clip 
fastening system. Furthermore, there is a lack of 
research on optimizing the geometry design of the rail 
e-clip in the fastening system. Improving the strength 
and fatigue safety of a rail clip is crucial. This 
research introduces a new approach using 
multi-objective optimization to create an optimal rail 
e-clip design. This design considers static, impact, 
and fatigue simulations, comprehensively addressing 
all these factors. 

  A series of simulation experiments were 
systematically organized using the uniform design 
(UD) approach. Finite element models were 
constructed to simulate various scenarios within the 
rail e-clip fastening system, such as longitudinal rail 
restraint, torsional resistance, impact load, and 
repetitive load, in accordance with testing standards 
EN 13146-1, EN 13146-2, EN 13146-3, and EN 
13146-4. ANSYS/Workbench software was used to 
evaluate the distributions of von Mises stress (VMS) 
and fatigue safety factors (SF) for the rail e-clip. 
Surrogate models for minimal SF and maximum 
VMS were created using the Kriging interpolation 
approach. These models were integrated into a single 
objective, the grey relation grade, using grey 
relational analysis (GRA), Kriging interpolation 
(KGI), and entropy weighting analysis (EWA). The 
optimal design model for the rail e-clip within the 
fastening system was developed using genetic 
algorithm (GA). According to numerical data, the rail 

e-clip's strength and fatigue safety were significantly 
improved by using this innovative multi-objective 
optimization technique. Additionally, the Sobol 
sensitivity analysis was used to thoroughly evaluate 
the impact of control variables on every objective 
function, yielding insightful results. 
 
MODELLING AND FINITE ELEMENT 

ANALYSIS 
 
Components in E-Clip Fastening System 

The e-clip fastening model (Figure 1) used 
within the railway track system with various 
components such as the e-clip itself, a gauge plate, a 
rail pad, and a sleeper. Figure 1 shows a simplified 
version of the e-clip fastening system. The e-type rail 
clip has been widely utilized in both conventional 
railway systems. 

 

 
Fig. 1  Full components in the rail fastening system. 

 
The Fastening System Testing Standard 

It is crucial to conduct a series of 
comprehensive examinations, including tensile, 
bending, impact, and dynamic fatigue assessments, to 
ensure the safety and reliability of the fastening 
system. All tests must adhere to the EN 13146 
standard for fastening system testing. The details of 
the EN 13146-1 (2002) test, which focuses on the 
evaluation of longitudinal rail restraint through 
simulation, are presented in Figure 2(a). Two 
fastening methods are utilized to secure the rail 
during the EN 13146-1 test, while applying a tensile 
force of 2.5 kN to one end of the rail and firmly 
attaching the sleeper to the ground. Figure 2 
illustrates the test methods employed in the current 
investigation. 

 

 
(a) 



 
C.-K. Lee et al.: Multi-Objective Optimization for Enhancing Rail E-Clip Design in Fastening Systems. 

 -365- 

 
(b) 

Fig. 2  Simulation setup in a rail fastening system 
for (a) EN 13146-1, (b) EN 13146-2 
standard. 

 
In Figure 2(b), the torsional resistance test in 

EN 13146-2 standard (EN 13146, 2002) is shown. In 
this test, the length of the rail is greater than the width 
of the sleeper. The sleeper is firmly attached to the 
ground, and a force of 0.1 kN is applied to the rail 
300 mm away from the gauge plate. 

The simulation showing the influence of impact 
load testing in EN 13146-3 (EN 13146, 2002) is 
presented in Figure 3. According to this test guideline, 
a concentrated force F = 50 kN is applied to the upper 
section of the rail, vertically aligned with the rail's 
direction, as shown in Figure 3(a). The periodic 
nature of the impact force, lasting for 5 ms, is 
depicted in Figure 3(b). 

 
(a) 

 
(b) 

Fig. 3  (a) Simulation setup in a rail fastening 
system for EN 13146-3 testing technique (b) 
the periodic of the impact load. 

 
In Figure 4, a simulation illustrates the impact 

of repetitive load testing as outlined in EN 13146-4 
(EN 13146, 2002). Following the recommendations 
in EN 13481-5 (2012), the dynamic stiffness of the 
assembly at low frequencies is determined. As a 
result, the rail and fastening system are positioned on 
the sleeper at a 26-degree angle, using a combination 
of the methods from EN 13146-4 and EN 13481-5, as 
depicted in Figure 4. Additionally, the rail undergoes 

cycles of compressive repeated loads of 65 kN at a 
frequency of 5 Hz.  

 
Fig. 4  Simulation setup in a rail fastening system 

for EN 13146-4 testing technique. 
 
Finite Element Simulation for Static and Fatigue 
Testing 

In Figure 5, the rail fastening e-clip model 
created using SolidWorks software is displayed. 
ANSYS/Workbench is used for pre-processing, 
where key parameters such as element size, boundary 
conditions, mechanical characteristics, and contact 
configurations are specified. The rail clip is made 
from 38Si7 material, with mechanical properties 
based on JIS 60 standards. The traditional railway 
and MRT systems use the e-clip fastening model. The 
mechanical characteristics of components, including 
the screw, guide plate, and rail pad, are listed in Table 
1 (Mohammadzadeh et al., 2014; Ferreo et al., 2019; 
Hasap et al., 2018) and used in the finite element 
analysis procedure. The selection of maximum von 
Mises stress as the primary indicator for convergence 
analysis is based on the distortion energy theory, 
which is widely accepted in mechanical design. For 
analysis purposes, the sleeper is treated as a rigid 
body. The flat feet of the e-clip apply a clamp force 
of 13 kN, making contact with the rail, as shown in 
Figure 5 (Iqbal et al., 2024). Using 
ANSYS/Workbench software, the fatigue safety of 
the rail clip is analyzed, considering the SN curve 
specific to the rail e-clip, depicted in Figure 6 (Ferreo 
et al., 2019). 
 

