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ABSTRACT 

 
On account of the high non-linear 

relationship between the combinational of structural 
parameters and the performance parameters of axial 
flow fan, to predict and optimize the performance 
of axial flow fan is a challenge problem. In this 
study, the back propagation neural network (BP) 
and the genetic algorithm (GA) would be applied to 
optimize the structural parameters combination and 
make the axial fan with the best performance, based 
on the non-linear mapping properties of BP and the 
parallel processing, stochastic, and self-adapting 
search abilities of GA. Firstly, the 3- dimension 
model of the axial flow fan is set up, and the 
samples database could be gained by the 
Computational Fluid Dynamics (CFD). Then, the 
non-linear mapping relationship between the 
structure parameters and the function parameters of 
axial flow fan is established by BP neutral network, 
and the results predicted by BP network and the 
outcomes simulated by CFD are compared to make 
an error analysis, which could demonstrate the BP 
network is stable and reliable. The trained network 
would be applied to GA algorithm to make the 
global optimization to purse a combination of 
structure parameters which could make the jet 
range and efficiency of axial fan with the optimal 
performance. With the same driving power, the 
CFD simulation shows that the model based on the  
 
 
 
 
 
 
 
 
 
 
 

optimal combination of structure parameters of 
axial flow fan can improve the range by 7.2m and 
the efficiency by 10.24% compared with the 
original one. Moreover, this optimization scheme 
provides guidance for the design of axial flow fan’s 
structure parameters in the future. 
 
 

INTRODUCTION 
 

The axial flow fan has a significant role in the 
field of dust and haze removal. To sprinkle the 
water mist to the further range and to improve the 
energy conservation, the jet range and efficiency are 
two important elements in the design links of axial 
flow fan. For its essential impact on the 
performance in the working station, the structure of 
axial flow fan is regarded as the main component of 
design process (Deng 2014). Nowadays, the 
researchers are mainly focused on the blade, hub, 
and the collector of axial flow fan. Meng et al (2014) 
proposed a fan having half-radial direction blades, 
and the calculated. The result shows that the fluid 
flow at the rated points of the improved fan is larger 
than for the original fan, and the cooling effect is 
also enhanced. Yin et al (2014) investigated four 
different outlet hub geometries of a large scale axial 
flow fan, and built the relationship between outlet 
hub geometry, the outlet hub diffuser angle and the 
efficiency of fan. Li et al (2012) studied the 
influence of collectors with different structure 
forms on large type axial flow fan performance, and 
a basis for reasonable design and selection of 
collector could be provided to improve the 
performance of fan. However, these previous 
researches have few investigations on the global 
and multi-objective optimization for the structural 
parameters, and the optimized structure methods of 
axial flow fan are mainly focused attention on some 
theories such as orthogonal experimental method 
and uniform design test.  

The combination of the neutral network and 
genetic algorithm makes a new optimization 
method for the structure parameters of axial flow 
fan through a multi-objective optimization model. 
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Kakaee et al (2015) studied the two different 
multi-objective evolutionary algorithms which could 
be implemented to determine the optimal engine 
parameters, and searched for which algorithm was 
preferable in terms of performance in engine 
emission and fuel consumption optimization problem. 

Govindan et al (2010) researched a typical 
continuous caster using the basic concepts of 
Pareto-optimality in the context of multi-objective 
optimization, and a number of objectives constructed 
this way were subjected to optimization using a 
multi-objective Predator-Prey Genetic algorithm. 

Shiau et al (2008) investigated that Interval 
Genetic Algorithm (IGA) which was applied to the 
interval optimization of a disk type piezoelectric 
motor. The result shows that the scopes of the single 
and multi-objective interval optimizations could be 
determined separately. 

Chung et al (2007) put forward the two fuzzy 
rule-based systems to adapt parameters of genetic 
operators and a penalty factor in genetic algorithms 
for optimum design of structure, and the developed 
algorithm could be applied successfully to general 
structural optimization problems. Based on fuzzy 
inference and analytic hierarchy process, Li et al 
presented a kind of the evaluation method for 
multi-performance indexes of the complicated plant 
(Li 2018). 

