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ABSTRACT

Four new single-soliton solutions for the
Korteweg and de Vries (KdV) equation are developed
by the simplest equation method (SEM) with the
Bernoulli equation being the simplest equation. These
solutions overcome the long existing problem of
discontinuity when the nonlinear term coefficient
approaches zero and reveal a new phenomenon,
named soliton-sliding. In addition, the multi-soliton
solutions for the KdV and the potential KdV
equations are shown to be obtainable from the SEM
by choosing the Burgers equation as the simplest
equation. Compared with Hirota’s direct method, the
proposed method is more simple and straightforward.

INTRODUCTION

The Korteweg and de Vries (KdV) equation is
a typical nonlinear partial differential equation that
provides soliton solutions. The KdV equation
describes shallow water waves of long wavelength
and small amplitude (Wazwaz, 2002; Korteweg and
de Vries.,, 1895 ). It is the simplest nonlinear
dispersive equation. In addition, there are other
physical systems that can also be modeled by the
KdV equation, such as acoustic waves in harmonic
crystals and ion waves in plasmas (Wazwaz, 2002;
Jeffrey and Kakutani, 1972).

Exact solitary solutions of the KdV equation
with a variable nonlinear term coefficient have been
developed by the tanh-coth method (Wazwaz, 2004,
2006; Soliman, 2006), the sine-cosine method
(Wazwaz, 2006) and the Exp—function method (Ebaid,
2007), which all provide single-soliton solutions.
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Since the KdV equation is a completely integrable
equation, its multi-soliton solutions were obtained by
Hirota’s direct method (Wazwaz, 2002; Hirota, 2004;
Hereman, and Nuseir, 1997). However, Hirota’s
method requires a complex algorithm to construct the

multi-soliton solutions.

From the literature (Wazwaz, 2002, 2006;
Ebaid, 2007), it can be found that all exact solutions
of the KdV equation, including solitary and
multi-soliton solutions, will approach infinity and do
not satisfy the continuity condition when the
nonlinear term coefficient is zero. Obviously, they
can not be reduced to linear solutions.

In this paper, four new solutions of the KdV
equation are derived by the simplest equation method
(SEM) with the Bernoulli equation as the simplest
equation (Kudryashov, 2009, 2011, 2012; Vitanov,
2010, 2011; Kudryashov and Loguinova, 2008;
Mohamad, Petkovic and Biswas, 2010; Kuo and Lee,
2015). These new solutions overcome the problem of
discontinuity and can be successfully reduced to
linear ones, while the nonlinear term coefficient of
the differential equation approaches zero. Moreover,
in order to construct the multi-soliton solutions of the
completely integrable equations without the complex
algorithm, the SEM is extended by choosing the
Burgers equation as the simplest equation. Two
completely integrable equations, the KdV equation
and the potential KdV equation are handled and their
general multi-soliton solutions formally obtained.
Unlike Hirota’s method, the multi-soliton solutions
are constructed directly and easily. The results
confirm that both the proposed linearized and
multi-soliton solutions are good. Therefore, it can be
said that the SEM and the extended SEM are concise
and effective for constructing solitary and
multi-soliton solutions.
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THE SIMPLEST EQUATION METHOD

Assume a partial differential equation. After a
transformation by the wave variable &=x-ct, a

nonlinear ordinary differential equation (ODE)
results,

P(UUgUg,.)=0. (1)

SEM is a method commonly used to develop
the exact solutions to a number of ordinary nonlinear
differential equations. Herein, the method is applied
to develop exact solutions of the KdV equation.

For a large class of equations of the type
represented in (1), the exact solution can be assumed
to be in the form

L i
MORPLIUCIE @

where L>0 and must be an integer; a; are
parameters; and Y (&) is a solution of a certain

nonlinear ordinary differential equation with an exact
solution, referred to as the simplest equation. L is
determined by substituting equation (2) into equation
(1) and balancing the linear term of the derivative’s
highest order with the highest nonlinear term in

equation (1) (Kudryashov, 2009, 2011, 2012; Vitanov,

2010, 2011; Kudryashov and Loguinova, 2008;
Mohamad, Petkovic and Biswas, 2010).

In order to find the linearized solution, the
Bernoulli equation was chosen as the simplest
equation for the simplest equation method. The
Bernoulli equation is in the form

Y =aY +bY?, ©)

where a and b are constants. The exact solution
to the equation above is (Spiegel, 1968)

a
TRy @

Obviously, solution (4) can be reduced to a
linear solution when the nonlinear coefficient b in
equation (3) approaches zero. That is why the
Bernoulli equation was chosen as the simplest
equation for finding linearized solution.