 
Fig. 5  The clamp force between the clip and rail. 
 

 
Fig. 6  SN curve of the rail e-clip. 
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We will use ANSYS/Workbench software to 
conduct simulations following EN 13146-1, EN 
13146-2, and EN 13146-3 testing standards. Our goal 
is to calculate and visually represent the distribution 
of VMS within the rail e-clip. The boundary 
condition for the fastening system is illustrated in 
Figure 7(a) in compliance with the longitudinal 
restraint testing standard outlined in EN 13146-1. In 
this study, we will apply boundary conditions to the 
two components, treating them as automatic and 
frictional contact interfaces, while maintaining a 
coefficient of friction set at 0.2 (Ferreo et al., 2019). 

It is widely recognized that the size of the 
elements directly influences the results of finite 
element analysis. Conducting a mesh convergence 
analysis of the rail e-clip model is crucial for 
enhancing analysis accuracy. In Figure 7(b), it is 
evident that an element size of 2.5 mm yields optimal 
results, as the maximum von Mises stress (VMS) 
converges significantly. This trend becomes apparent 
when the element size decreases below 2.4 mm, with 
the VMS difference remaining within 5%. Upon 
examining the VMS distribution in the rail e-clip in 
Figure 7(c), it is observed that the highest value is 
15.99 MPa. 

In order to conduct torsional resistance testing 
according to EN 13146-2 standards, the rail e-clip is 
analyzed using verified finite elements, as depicted in 
Figure 8(a). When the element size is reduced to less 
than 2.1 mm, there is a noticeable convergence of the 
maximum VMS in the rail e-clip, as shown in Figure 
8(b). An optimal element size of 2.5 mm is identified, 
with a VMS difference of less than 5% compared to 
the smaller size. The VMS distribution within the rail 
e-clip is illustrated in Figure 8(c), showing the 
highest value at 6.42 MPa. 

In the impact loads testing simulation, automatic 
contact with friction between components is 
established, as seen in Figure 9(a). The rail e-clip 
shows a significant convergence of maximum VMS 
as the element size decreases to below 2.2 mm, as 
shown in Figure 9(b). This confirms the choice of an 
improved element size of 2.5 mm, with a VMS 
difference of less than 5% compared to the smaller 
size. Figure 9(c) displays the VMS distribution within 
the rail e-clip, with the highest value recorded at 
18.42 MPa. 

In ANSYS/Workbench software, EN 13146-4 
testing simulations are used to evaluate and display 
SF distribution in the rail e-clip. Meshing is done 
with verified finite elements for EN 13146-4 
repetitive load testing simulation. Contact 
interactions between components are modeled, as 
shown in Figure 10(a). An optimal element size of 
2.5 mm is chosen for fatigue analysis, supported by 
the convergence of minimum SF as the element size 
decreases below 2.4 mm, as shown in Figure 10(b). 
The difference in SF between these sizes remains 
within a 5% range. The lowest SF recorded within the 

rail e-clip is 4.76, as depicted in Figure 10(c). 
In Figures 8(c), 9(c), and 10(c), the maximum 

von Mises stress and minimum fatigue safety factor 
occurs at the ends of the e-clip. The reason why the 
maximum equivalent stress and the minimum safety 
factor occur at the end of the fastener is that this part 
is in close contact with the rail, and the contact force 
with the rail is the largest here. 
 
Table 1. Properties of the e-clip fastening system's 

mechanical characteristic. 
Part Material Property Value 

e-clip 38Si7 steel 

Young’s Modulus (GPa) 205 

Poisson’s Ratio 0.3 

Density (kg/m3) 7800 

Rail JIS E 
1101-2001 

Young’s Modulus (GPa) 206 

Poisson’s Ratio 0.3 

Density (kg/m3) 7845 

Bolt with 
washer S35C 

Young’s Modulus (GPa) 206 

Poisson’s Ratio 0.3 

Density (kg/m3) 7800 

Gauge 
plate 

JIS E 
1101-2001 

Young’s Modulus (GPa) 206 

Poisson’s Ratio 0.3 

Density (kg/m3) 7845 

Rail pad EVA 

Young’s Modulus (GPa) 20 

Poisson’s Ratio 0.4 

Density (kg/m3) 950 

 
 

 
 

(a) 

 
(b) 
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(c) 

Fig. 7  (a) The setting of boundary conditions in the 
finite element model, (b) the convergent 
analysis curve for elements, (c) the von 
Mises stress distribution for a rail e-clip 
under the EN 13146-1 testing simulation. 

 
 

 
(a) 

 

 
(b) 

 

  
(c) 

Fig. 8 (a) The setting of boundary conditions in the 
finite element model, (b) the convergent 
analysis curve for elements, (c) the von Mises 
stress distribution for a rail e-clip under the 
EN 13146-2 testing simulation. 