Asadi et al [2014] analyzed the individual 
optimization of objective functions focusing on 
building’s characteristics and performance: energy 
consumption, retrofit cost, and thermal discomfort 
hours using genetic algorithm (GA) and artificial 
neural network (ANN) to quantitatively assess 
technology choices in a building retrofit project. 

In this study, the structural parameters 
combination of axial flow fan is optimized by 
combining the methods back propagation neural 
network (BP) and the genetic algorithm (GA) which 
can overcome these disadvantages and achieve the 
optimal combination of the structural parameters. The 
received optimal combination of structure parameters 
could make the jet range and efficiency of axial fan 
with the optimal performance. In this model, the four 
structural factors are respectively the blade incidence 
of the impeller, the number of blades, the number of 
guide vanes and the diameter of the collector. These 
factors are the key to the performance of axial flow 
fan and can be changed easily in actual condition. 

In this study, the basic works which includes 
the physical modelling and CFD simulation would 
been done in the section 2, and the optimization 
process which includes the construction s of BP 
network and the global optimization by GA would be 
done in the section 3. Through searching calculating 
of dominant character of GA, the optimal 
combination of structural parameters of axial flow fan 
had been received. The optimized structure could 

raise the efficiency and increase the jet range of axial 
flow fan. 
 
 

THE MATHTMATIC MODEL 
 

The mathematical model of the fluid analysis 
The fluid motion follows the universal law of 

conservation of physics, and mainly includes the 
following three basic conservation laws: Law of 
conservation of the mass, Law of conservation of 
momentum, and Law of conservation of energy 
(Fukano 2004). In this study, the mathematical 
models are shown as follows: 

(1) Law of conservation of the mass 
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where, xS , yS and zS represents the components of the 
volumetric force and viscosity force in directions x, y 
and z respectively. 

,
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where, xF , yF and zF represents the components of the 
volumetric force in directions x, y and z; 

xs , ys and zs represents the components of the 
viscosity force in directions x, y and z. The 
volumetric viscosity force is as follows: 
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(3) Law of conservation of energy 
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∂

u grad grad ， (7) 

where, TS  is the intension of the internal heat source 
caused by the viscosity dissipation. 

 
The physical model of the fluid analysis 

The axial flow fan is mainly used for dust and 
haze removal by the sray. For the area with dust 
dispersion, the mist spray can be blown into the dust 
diffusion region by the airflow at high speed and 
pressure which is formed by the axial flow fan, so 
that the water mist could make an interaction with the 
dust particles, and the deposition will fall down under 
gravity. At the same time, the airflow by the axial 
flow fan can atomized water mist spray further. The 
structure of the overall axial flow fan system can be 
shown in Figure 1. 

 

Motor

Motor bracket

Blade Guide  blade Collector

InjectorSpray system

Foundation

Fig. 1.  The structure of the overall axial fan system. 
 
The motor bracket in connected with the 

collector through the bolt. In the project of modelling 
and simulation, in order to improve the efficiency of 
simulation and modelling, the trivial matters should 
be ignored. Due to the complexity characteristic of 
the surface and structure, it is difficult to build the 
3-dimension model of axial flow fan and optimize its 
mechanical properties by the traditional methods. In 
this study, the models of impeller and motor bracket 
were reconstructed by the reverse engineering 
technology to improve the accuracy of CFD 
simulation. The reverse engineering is a reproduction 
process of geometric topology information based on 
the surface digital model (Chen 2012). The models of 
impeller and motor bracket are shown in Figure 2. 

 

 
(a). The physical model   (b). The 3-dimension model 

 
(c). The physical model   (d). The 3-dimension model 

Fig. 2.  The models of impeller and motor bracket. 
 

By using the three coordinates measuring 
instrument, a series of points of the fundamental 
dimensions of impeller and motor bracket can be 
obtained. The desirable surface models would be 
received by choosing, proving, and revising the 
datum. The final natural pattern of structure could be 
acquired by clipping and merging by logical 
deduction. 