After substituting equations (2-3) into (1), and
equating the coefficients of the same powers of Y
to zero in the resultant equation, a system of algebraic
equations involving a;, (i=0,..,L) are derived.
Having determined these parameters and using
equation (4), an analytically closed-form solution can
be obtained.

EXACT SOLUTIONS OF THE KDV
EQUATION

Existing solutions

The KdV equation in dimensionless variables
can be expressed as (Wazwaz, 2007)

Ut + Uy +Uyyy =0, (5)

where « is scaled to any real number. The delicate
balance between wuuy, and uy,, defines the

formulation of solitons that consist of single humped
waves. Exact solutions of equation (5) developed by
the tanh-coth method, the sine-cosine method
(Wazwaz, 2004, 2006), and the Exp—function method
(Ebaid, 2007) can be summarized as

by = Esech? 5 € (x=ct)], 6)
(04

Uy = =L esch [‘/—(x o), )
a

Jo

Uz = - {1+3cot[ (x— ct)]] (8)

Uy = - [1+3tan [\/_(x ct)]} 9)

and

Us = 5 secz[ (x ct)], (10)
(04

Ug :—cscz[ (x ct)], (11)
o

us = - (1 3coth [\/_(x ct)]} (12)

Ug = " (1 3tanh [\/_(x ct)]} (13)

where c is the wave speed. It is noted that only
solutions u; and ug are soliton solutions.

It is well-known that the KdV equation is a
completely integrable equation and that its
multi-soliton solutions to equation (5) can be
obtained by Hirota’s method (Hirota, 2004). For
example, the one-soliton solution for equation (5) is
constructed as

2_k(x—k2t)
12 k%e (14)

- 2
a (l_i_ek(xfk t))2

Of note, for solution continuity, if the nonlinear
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term coefficient « in nonlinear differential
equations (5) approaches zero, the equation could be
reduced to a linear one, and the corresponding
nonlinear solutions should be reducible to linear
solutions. However, from the existing solutions above,
it can be observed that all solutions of the KdV
equation are proportional to 1/a . When the
nonlinear term coefficient, « , is reduced to zero, the
solutions become singular; therefore, none will
satisfy the continuity condition at a«=0. In the
following, new exact solutions of the KdV equation
with linearized solutions are developed.

New Solutions

After a transformation by the wave variable &,

the KdV equation (5) is transformed into the
following nonlinear ordinary differential equation

a 2
—-cU+—=U“+U, =0. 15
> e (15)

Substituting equation (2) into equation (15) and
balancing the linear term of the derivative’s highest
order yields L=2. Therefore, the solution can be
constructed as

U(£) =ag+ayY +a,Y 2. (16)

Substituting equations (3) and (16) into (15), and
setting equal power coefficients of Y to zero,
leads to a system of nonlinear relationships among
the parameters of the solution and the parameters of

the solved equation class.

YO:—caO +%a§:0, 17)
vl —ca +aaga +aa® =0, (18)
y?2 1—Cay +odgay +%a12 +3a1ab+4a2a2 =0, (19)
v3: oqay + 2a1b2 +10a,ab =0, (20)
Y4:%a§+6a2b2:0. (21)

Solving equations (17-21) yields the following four
cases.
Casel.

a:\/E,b:a,aO :O,a1=—12\/E,a2 =-12¢,
Case2.
a=—\/E,b=a,a0 =O,a1=12\/E,a2 =-12¢ ,
Case3.
a:\/E,b:—a,ao =O,a1:12\/E,a2 =-12¢,
Case4.
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a=-yc,b=-a,ay =03 =-12yc,a, = -120.
As a result, the four exact solutions are derived as

_12ce~Ve(x-et)

Uyg = , 22
10 (e—\/E(X—Ct) _a)z ( )
_12ceVe(x-et)
11 = W ) (23)
(e -a)
12ce~Ve(x-at)
t2 = —Je(x—ct) 2’ (24)
(e +a)
12ceVe(x-<)
U13 = W . (25)
(e +a)

Clearly, by observing the forms of equations
(22-25), it can be found that all can be reduced to
linear solutions as « =0. Moreover, equation (22)
will equal (23), and equation (24) will equal (25) as
a=%1, all of which can be presented as soliton
solutions.