 

 
(a) 

 
(b) 

  
(c) 

Fig. 9  (a) The setting of boundary conditions in the 
finite element model, (b) the convergent 
analysis curve for elements, (c) the von Mises 
stress distribution for a rail e-clip under the 
EN 13146-3 testing simulation. 

 

 
(a) 

 
(b) 
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(c) 

Fig. 10  (a) The setting of boundary conditions in 
the finite element model, (b) the convergent 
analysis curve for elements, (c) the fatigue 
safety factor distribution for a rail e-clip under 
the EN 13146-4 testing simulation. 

 
OPTIMIZATION METHODOLOGY 

 
Uniform Design of Experiment 

Uniform design, proposed by professors Fang 
and Wang (1994), is applied in this paper to design a 
series of experiments. In a continuous design space, 
design points are infinite and evaluation of all design 
points is impossible. Uniform design helps the 
selection of a set of sample points from the design 
space. The selected sample points are scattered 
uniformly in the design space. Uniform design has 
been successfully applied in various fields such as 
chemistry and chemical engineering, quality 
engineering, system engineering, and computer 
sciences. 

In this study, we apply uniform design to 
generate a set of sampling points that are uniformly 
distributed in the design space. After evaluating 
performance measures on each sampling point, we 
still cannot optimize the system since we just get the 
values of performance measure on the discrete 
sampling points. The succeeding step is to construct a 
continuous response surface model based on the 
discrete results of sampling points. The main features 
of uniform design are described in Fang and Wang 
(1994). Suppose a problem has n factors and each 
factor has q levels. The uniform design selects q 
combinations out of nq  possible combinations, such 
that these combinations are uniformly scattered over 
the space of all possible combinations. Therefore, the 
uniform design (UD) table can be expressed as 

( )n
qU q . If the control factor of the real problem is 

less than the factors n, the use table will be applied to 
determined the column numbers in UD table. Then, 
the suitable UD table for the research topic is finally 
created. 
 
Grey Relation Analysis 

Grey Relational Analysis (GRA) is based on 

Deng's Grey system theory (1982) and is commonly 
used to measure the relationship between sequences 
using a grey relational grade. GRA consolidates 
multiple performance characteristics into a single 
value, which is helpful for optimization problems 
(Shakeri et al., 2022; Huang and Lin, 2009; Muthana 
and Ku-Mahamud, 2023). The process begins by 
normalizing input data and calculating coefficients 
for GRA. The second step involves determining the 
grey relational coefficients, and the third step 
involves determining the grey relational grades. In 
the third step, an entropy weighting analysis is used 
to determine the weights of sub-objective functions. 
The procedure for GRA is outlined by Huang and Lin 
(2009). 

Step 1. Data normalization 
Before calculating the grey relational 

coefficients, it is necessary to organize the input and 
output data. Let ( )max ij

u j
∀

 represent the maximum 

value of ( )iu j  for the jth response and ( )min ij
u j

∀
 

represent the minimum value of ( )iu j  for the jth 
response. Three types of data processing are 
employed: 
(1) larger-the-better attributes 

( )
( ) ( )
( ) ( )

*
min

max min

i ij
i

i ijj

u j u j
u j

u j u j
∀

∀∀

−
=

−
 (1) 

(2) smaller-the-better attributes 

( )
( ) ( )

( ) ( )
*

max

max min

i ij
i

i ijj

u j u j
u j

u j u j
∀

∀∀

−
=

−
 (2) 

(3) nominal-the-best attributes 
( )

( ) ( )

( ) ( ) ( ) ( )

* 1

,  

i

i ob

i ob ob ij j

u j

u j u j

max maxu j u j u j minu j
∀ ∀

= −

−

 − −  

 (3) 

where ( )obu j  is the objective value of entity j.  

Step 2. Determining the grey relational 
coefficients evaluation 

If ( ) ( ) ( ) ( )0 0 0 0 01 ,  2 ,  ,  ,  ,  u u u u j u k=      

is the referential series with k entities of 
1 2,  ,  ,  Nu u u , then, 

( ) ( ) ( ) ( )1 ,  2 ,  ,  ,  ,  i i i i iu u u u j u k=     . The grey 

relational coefficient ( )0i jγ  between the series iu  
and the referential series 0u  at the j-the entity is 
defined as: 

( ) ( )0
0

min max
maxi

i

j
j

γ ∆ + ∆
=
∆ + ∆

 (4) 
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where, ( ) ( ) ( )0 0i ij u j u j∆ = −  and it means the 

difference of the absolute value between ( )0u j  and 

( )iu j . ( )0max max ij
j

∀
∆ = ∆  and it denotes the 

maximum value of ( )0i j∆ . ( )0min min ij
j

∀
∆ = ∆  

and it denotes the minimum value of ( )0i j∆ . 

Step 3. Calculating the grey relational grade  
The grey relation coefficients ( )0i jγ  are 

determined in Step 2, and the grey relational grade 
for a series is expressed as: 

( )0 0
1

k

i j i
j

W jγ
=

Γ = ∑  (5) 

where, the weight of attribute j, denoted as jW , 
depends on the judgment of decision-makers or the 
geometry of the research structure. The sum of all 
weights equals one. In this study, the weight, jW , is 
calculated from the entropy weight analysis, which is 
detailed in the next section. 
 
Entropy Weighting Analysis 

The Entropy method, based on probability 
theory, quantifies the uncertainty in information. 
Through the entropy weighting analysis (EWA) 
method, one can assess the information conveyed by 
each attribute and compute their relative weights. 
EWA method has found extensive applications in 
economics, engineering, and information science, 
among other fields (Wu et al., 2022; Vatansever and 
Akgul, 2018; Ayşegül and Esra, 2017).  