The numerical simulation of CFD mainly 
includes structured grids, unstructured grids and 
hybrid grids (Kim 2000). The design of unstructured 
grid has the advantages of satisfying adaptability and 
generalization (Corrigan 2011). With respect to the 
axial flow fan, its structure is complicated and 
diverse, and the internal flow field is varied, and the 
calculation precision of internal and external flow 
field can be improved by using the unstructured grid 
which can be shown in Figure 3, 4 and 5. 

 

A CB

Fig. 3 .  Grid partition diagram of the internal flow     

       field of axial flow fan. 
A- The extra-position motor, B- The blade, C- The collector. 

 

A B C  
Fig. 4.  Grid partition diagram of the internal flow   

       field of air inlet and outlet. 
A- The inlet wind field, B- The internal flow field of axial flow fan, 

C- The outlet wind field. 
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Fig. 5.  Grid partition diagram of the internal flow  

  field of blade. 
 
The numerical simulation of the interior flow 

field of the axial flow fan is carried out, which is 
filled with unstructured grids, the control equation is 
finite volume method, the calculation model is the 
standard K ε− , and velocity-pressure is solved by 
coupling with SIMPLEC method. No slip condition 
for the wall-solid boundary. The pressure inlet could 
be chosen as the air inlet, and the pressure outlet 
could be chosen as the air outlet. The impeller 
rotational speed is 2900 rpm. The boundary condition 
of the flow field is set up by CFD. The speed 2m/s 
could be selected as the evaluation index of the jet 
range. The jet range of the fan is shown in Figure 6.  

The standard k ε− Turbulent Model is shown 
as follows: 

jt i i
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The equation of turbulent viscosity tη  is 
written as follows: 

( )
1 1

22 2
3
2

1
t D

D

c k l c c k c k
c k l

µ µ µη ρ ρ ρ ε′= = = ， (10) 

where, D Dc c c c c cµ µ µ µ
′ ′= = . The coefficients of standard 

c are shown in Table 1. 

 
Table 1. The coefficients of standard k ε−  model 

 

cµ   1c  2c  kδ   εδ  Tδ  

0.09 1.44 1.92 1.0 1.3 0.9-1.0 
 

The efficiency of axial flow fan can be 
expressed as: 
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Fig. 6.  The jet range of the axial flow fan. 
 

Figure 6 shows that the jet range of the original 
model of axial flow fan is 52.91m. Calculation by the 
formula 11, the efficiency is 49.10%. 

 
Table 2. The initialization and value range 

 

Structural Parameters Initial Value Value Range 
The blade incidence 
 of the impeller (°) 38 [36,42] 

The number of blade 10 [6,10] 
The number of 
guide blade. 6 [6,10] 

The diameter of 
collector(mm) 540 [510,560] 

 
By the single variable analysis method, the 

database could be set up to build the non-linear 
mapping relationship between the structure 
parameters and the performance factors of axial flow 
fan by BP neural network. The initialization and 
value range of optimized structure parameters of 
axial flow fan is shown in Table 2. 
 
 

OPTIMIZATION PROCESS 
 
The model construction of BP neural network 

If the design space of all data is used by CFD 
numerical calculation in the process of optimizing the 
structural parameters of the axial flow fan, the 
amount of calculation will be extremely large 
(Obayashi 2000, Wang 2016). BP-GA algorithm has 
the capability to optimize the combination of the 
structural parameters of axial flow fan.  

BP neural network system consists of a series 
of processing units like human neurons, which is 
called the node. These nodes interconnect with each 
other through the network. In this study, 77 sets of 
data, gained by CFD numerical simulation, would be 
regarded as the neural network sample data, of which 
71 groups would be chosen as the network of training 
samples, and 6 groups would be regarded as the 
testing samples. The part sample data of BP neural 
network is shown in Table 3. 