It is noted that equation (22) with « =-1, and
equation (24) with a=1 could be equivalent to
equation (6). This means, under certain conditions,
that equations (22-23) and (24-25) are the same as (6).
And for the continuous case, the soliton solution
could be presented by equations (22-25) instead of
equation (6).

It should be noted the existing solutions will
approach infinity and become singular as «
approaches zero, as shown in Figure 1.

"~ 05 0 05 1
o

Fig. 1: Comparison between the new solution and

the existing solution as the nonlinear

coefficient « [J[Jvaries from -1 to 1.

[t=2, x=75, ¢c=4; : equation

(24); -uweeeenn: €QUation (6).]

One can observe that the new solution (24) is a
continuous function of « , while solution (6) has
discontinuity at « =0. It is noted that the steep slope
of solutions (6) and (13) remain in the same location;
however, this is not the case for the new solutions.
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Moreover, the location of the steep slope of the new
solutions will slide and change as « [[Jis changed.
As shown in Figures 2-3, the location of the steep
slope of new solutions (24) and (25) slide to the
right/left as « [is changed from 2 to 0.2,
respectively. We have named this peculiarity the
soliton-sliding phenomenon.

a0

Fig. 2: Influence of the nonlinear term coefficient
a on equation (24). [t=2, c=4;
—_— . A=2 , == . a=1 ;
— =i =02; s a=01]
" JL R
E':I 10 1
X
Fig. 3: Influence of the nonlinear term coefficient
a on equation (25). [t=2, c=4;
—_— . A=2 , - . a=1 ;
—=2a=02; e @a=01]

THE EXTENDED SEM

The second aim of this paper is to illustrate a
new method for constructing multi-soliton solutions,
which are the main feature of the completely
integrable equations.

It is well known that Hirota’s method is
commonly used to construct multi-soliton solutions.
However, it is extremely difficult to find the Hirota’s
transformation for solved PDEs. Therefore, the
Burgers equation was chosen as the simplest equation
to construct multi-soliton solutions due it being a
completely integrable equation (Wazwaz, 2007,
2007). In the following, the algorithm of the new
method, called the extended SEM, is illustrated.

Consider the Burgers equation

Up + Buly —Uyy =0, (26)

where £ is an arbitrary nonlinear coefficient. Using

Cole-Hopf transformation the multi-soliton solution
of equation (26) can be constructed as (Wazwaz,
2007)

gkiekix—cit
_=2ia

B 1+ gekix—cit
i=1

u 27

where N is a positive integer.
The traveling wave variable is 7 =kx-ct, and
the Burgers equation (26) is thus transformed into

2
—cY, +kpYY, kY, =0. (28)
Integrating equation (28) once with respect to 7,
and making the integral constant zero, it becomes

-, B2
Y, =—Y +—Y“. 29

It is well known that the dispersion relation of
equation (29) is

c=-k?, (30)

therefore, equation (29) is rewritten as

B2
Y, =Y +—Y*, 31
77 o (31)

and its multi-soliton solution general form is

N m
_9 _Zkie !
y=—2M (32)
P iy sen
i=1

Equation (31) is the final form of the simplest
equation which will be used to construct the
multi-soliton solutions for the investigated class of
nonlinear PDEs.

In the following, the extended SEM is applied
to construct the multi-soliton solutions for two
completely integrable equations, namely the KdV
equation and the potential KdV equation.

The KdV Equation

Use the traveling wave variable 7 =kx—ct to
transform equation (5) into

-400-



3
—CF, + akFF, +k°F,,, =0. (33)

Integrating equation (33) once with respect to 7,
and making the integral constant zero, it becomes

ok
—cF+7F2+k3F,m=O. (34)

Substituting equations (2) and (31) into (34) and by
means of the balanced equation yields L=2 .
Accordingly, the exact solution of equation (34) is
assumed as

F(£)=ag+aY +a,Y2. (35)

Substituting equations (31) and (35) into (34),
and setting equal power coefficients of Y to zero,
leads to a system of nonlinear relationship among the
parameters of the solution and the parameters of the
solved equation class

YO:—cao+k7aa§:0, (36)

vl —C +kTa2aoal + k3a1 =0, (37)

& 1 —cay +k7a(2a0a2 +a12)+k3(%+4a2) =0 (38)
ke 3,588  ap’

Y322 2aay) + k3 (22 + 22— 0, 39
2( yayp) + k= ( " 2k2) (39)

2
Y4:"7"‘a§+k3%=o. (40)

Solving equations (36-40) yields

ap =0,
-

[04

(41)
_ap2

dy = 318 ,

o
c=k5.