Entropy weight analysis is a powerful method 
for determining the weight of an index in a 
decision-making system that incorporates multiple 
criteria. This four-step process has been referenced 
by some articles (Ayşegül and Esra, 2017; Vatansever 
and Akgűl, 2018). 

Step 1. Constructing the decision matrix 
A set of alternatives [ ]iA=A  compared with 

respect to a set of criteria jC =  C  so the n m×  

decision matrix Z  is evaluated as: 
11 12 1

21 22 2

1 2

=

m

m
ij

n n nm

z z z
z z z

z

z z z

 
 
   =   
 
  

Z





   



 (6) 

where ijz  is a crisp value that represents the 

performance rating for each alternative iA , with 
regard to each criterion jC . The subscripts in 
Equation (6) are 1, 2, ,i n=   and 1,2, ,j m=  . 

Step 2. Decision matrix normalization 

To calculate objective weights using entropy, 
the decision matrix in Equation (6) is normalized for 
each criterion jC  as follows: 

1

ij
ij n

pj
p

z
p

z
=

=
∑

, 1, 2, ,i n=   (7) 

The normalized decision matrix is: 
11 12 1

21 22 2

1 2

=

m

m
ij

n n nm

p p p
p p p

p

p p p

 
 
   =   
 
  

P





   



 (8) 

Step 3. Calculating entropy 
The entropy value for each index is calculated 

as: 

( )
( )

1

n

ij ij
i

j

p n p
e

n n
=
∑

= −



 (9) 

where ( )
1

n n
 is a constant that guarantees 

0 1je< < .  

Step 4. Calculating entropy weights  
The objective entropy weights jW  for each 

criterion jC  are calculated as: 

( )
1

1

1

j
j m

k
k

e
W

e
=

−
=

−∑
 (10) 

In Equation (10), ( )1 je−  denotes the degree of 

divergence in the average intrinsic information that is 
contained in each criterion jC . 
 
Kriging Interpolation 

Due to the complexity of the rail fastening 
system, it is challenging to establish direct or indirect 
relationships between inputs and outputs using 
explicit or implicit functions. In order to develop 
meaningful equations for these connections, a 
statistical surrogate model was utilized. For this study, 
Kriging, a commonly employed method in 
engineering research, was selected to accommodate 
system noise factors. Each objective function is 
depicted by a Kriging surrogate (KGS) model, 
constructed using specific simulation data points 
from the UD dataset. 

For a Kriging surrogate model with a zero-order 
regression function and a Gaussian correlation 
function, the Kriging surrogate model ( )sy x  of the 

unknown response function ( )y x  can be 
represented by the following equation: (McLeana et 
al., 2006; Simpson and Mistree, 2001; Cheng and Wu, 
2015) 
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( ) ( ) ( )1T
sy β β−= + −Rx r x Y F  (11) 

1 2{ , , , }px x x= x  is a vector formed by unknown 
input variables and p is the number of unknown input 
variables. ( )r x  is a vector of length n  and is the 

function of unknown input variables. ( )r x  is 
determined by 

( ) ( ) ( ) ( ){ }1 2, ,  , , ,  ,
T

c c c nR R R= r x x x x x x x  (12) 

Where 

( ) ( )2

1
, , 1, 2, ,

p

c i m m im
m

R Exp x x i nθ
=

 = − − =∏   x x  

 (13a) 
1 2{ , , , }, 1, 2, ,i i i ipx x x i n= = x  (13b) 

1 2{ , , , }px x x= x  (13c) 

1 2{ , , , }T
ny y y= Y  is a known response vector 

of unknown function and n is the number of 
experimental points. F  is a known column vector 
of length n that is filled with ones. ij n n

R
×

 =  R  is a 

known square matrix and is determined by 

( )2

1
,

       1, 2, , , 1, 2, ,

p

ij m im jm
m

R Exp x x

i n j n

θ
=

 = − −∏   
= = 

 (14) 

β  is a known constant and is determined by 

( ) 11 1T Tβ
−− −= R RF F F Y  (15) 

The Kriging surrogate model for each objective 
function is constructed as follows using the 
mathematical models in Equations (11) to (15). In 
Equation (14), θ  is an important coefficient in the 
Kriging interpolation. The θ  value is related to the 
error between the Kriging function value and the real 
analysis value in UD table. This error is used as the 
objective function. The θ  value can be obtained 
through the calculation of the genetic algorithm after 
minimizing the error. Then, a response surface 
consistent with the results in the UD table can be 
established. 
 

RESULTS OF IMPROVEMENT 
DESIGN 

 
Design of Experiment Analysis and Results 

The four main characteristics of the rail e-clip 
significantly impact the experimental indicators and 
are essential for improvement. Figure 11 illustrates 
the primary design parameters related to the rail 
e-clip, while Table 2 lists these four control factors. 
This study focuses on four parameters—L1, L2, L3, 
and d—all of which serve as control factors to 
examine how the dimensions of the rail e-clip 
geometry influence VMS and SF. Table 2 specifies 
the designed range for each control factor. 

 
Fig. 11  Four control factors for the rail e-clip. 
 
Table 2.  The designed range values for four system 

control factors. 