 
Table 3. The part sample data of BP neural network 

 

No. A(°) B C D(mm) E(m) F(%) 
1 36 10 6 540 51.95 55.1 
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2 36 6 6 530 49.92 59.4 
3 37 8 7 540 53.15 58.8 
4 37 10 9 530 53.84 57.6 
5 38 6 8 540 51.26 59.6 
6 38 10 7 560 54.56 56.8 
7 39 6 7 540 51.83 59.3 
8 39 8 8 530 54.53 60.3 
9 40 10 6 540 55.73 58.1 

10 40 8 6 530 55.16 60.2 
11 41 10 7 540 57.06 58.3 
12 41 10 8 560 57.02 56.5 
13 42 8 6 540 56.15 59.4 
14 42 6 6 540 53.44 58.2 

 

A is the blade incidence of the impeller. B is the number of blade, 
C is the number of guide vane, D is the exit diameter of collector, 
E is the jet range of axial flow fan,  
F is the efficiency of axial flow fan. 

 
To facilitate the evaluation of optimal selection, 

the CFD calculation result should be normalized to 
eliminate errors which could be caused by the 
numerical difference between CFD and BP neural 
network (Sun 2010). The normalization method 
should be used in this study as follows: 

min

max

.
X XX
X X
−

=
−

 (12) 

A typical BP neural network often has the 
interconnection among input layer, middle layer 
(hidden layer) and the output layer, where the middle 
layer consists of multiple nodes to complete the 
structure of neural networks, and output layer could 
show the results of the data analysis. This kind of 
structure can solve a lot of prediction problems in the 
actual engineering cases. In this study, the count of 
middle layer is two. Considering the BP network 
oscillation, network training time, and the means 
square error, the process of structural factors of BP 
network could be confirmed as follows: 

(1) Establishment of the input and output layer 
neurons numbers 

In this model, four parameters are selected as 
the input neurons to represent the structure 
parameters of axial flow fan, and two parameters are 
selected as the output neurons to represent the 
performance parameters. 

(2) Establishment of the hidden layer neurons 
numbers 

The neural number of hidden layer is an 
important factor in the performance of BP neural 
network. In this study, the number of middle layer 
neurons is generally decided by the following 
empirical formula: 

.hk m n i= + +  (13) 
In this study, we choose 2 hidden layers, and 

the numbers of their neurons are 9 and 4, respectively. 
The structure of the hidden layer is determined to 
make the MSE minimum. Finally, a four-layer BP 

neural network model with the deviation items is 
established.  

(3) Establishment of the transfer and training 
function 

The transfer function plays a significant role in 
BP neural network in delivering, triggering, and 
processing the signals. In this study, the tansig is 
chosen as the transfer function which is suitable for 
the range from the input layer to the first layer of 
hidden layer, and from the first layer of the hidden 
layer to the second layer of hidden layer. The purelin 
is chosen as the transfer function which is suitable for 
the range from the second layer of hidden layer to the 
output layer (Abdelaziz). Considering the iterations 
of BP network and the percentage of the errors of jet 
range and efficiency of axial flow fan, the trainlm 
should be considered as the training function of BP 
network. The comparison of different training 
functions is shown in Table 4. 

 
Table 4. Comparison of different training function 

 

Function Iterations A B 
traingda 84 0.03 0.038 
traindm 14 0.060 0.050 
traingd 45020 0.015 0.025 
traincgf 190 0.035 0.028 
traincgp 230 0.055 0.015 
traincgb 560 0.02 0.481 
trainscg 480 0.25 0.283 
trainlm 38 0.006 0.012 
trainrp 460 0.37 0.059 

 

A is the percentage error of the jet range,  
B is the percentage error of the efficiency. 

 
(4) Establishment of other parts of BP network 
In this study, the learning rate is 0.6, and the 

number of iterations is 1000. The network is trained 
by these samples, and the non-linear mapping of the 
function can be achieved. Therefore, the four-layer 
BP neural network with four input nodes, 13 nodes in 
two hidden layers and two output nodes is established 
eventually. The training results of BP are shown in 
Figure 7. 
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(c).  The training tendency of BP neural network. 
 
Fig. 7.  The training result of BP neural network. 
 

Figure 7a shows that the tendency of the 
prediction value is coincident with the actuality value, 
which shows the model of BP neural network is 
feasible.  