As a result, the general form of the multi-soliton
solution is derived as

iklze(k‘x—kfl) ikle(k‘x—kft) (42)
U=E(i:1 _E( i=1 2
a 14 ie(k,x—kfn) (24 14 ZN:e(k,x—kﬁn
i=1 i-1

For the one-soliton solution, equation (42) is
exactly the same as equation (14). The corresponding
two-soliton solution is constructed as

J. CSME Vol.39, No.4 (2018)

3 3, 3, 3,
- 12 klze(k]x—k,l) " kzze(kzx—kzl) 12 kle(k]x—k]l) " kze(kzx—kzl) )
T o 14 el L glexkiy 7 g N ek | gloidy

(43)

as show in Figure4.

0.25
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0 . . .
-20 -10 0 10 20 30 40 50

X
Fig. 4: The two-soliton solution for equation (43)

a=6.
The Potential KdV Equation

Consider the potential KdV equation (Wazwaz,
2007)

Ut+37u>2<+uxxx =0, (44)

where y is an arbitrary nonlinear coefficient.
Use the traveling wave variable 7 =kx—ct to
transform equation (44) into

22 3
~cF, +3k°F2 +k%F,,, =0. (45)

Substituting equations (2) and (31) into (45) and
processing as before, we have L =1. Therefore, the
exact solution of equation (45) is assumed as

F(&)=ap+aY. (46)

Substituting equations (31) and (46) into (45),
and setting equal power coefficients of Y to zero,
leads to a system of nonlinear relationship among the
parameters of the solution and the parameters of the
solved equation class

vl —ca +k%y =0, (47)
_ 2
V22 gp2q2 T o (48)
2k 2
Y3 :3kalyp+3kay B2 =0, (49)
2 n2 3
Y4 —3762 p +—37/°2ﬂ -0. (50)
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Solving equations (47-50) yields

_p
v (51)

here a; is an arbitrary constant, and is set as
ag=0 . As a result, the general form of the
multi-soliton solution is derived as

N k3
kie(k,x kt)

) Z
u==-= . (52)
7. N (kix—k3)
1+ 3e™ Yy
i=1

For the one-soliton solution and setting » =1,

equation (52) is the same result as in Wazwaz’s book
(Wazwaz, 2007), namely

(kix—kt)
= 2k1e—3l (53)
RCESSD

The corresponding two-soliton solution is constructed
as

.3 3
i 2(kle(k1x klt)+kze(k2x kzt))

(54)

K .3
1+kle(k1x k3 +k2e(k2x k3t)

as shown in Figure 5.

E)20 -1‘0 é ﬂb Qb Sb 40
X

Fig. 5:  The two-soliton solution in traveling kink

wave for equation (54) with k; =0.5,

ko =25 and y=1.
[—t=2; il 1=3]

Up to now, four new linearized solutions of the
KdV equation have been obtained by the SEM; and
two completely integrable equations have been
solved by the extended SEM. Unlike Hirota’s method,

the multi-soliton solutions are easily obtained and the
four new linearized solutions reveal a new
phenomenon, soliton-sliding. Moreover, it should be
mentioned that the new phenomenon can also be
observed from the Burgers equation, namely
kink-sliding (Kuo and Lee, 2015).

CONCLUSIONS

Based on the results presented in sections 3 and
4, two conclusions are given.

1. The SEM was employed to solve the KdV equation,
and four new linearized solutions were obtained. The
proposed derived solutions are solitary solutions,
which can be successfully reduced to linearity, while
the nonlinear term coefficient becomes zero. Under
the same physical conditions, the new solutions will
not become singular when ¢« is zero. Moreover, the
locations of the steep slopes in the new solutions
slide, which is termed the soliton-sliding
phenomenon. The reason the new solutions slide is
entirely due to the influence of linearity.

2. The SEM was extended by choosing the Burgers
equation as the simplest equation. Two completely
integrable equations, namely the KdV and the
potential KdV equations, were handled and their
general multi-soliton solutions formally established.
Unlike Hirota’s method, the results confirm the
extended SEM is concise and effective for
constructing multi-soliton solutions.

Accordingly, we believe that solitary solutions
and multi-soliton solutions existing for other classes
of nonlinear mathematic physics models can be easily
solved by the SEM and the extended SEM. Further
work on these aspects is recommended.
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