Control factor Notation 
Lower 
bound 
(mm) 

Baseline 
value(mm) 

Upper 
bound 
(mm) 

Length of the 
first foot part L1 54 60 66 

Length of the 
second foot 

part 
L2 36 40 44 

Distance 
between the 
first foot and 
middle part 

L3 42.3 47 51.7 

The diameter 
of the rail clip d 18 20 22 

 
Every control factor in this study is continuous, 

not discrete. To conduct simulation experiments for 
these control parameters, a UD approach is employed. 
According to Fang and Wang (1994), the UD table 
utilized in this investigation is ( )* 12

16 16U  from Fang 

and Wang (1994), which produces uniform 
experiments. It contains 16 isometric values for each 
control component within the given lower and upper 
constraints. Since the rail e-clip model in this study 
has four control factors, columns 1, 4, 5, and 6 must 
be used according to the use table of ( )* 12

16 16U  

described in Fang and Wang (1994). Therefore, the 
uniform table ( )* 4

16 16U  with four control factors 

has been used. The uniform experiments generated 
using ( )* 4

16 16U  this approach are shown in Table 

3(a) based on the design space in Table 2. 
SolidWorks software is used to create 3D 

models for each rail e-clip design in simulation 
experiments. Finite element methods are employed to 
calculate the maximum VMS and minimum SF, as 
explained in section 2.3. These experiments yield 
four objective functions: ST1, ST2, ST3, and SF, 
which are outlined in Table 3(b). ST1 represents the 
maximum VMS during EN 13146-1 longitudinal 
restraint testing, ST2 during EN 13146-2 torsional 
resistance testing, and ST3 during EN 13146-3 
impact load testing. SF indicates the minimum 
fatigue safety factor observed in EN 13146-4 
repetitive load testing simulation. Comparing with 
analysis results from the basic design model, the 
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improvement rates of each simulation experiment for 
ST1, ST2, ST3, and SF are determined and shown in 
Table 3(c). For ST1, ST2, and ST3, the derivation 
process of improvement rate is: (basic design value − 
experimental value)/(basic design value)×100%. For 
SF, the derivation process of improvement rate is: 
(experimental value − basic design value)/(basic 
design value)×100%. 

In the first experiment for EN 13146-1 
longitudinal restraint testing simulation, the 
maximum VMS decreased to 14.84 MPa when using 
a uniform design of experiment. Similarly, in the 6th 
experiment for EN 13146-2 torsional resistance 
testing, the maximum VMS decreased to 5.00 MPa. 
Likewise, in the 16th experiment for EN 13146-3 
impact load testing, the maximum VMS dropped to 
14.01 MPa. This trend continued in the 6th 
experiment, where the minimum SF during EN 
13146-4 repetitive load testing simulation rose to 
6.12. These FEA results are shown in Figure 12. Due 
to rail e-clips enduring recurring and dynamic loads, 
the focus is on ensuring adequate fatigue safety rather 
than static load testing. Thus, the improved version of 
uniform design outcomes in Table 3(c) is labeled as 
the 6th experiment. However, it's important to note 
that the maximum VMS and minimum SF for each 
test simulation are determined separately. The 
subsequent phase uses a multi-objective optimization 
approach to identify the final optimal design due to 
the challenge of selecting the definitive upgraded 
design. 
 
Table 3. The uniform design of experiment (a) 

parameters, (b) results and (c) 
improvements for uniform table 

( )* 4
16 16U . 

(a) 
Experiment 

No. 
L1 

(mm) 
L2 

(mm) 
L3 

(mm) 
d  

(mm) 
1 54.00 38.13 45.43 19.87 
2 54.80 40.80 49.19 22.00 
3 55.60 43.47 42.30 19.60 
4 56.40 37.07 46.06 21.73 
5 57.20 39.73 49.82 19.33 
6 58.00 42.40 42.93 21.47 
7 58.80 36.00 46.69 19.07 
8 59.60 38.67 50.45 21.20 
9 60.40 41.33 43.55 18.80 

10 61.20 44.00 47.31 20.93 
11 62.00 37.60 51.07 18.53 
12 62.80 40.27 44.18 20.67 
13 63.60 42.93 47.94 18.27 
14 64.40 36.53 51.70 20.40 
15 65.20 39.20 44.81 18.00 
16 66.00 41.87 48.57 20.13 

 
(b) 

Experiment 
No. 

ST1 
(MPa) 

ST2 
(MPa) 

ST3 
(MPa) SF 

1 14.84 11.80 15.10 4.94 
2 16.81 6.02 15.65 5.38 

3 15.66 6.45 14.14 5.16 
4 16.27 7.71 16.79 5.31 
5 15.54 10.81 14.35 5.23 
6 15.87 5.00 14.41 6.12 
7 19.55 7.24 19.37 4.49 
8 14.96 6.70 18.44 5.12 
9 15.39 6.92 15.92 5.51 

10 17.20 7.71 17.61 5.83 
11 20.21 8.73 21.88 3.82 
12 15.54 6.71 16.37 4.76 
13 20.35 10.05 18.31 5.72 
14 20.52 9.43 16.51 5.18 
15 21.73 7.63 18.12 3.90 
16 15.90 5.12 14.01 4.66 

 
(c) 

Exp. 
No. 