Figure 7b shows that the max percentage error 
of predictive value is under 0.8%, which proves that 
the model is precise to reflect the non-linear mapping 
relationship between input layer and output layer. 
The equation of the percentage error is shown as 
follows:   

_ _ .
_

actuality value prediction valueerror
actuality value

−
=  (14) 

Figure 7c shows that the training error 
approaches to zero gradually, which proves BP neural 
network is reliable. 
 
The adaptability analysis of BP neural network 

To make the further survey of the neural network, 
the comparison and error analysis should be carried 
out between the results predicted by BP network and 
the outcome simulated by CFD. In this study, the rest 
of 6 groups is regarded as testing samples. The 
adaptability analysis of BP is shown in Figure 8. 
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Fig. 8.  The adaptability analysis of BP neural  
       network. 
 

Figure 8 shows that the highest percentage error 
of the jet range and efficiency of axial fan is under 2%, 
which indicates that the obtained neutral network has 
the generalization ability. 
 
The model construction of Genetic algorithms 

GA algorithms can simulate the phenomena of 
the replication, crossover and mutation in natural 
selection and heredity. Starting from an initial 
population, it generates a group of individuals by 
random selection, crossover and mutation operation, 
which can adapt to the environment, and makes the 
population evolve into a better search zone with the 
continuous proliferation of genetic evolution. Finally, 
a group of individuals which will be best adapted to 
the environment will be gained. In this research, the 
optimization structure combination of axial flow fan 
could be achieved by GA algorithm (Horng 2017). 

(1) Establishment of the basic parameters of GA  
The iterations of GA should be ensured through 

the setting error and the computer memory. In this 
study, the largest number of iterations is 500. 
A reasonable population scale has been connected 
with the decision variable of BP network 
(Ganjehkaviri 2017). Meanwhile, the smaller 
population size is recommended. In this study, the 
initial population size is 100. 

Through the selection, crossover, mutation and 
the other genetic operation, the next generation of the 
population is generated and the next generation 
network is formed.  
In this study, the crossover probability p-cross is 0.5, 
and the mutation probability q-mutation is 0.2. 

(2)The optimization of genetic algorithm 
In this study, there are two methods based on genetic 
algorithm to make the multi-objective optimization, 
one is the weighted sum method, and the other is the 
multi-objective genetic algorithm (MOGA). 

1) For the weighted sum method, it adopts the 
following weighted sum to convert 
multi-objective-function to single objective function: 

( )
1

( ).
m

i i
i

F x w f x
=

= ∑
 

(15) 
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The weight factor is an important evaluation of 
the indicators. The larger the weight factor is, the 
more momentous the influence on the objective it is. 
In this research, the jet range is much more crucial 
than the efficiency in the performance of axial flow 
fan. In the subjective law, the weight factor of jet 
range and efficiency respectively are chosen as 0.95, 
0.05; 0.90, 0.15; 0.85, 0.15; 0.80, 0.20.  

In objective method, the weight factor could be 
calculated by standard deviation, and the equation of 
standard deviation can be shown as follows: 

1

.j
i m

j
j

x
f

x
=

=

∑
 

(16) 

By calculating, the standard deviation of 
performance parameters of fan respectively is 2.08, 
0.02. So the weigh factors respectively are 0.99, 0.01. 
The structure parameters combination of axial flow 
fan optimized by the weighted sum method is given in 
Table 5. 

 
Table 5. The optimized result in weighted sum method 

 

Weighting 
factor 

The structural 
parameters 

The 
performance 

factor 

1f  2f  A B C D E F 

0.95 0.05 42 9 9 557 59.07 58.64 

0.90 0.10 41 9 8 548 58.22 59.40 

0.85 0.15 42 10 7 543 60.08 59.17 

0.80 0.20 41 10 7 553 57.94 60.06 

0.99 0.10 42 10 8 556 59.57 58.10 
 
A is the blade incidence of the impeller, B is the number of blade,  
C is the number of guide vane, D is the exit diameter of collector,  
E is the jet range of axial flow fan,  
F is the efficiency of axial flow fan,  
1f  is the weight factor of the jet range,  

2f  is the weight factor of the efficiency. 
 