Improvem

ent of 

ST1 (%) 

Improvem

ent of 

ST2 (%) 

Improvem

ent of 

ST3 (%) 

Improvem

ent of SF 

(%) 

1 7.26 -83.94 18.03 3.70 
2 -5.08 6.16 15.07 13.05 
3 2.13 -0.55 23.22 8.42 
4 -1.73 -20.24 8.84 11.54 
5 2.88 -68.43 22.09 9.93 
6 0.81 22.06 21.77 28.61 
7 -22.20 -12.82 -5.14 -5.64 
8 6.49 -4.46 -0.07 7.63 
9 3.77 -7.83 13.58 15.84 

10 -7.49 -20.26 4.40 22.56 
11 -26.34 -36.02 -18.75 -19.75 
12 2.85 -4.67 11.14 0.08 
13 -27.19 -56.58 0.61 20.24 
14 -28.29 -47.07 10.36 8.88 
15 -35.84 -18.90 1.66 -18.06 
16 0.62 20.17 23.96 -2.17 

 
 

   
(a)                    (b) 

 

   
(c)                   (d) 

Fig. 12  The improvement design version results for 
(a) EN 13146-1, (b) EN 13146-2, (c) EN 
13146-3, (d) EN 13146-4 testing standards. 

 
Optimal Design Procedure and Results 

The multi-objective optimization problem is 
formulated as a combination of the following four 
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single-objective optimization problems: 
( ) { }1 2 3 4ˆmin ,   ,  ,  ,  

1    ST1,  2    ST2,  3    ST3.
ix

y x x x x x x

i for i for i for

=

= = =
 (16) 

( ) { }1 2 3 4ˆmax ,   ,  ,  ,  

4    SF.
ix

y x x x x x x

i for

=

=
 (17) 

To solve the multi-objective optimization 
problem, this study adopts a comprehensive approach 
that integrates UD, KGI, GRA, EWA, and GA. KGI 
technique is used for creating the surrogate model 
and objective functions for the input and output data 
presented in Table 3(a). GA method is applied for the 
single objective optimization of each objective 
function. Since the problem involves four objective 
functions (ST1, ST2, ST3, and SF), the EWA method 
is employed to calculate the optimal weights (W1, 
W2, W3, W4) corresponding to each function. These 
weights are subsequently used to combine the four 
individual objective functions into a single composite 
objective function, GRD, using the GRA method. 
Finally, the GA method is applied again to determine 
the optimal solution and corresponding values for the 
composite objective function. 

This integrated approach ensures that each 
analytical technique and algorithm contributes its 
unique strengths, enhancing the overall effectiveness 
of the multi-objective optimization process. 
 
Step 1. Determine the optimal values for each 

single-objective function using KGI and GA. 
This step involves applying KGI and GA to 

identify the optimal design values for each 
single-objective function, which serve as the basis for 
calculating the grey relational degree in Step 3. For 
the EN 13146-1, EN 13146-2, and EN 13146-3 
testing standards, the optimization follows the 
"Smaller-the-Better" (STB) principle. For the EN 
13146-4 testing standard, the "Larger-the-Better" 
(LTB) principle is applied. The resulting optimal 
values for each single-objective function are 
presented in Table 4. 
 
Table 4.  Optimal values for each single-objective 

function. 
Objective 
function 

ST1 
(MPa) 

ST2 
(MPa) 

ST3 
(MPa) SF 

Optimal value 14.21 4.94 13.99 6.18 
 
Step 2. Determine the optimal weights for the four 

objective functions using EWA. 
This step involves applying EWA to calculate 

the optimal weights for the four objective functions: 
ST1, ST2, ST3, and SF. The EWA ensures that the 
weight assigned to each objective function reflects its 
relative importance and variability. These weights are 
critical for combining the individual objective 

functions into a single composite objective function 
in the subsequent step. The calculated weights are 
0.2911, 0.2434, 0.2769, and 0.1887. 
 
Step 3. Transform the values of the four objective 

functions into GRD using GRA 
The UD findings in Table 3(b) are normalized 

for each objective function using the optimal values 
provided in Table 4. The GRD is determined using 
GRA described in Equations (1) to (5) and applying 
the optimal weights established in step 1. This 
process combines the four single objective functions 
to produce the GRD, an integrated objective function. 
The values for the GRD are shown in Table 5. 
 
Table 5.  Grey relation grade results 

Experiment 
No. 

GRD 
Experiment 

No. 
GRD 

1 0.652  9 0.691  
2 0.673  10 0.636  
3 0.717  11 0.447  
4 0.620  12 0.636  
5 0.668  13 0.559  
6 0.892  14 0.538  
7 0.508  15 0.473  
8 0.656  16 0.652  

 
Step 4. Utilizing KGI and GA to determine the 

optimal control factor solution that maximizes 
GRD. 

The KGI approach is utilized again to build the 
surrogate model for GRD. The optimal GRD and its 
corresponding optimal solution, in terms of control 
factors, are obtained using GA, as shown in Table 6. 
 
Table 6. Optimal solution and corresponding 

maximal GRD. 
Optimal solution (control factor) Optimal values 

(Predicted value) 
L1 

(mm) 
L2 

(mm) 
L3 

(mm) 
d  

(mm) GRD 

58.22 42.25 42.30 21.27 0.898 
 
Step 5. Determine the predicted values for each 

objective function. 
The optimal solution obtained in Step 4 is 

applied to determine the predicted values for each 
objective function. The KGS models for each 
objective function are utilized to perform the 
predictions, and the results are presented in Table 7. 
 
Step 6. Using SolidWorks and ANSYS/Workbench 

to determine the actual value for each 
objective function 

Based on the optimal solution obtained in Step 4, 
a redesigned rail e-clip model is created in 
SolidWorks software. This model is then analyzed 
using ANSYS/Workbench to determine the actual 
values for ST1, ST2, ST3, and SF under the EN 
13146-1, EN 13146-2, EN 13146-3, and EN 13146-4 
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testing simulations. The actual values are compared 
with the predicted values obtained in Step 5, and the 
prediction errors for ST1, ST2, ST3, and SF are 
calculated. The results, including the actual values 
and their corresponding prediction errors, are 
presented in Table 7. 
 
Table 7.  Comparison of predicted and actual values 

for objective functions. 
Measure Predicted 

value Actual value Predicted 
Error (%) 

ST1 (MPa) 14.21 14.41 1.4 
ST2 (MPa) 4.94 4.99 1.0 
ST3 (MPa) 13.33 13.16 1.3 

SF 6.18 6.18 0.0 
GRD 0.898 0.898 0.0 

 
In Table 7, the predicted errors for ST1, ST2, 

ST3, and SF are all observed to be below 3%, thereby 
demonstrating the high level of accuracy exhibited by 
the surrogate models. Additionally, the GRD has 
been enhanced, signifying the successful 
accomplishment of the optimization procedure. The 
maximum VMS values for ST1, ST2, ST3, and the 
minimum SF, as determined using the optimal 
solutions in the redesigned version, are depicted in 
Figure 13. 

In Table 8, we compare the maximum VMS and 
minimum SF values and their rates of improvement 
through different phases. Using the UD technique, we 
found the maximum VMS to be 15.87 MPa for ST1, 
4.99 MPa for ST2, and 14.41 MPa for ST3. 
Additionally, the minimal SF for tiredness increased 
to 6.12. After employing multi-objective optimization, 
we observed a noticeable improvement. For ST1, 
ST2, and ST3, the maximum VMS values decreased 
to 14.41 MPa, 4.99 MPa, and 13.16 MPa, 
respectively. Additionally, the improved design 
demonstrates that the von Mises stress has decreased 
for ST1, ST2, and ST3 by 9.9%, 22.12%, and 28.6%, 
respectively. Likewise, the fatigue safety factor 
improved by 29.8% and the minimum SF increased 
to 6.18. These results indicate that the rail e-clip's 
optimal design outperforms the original design of the 
fastening system. 
 
Table 8.  Values and improvement in measures for 

different phases. 
Phase Measure Value Improvement 

(%) 

Original 
design 

ST1 (MPa) 16.00 － 
ST2 (MPa) 6.42 － 
ST3 (MPa) 18.42  

SF 4.76 － 

After uniform 
experiments 

ST1 (MPa) 15.87 0.77 
ST2 (MPa) 4.99 22.12 
ST3 (MPa) 14.41 21.76 

SF 6.12 28.61 

After 
multi-objective 

optimization 

ST1 (MPa) 14.41 9.9 
ST2 (MPa) 4.99 22.12 
ST3 (MPa) 13.16 28.6 

SF 6.18 29.8 

  
(a)                    (b) 

  
(c)                     (d) 

Fig. 13  The ultimate best design for test simulations 
for EN testing standards (a) EN 13146-1, (b) 
EN 13146-2, (c) EN 13146-3 and (d) EN 
13146-4, includes the maximum VMS and 
the minimum SF. 

 
Sensitivity Analysis 

The optimization procedure aims to identify the 
optimal values and solutions for the rail e-clip 
fastening system. Additionally, the Kriging (KGS) 
models for ST1, ST2, ST3, SF, GRD, and the control 
factors have been established using Equations 
(11)~(15) and (17). Prior studies have not 
investigated the interplay between control variables 
and the impact of each control element on ST1, ST2, 
ST3, SF, and GRD. To address this gap, Sobol 
sensitivity analysis is employed in this study to 
quantify the contribution of each control factor to the 
variance in the system's performance metrics. Sobol 
sensitivity analysis (Zhang et al. 2015) is a 
variance-based global method that decomposes the 
variance of the model output into contributions from 
individual input variables and their interactions. This 
method provides a comprehensive understanding of 
the influence of individual factors and their 
interactions on the responses, including ST1, ST2, 
ST3, SF, and GRD. Table 9 presents the Sobol 
sensitivity analysis results obtained from the Kriging 
surrogate model for ST1, ST2, ST3, SF, and GRD. 
The main sensitivity represents the individual 
contribution of each input variable to the output 
variance, without considering interactions with other 
variables. The total sensitivity measures the total 
contribution of each input variable to the output 
variance, including both its individual effect and its 
interactions with other variables.  

For ST1, Table 9 shows that the most 
significant control factors are L1, L2, and d, with d 
having the largest overall contribution. L3, however, 
has a negligible impact. For ST2, Table 9 identifies d 
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as the most important control factor, significantly 
influencing the outcome both directly and through 
interactions. L2 also has a strong effect, primarily due 
to its interactions with other factors. L3 contributes 
moderately, with its importance increased by 
interactions, while L1 has little effect and can be 
considered a less critical factor. For ST3, Table 9 
shows that d is the most influential factor, both 
directly and through interactions. L2 has a strong 
influence, especially due to its interactions with other 
factors. L3 has a minor effect, while L1 is negligible 
and can be considered unimportant. For SF, Table 9 
highlights d as the most influential control factor, 
both directly and through interactions. L2 is also 
important, largely due to its direct contribution and 
its interactions with other factors. L3 has a small 
impact, and L1 is negligible, making it an 
unimportant factor. Lastly, for GRD, Table 9 shows 
that L2 and d are the two most influential factors, 
both individually and through their interactions with 
other variables. L2 has the highest total sensitivity, 
indicating that its interactions play a major role in the 
system's behavior. d also exerts strong influence, 
contributing significantly to both the direct and total 
variance. In contrast, L1 and L3 have minimal effects 
and can be considered less critical.  