2) For MOGA method, it is shown that GA 
algorithm is feasible in the aspects of theoretic 
analysis and numerical experiments. The original 
model parameters of axial flow fan are shown as 
follows: 

The blade incidence of the impeller is 42°, the 
number of blade is 9, the number of guide vane is 6, 
and exit diameter of collector is 535mm. With this 
structure parameters combination, the performance of 
axial flow fan becomes optimal, the jet range is 
59.87m, and the efficiency is 58.48%. 

 
Optimization results of numerical simulation 

The optimization flowchart of BP neural network 
and genetic algorithm can be shown in Figure 9. From 
Fig 9, the flowchart of multi-objective optimization 
can be obtained; the procedure is shown as follows: 

(1) The 3D model of axial flow fan is set up, and 

the samples database is gained by CFD. 
(2) The non-linear mapping relationship between 

the structure parameters and the performance 
parameters of axial fan is established by BP network, 
the comparison and error analysis would be carried 
out between the results predicted by BP network and 
the outcome simulated by CFD, which shows the BP 
network is stable and reliable. 
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Fig. 9.  The Flowchart of BP-GA algorithm. 

 
(3) The trained network would be applied to GA 

algorithm to make the global optimization to purse a 
combination of structure parameters which could 
make the jet range and efficiency of axial fan with the 
optimal performance. Analysis the optimization 
results. The final optimized combinations of 
numerical simulation are shown in Table 6. 
 

Table 6. The result of multi-objective optimization 
 

No. A B C D E F 
1 42 10 8 543 60.08 59.17 

2 42 9 6 535 59.87 58.48 
 
A is the blade incidence of the impeller, B is the number of blade, 
C is the number of guide vane, D is the exit diameter of collector, 
E is the jet range of axial flow fan,  
F is the efficiency of axial flow fan. 
 

Table 6 shows that the former is obtained by 
weighted sum method, and the latter is achieved by 
MOGA. The difference between the two mainly 
focused on these parameters, such as the number of 
blade, guide vane and the diameter of collector. By 
considering the performance of axial flow fan, the 
symmetry of velocity, the difficulty of manufacturing 
process, and the economic efficiency, the former is 
elected as the best combination of structure 
parameters. The colony adaptation degree of GA is 
shown in Figure 10.  

(1) The analysis of colony adaptation degree of 
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genetic algorithm.  
Figure 10a shows that the quality of overall 

population is in gradual growth, and the optimal 
solution will be gradually approached, when the 
iteration reaches 300, the maximum colony 
adaptation tends to be steady. 

Figure 10b shows that the curve fluctuation of 
the average colony adaptation can indicate that the 
genetic variation is ongoing which keeps the diversity 
of population. When the iteration reaches 500, the 
optimal colony adaptation degree is 60.08. 
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(a). The maximum colony adaptation degree of GA. 
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(b).  The maximum colony adaptation degree of GA 
 
Fig. 10.  The colony adaptation degree of GA   
        algorithm. 
 

(2) The analysis of the performance of 
optimized fan 

Building the optimized 3d model of axial flow 
fan, then the velocity cloud map can be obtained by 
CFD. Fig. 11 denotes the jet distance of the 
optimized axial flow fan.  
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Fig. 11.   The jet range of optimized axial flow fan. 
 

Figure 11 indicates that the optimized jet range 
of the axial flow fan is 60.11m. The boundary of the 
five speed ranges is distinct. The maximum axial 
velocity which is represented by red color is 
protruding and the middle part is bulging. The 
minimum speed of the axial flow fan is low 
compared to the outside atmosphere. The air flow 
drives the droplets forward together through the air 
outlet of the fan. In the process of movement, 
because of the air viscosity, the kinetic energy of the 
high speed airflow decreases gradually. It can be seen 
that the wind velocity distribution is gradually 
diffusing outward. The farther deviation from the axis, 
the smaller the velocity gradient, therefore it can be 
proved that the model building and numerical 
simulation are reasonable and practicable. 

The optimized structure parameters combination 
of axial flow fan is as follows: The blade incidence of 
the impeller is the 42°, the number of the blade is 10, 
the number of the guide vane is 8, and exit diameter 
of the collector is 543mm.  