Table 10 shows the factor influence degree 
table. Three asterisks (***) indicate high influence, 
meaning the control factor has a strong or significant 
effect on the outcome. Two asterisks (**) denote 
moderate influence, suggesting the control factor 
contributes noticeably but is less dominant. One 
asterisk (*) represents low influence, meaning the 
factor has a minimal effect on the result. Two 
hyphens (--) indicate negligible or no influence, 
meaning the factor does not significantly impact the 
response variable. L1 has no influence on most 
outputs, except for ST1, where it shows moderate 
importance. L2 is consistently influential, with 
moderate to high importance across all outputs, 
making it a significant control factor, particularly for 
SF and GRD. L3 has minimal influence overall, 
contributing slightly to ST2 but not significantly 
affecting the other metrics. d is a highly influential 
factor, with a strong effect on most outputs, 
especially ST2, ST3, and SF, where it shows the 
highest level of influence. 

 
Table 9.  Sensitivity analysis results of factors. 

Sensitivity Objective 
function 

Control factor 
L1 (mm) L2 (mm) L3 (mm) d (mm) 

Main 
sensitivity 

ST1 0.277 0.250 0 0.256 
ST2 0.02 0.145 0.080 0.349 
ST3 0.0001 0.301 0.011 0.571 
SF 0.007 0.322 0.002 0.314 

GRD 0.025 0.568 0.0003 0.339 

Total 
sensitivity 

ST1 0.404 0.422 0.0001 0.43 
ST2 0.038 0.433 0.245 0.708 
ST3 0.0002 0.415 0.018 0.686 
SF 0.008 0.670 0.019 0.663 

GRD 0.044 0.633 0.0008 0.400 

Table 10.  Factor influence degree table. 
Control 
factor ST1 ST2 ST3 SF GRD 

L1 ** -- -- -- -- 
L2 ** ** ** *** *** 
L3 -- * -- -- -- 
d ** *** *** *** ** 

 
CONCLUSION 

 
This study aimed to enhance the strength 

analysis and design of the e-clip in rail fastening 
systems. Finite element analysis (FEA) was 
performed following the EN 13146-1, EN 13146-2, 
and EN 13146-3 standards to evaluate the von Mises 
stress (VMS) distribution of the rail e-clip. 
Simultaneously, the fatigue safety factor (SF) was 
calculated based on EN 13146-4 test simulations. The 
uniform design of experiments (UD) methodology 
was employed to analyze the maximum VMS and 
minimum SF across various simulations, 
demonstrating notable improvements. Specifically, 
the EN 13146-1 test simulation showed a 0.77% 
improvement, while the EN 13146-2 and EN 13146-3 
simulations yielded 22.1% and 21.7% improvements, 
respectively. Moreover, the EN 13146-4 test 
simulation significantly increased the minimum SF 
by 28.61%. 

Optimization techniques, including the genetic 
algorithm (GA), entropy weighting approach (EWA), 
and grey relational analysis (GRA), were applied 
using Kriging surrogate models to determine optimal 
solutions for minimizing VMS and maximizing SF. 
As a result, the minimum SF increased to 6.18, while 
the maximum VMS values were reduced to 14.41 
MPa, 4.99 MPa, and 13.16 MPa, respectively, 
indicating a significant improvement in the fatigue 
life of the rail e-clip. Finally, Sobol sensitivity 
analysis was conducted to assess the impact of design 
variables on the objective functions, revealing that 
the most influential factors affecting performance are 
variables d and L2.  
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NOMENCLATURE 

 
A   alternatives matrix for entropy weighting 

analysis 
C   criterion matrix for entropy weighting 

analysis 
je  entropy value for each index for entropy 

weighting analysis 
( )f x  known regression function for Kriging 

interpolation 
F   known column vector of length n  
P   normalized decision matrix for entropy 

weighting analysis 
r  correlation vector for Kriging 

interpolation 
R   correlation matrix of Kriging 

interpolation 
cR   correlation function of Kriging 

interpolation 
( ),c iR x x  correlation value of x  and ix , 

1, 2, ,i n=   

( )*
iu j   normalization value of the jth output data 

for grey relational analysis 
( )obu j   objective value of entity j for grey 

relational analysis 
jW   weight of attribute j for grey relational 

analysis and entropy weighting analysis 
x  vector formed by unknown input 

variables for Kriging interpolation 

ix   experimental points, 1, 2, ,i n=   

( )y x  unknown response function to be 
interpolated for Kriging interpolation 

( )ŷ x  Kriging surrogate model of ( )y x  

( )ˆmy x  Kriging surrogate model of the objective 
function 

Y   known response vector for Kriging 
interpolation 

Z   decision matrix for entropy weighting 
analysis 

β̂   generalized least squares estimate for 
Kriging interpolation 

( )0i jγ    grey relation coefficient of entity j for 
grey relational analysis 

0iΓ    grey relational grade for a series of iu  
in the grey relational analysis 

 