The performance of the optimized axial flow fan 
is as follows: after verifying by CFD simulation, the 
jet range is 60.11m，whose error is 0.5%; the 
efficiency is 59.34%, whose error is 1.6%. The power 
requirement of this model is 18.048kW, driving by 
the original motor. 

 
 

CONCLUSIONS 
 
In this study, the conclusion of this study can be 

shown as follows: 
(1) The multi-objective optimization model for 

the axial flow fan based on BP neural network and 
genetic algorithm was established, and the optimized 
result could be proved to be received by CFD 
simulation.  

(2) Driven by the power of the original motor, it 
could indicate that the optimal combination of 
structure parameters of axial flow fan could increase 
the range by 7.2m and raise the efficiency by 10.24%, 
when compared with the original composite structure 
parameters. The optimization system provided a 
feasible plan for complex structure optimization and 
it was of value in practical engineering application. 

The future work of this study is to optimize the 
model structure of BP neural network to improve its 
performance and overcome the inherent 
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disadvantages of traditional BP neural network. 
Moreover, the more structural factors of axial flow 
fan will be analyzed together to improve the product 
comprehensive properties.  
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NOMENCLATURE 
 
Symbols: 
ρ  the density of the fluid ( )-3kg m .  

u  the component of velocity on the X-axis ( )m s .  

v  the component of velocity on the Y-axis ( )m s . 

w  the component of velocity on the Z-axis ( )m s . 

µ  the dynamic viscosity ( )2N s m⋅ .  

λ  the second viscosity, 2
3

λ µ= −  ( )2N s m⋅ . 

pc  the specific heat ( )J K .  

k  the thermal conductivity ( )W m K⋅ .  

T  the temperature of the fluid ( )K .  

TS  the intension of the internal heat source caused by   

 the viscosity dissipation. 

P  the pressure which is the outlet pressure subtract 
 the inlet pressure of axial fan ( )2N m . 

Q  the volume of fluid transmission ( )3m s .  

wP  the input shaft power (W) .  

n  the rotational speed of the motor ( )r min .  

qT  the torque of impeller ( )Nm .  

X  the sample of the input parameters ( )m .  

minX  the minimum input parameters ( )m . 

maxX  the maximum input parameters ( )m . 

hk  the hidden nodes. 

n  the input nodes. 

m  the output nodes. 

i  the value between 1 and 10. 

xS  components of the volumetric force in 
 directions u.  

yS  components of the volumetric force in 
 directions v. 

zS   components of the volumetric force in   
  directions w. 

 

Abbreviations 

BP  the back propagation neural network. 

GA the genetic algorithm (GA). 

MSE mean of the square sum of the error. 
 
 

基於 BP 神經網絡和遺傳算

法的軸流風機的多目標優

化 
 

杭傑 高殿榮 李運華 
北京航空航天大學 自動化科學與電氣工程學院 

燕山大學 機械工程學院 
 

摘  要 
 

由於軸流風機結構參數與性能參數之間具有

高度的非線性關係，因此對軸流風機性能的預測與

優化是一個具有挑戰性的問題。根據 BP 網路的非

線性映射的特性和遺傳演算法的並行處理、隨機和

自我調整搜索的能力，本文將 BP 神經網路和遺傳

演算法應用到優化結構參數組合，使軸流風機具有

最佳的性能。首先，建立了軸流風機的三維模型，

並利用計算流體力學(CFD)建立了樣本庫；然後，

利用 BP 神經網路建立軸流風機結構參數與性能參

數之間的非線性映射關係，並將 BP 網路預測的結

果與 CFD 模擬結果進行比較，進行誤差分析，證

明 BP 網路是穩定可靠的。將訓練後的網路應用到

遺傳演算法中，找到最優的結構參數組合，使軸流

風機的射流範圍和效率達到最佳。CFD 模擬結果

表明，在原電機功率的驅動下，優化後的軸流風機

結構參數組合的模型比原始模型射程提高了

7.2m，效率提高了 10.24%。同時，該優化方案為

今後軸流風機結構參數的設計提供了指導。 
 


