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ABSTRACT

In response to environmental pressure and
market demand, multi-stage transmission is a feasible
transmission mode for Pure Electric Vehicles (PEVS).
Synchronizers can effectively reduce the vibration im-
pact of PEV during frequent gear shifting, but the lack
of a theoretical model limits the further study of its
influence mechanism. Hence, a 20-degree-of-freedom
(DOF) non-linear dynamic model of a two-speed heli-
cal gear (TSHG) transmission equipped with a two-
way synchronizer is established considering the stiff-
ness and friction torque of bidirectional synchronizer,
time-varying meshing stiffness (TVMS), meshing
damping, static transmission error (STE), gear back-
lash, torsional damping, and stiffness. The comparison
with the experiment indicates the effectiveness of the
established dynamic model. The results of the dynam-
ics characteristics show that compared with the (low-
speed) first gear transmission, the (high-speed) second
gear transmission shows complex nonlinear dynamic
characteristics. The increase in support stiffness, the
decrease in TVMS ratio and STE amplitude contribute
to the weakening and disappearance of the chaotic
motion in the system. These results provide a helpful
reference for non-linear behavior restraining and
vibration and noise reduction of the two-speed trans-
mission (TST) for PEVs.
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INTRODUCTION

As environmental pollution, fossil fuel and
green-gas shortages are some of the challenging issues
for the eco-friendly new energy automotive world,
PEVs (Hu et al., 2015), hybrid electric vehicles (HEVS)
(Awadallah et al., 2017; Climent et al., 2021), and fuel
cell electric vehicles (FCEVs) (Inci et al., 2021) have
attracted world-wide's attention due to their remarka-
ble advantages. Such as low noise, low or zero-
emission energy saving, and high efficiency (Tseng
and Yu, 2015; Wang et al., 2022; Huang et al., 2023).
However, the energy density of electric batteries is
much less than that of fossil fuels is still one of the
challenges for EVs, which dramatically limits the new
energy vehicle's drive mileage range (Mousavi et al.,
2015). Recently, single-speed transmissions are
equipped in most commercial PEVs due to their sim-
ple configuration, compact volume, and low manufac-
turing cost (Collins et al., 2018). Nevertheless, this
type of transmission has obvious drawbacks due to the
compromise between efficiency (drive mileage range)
and dynamic performance (i.e., maximum speed,
acceleration, and hill-climbing ability) (Han et al.,
2019; Tian et al., 2020; Di et al., 2012). With the
increasing demands, PEVs must provide a high level
of safety, reliability, and ride comfort as well as satisfy
without compromise regarding lightweight, recharge
mileage, and low price (Karunamoorthy and Shobana,
2021; Alcazar-Garcia et al., 2022). Therefore, the
application of multiple-speed transmission in PEVs
has received great attention. To meet these require-
ments, it is essential to further exploit the potential
benefits of the electrified powertrain. Liang et al.
(Liang et al., 2018; Li et al., 2016; Wang et al., 2017)
have proved that multi-speed transmission systems are
practical solutions to enhance the longitudinal behav-
ior and overall efficiency of PEVs. Specifically, Gao's
work (2022) demonstrated the advantages of two-
speed transmissions in electric vehicles. Due to the
balance between torque and speed, cars with two-
speed transmissions perform excellently during over-
taking and climbing. Two-speed transmission refers to



the transmission having two gears: high and low.
High-speed gears have relatively high rotational
speeds and high energy consumption; Low-speed
gears have relatively low rotational speeds and low
energy consumption. Two-speed transmission has dif-
ferent transmission ratios, which can meet the needs of
a larger output speed range. Since the PEVSs integrated
with a multi-speed transmission system can signifi-
cantly cut energy consumption, improve drivability,
save energy, make optimum use of high-efficiency
motor operating ranges, and improve dynamic perfor-
mance, a wide range of investigations have focused on
exploring novel techniques and on improving the per-
formance of existing systems (Ruan et al., 2016;
Ahssan et al., 2018; Gao et al., 2015; Cao et al., 2019;
S. Aldo et al., 2011; Qiong et al., 2013; Zhang et al.,
2022).

The establishment of a dynamic model and
vibration analysis of gear transmission systems have
attracted a lot of attention. For instance, Hong et al.
(2022) established a simulation model of a two-speed
transmission with a rear friction clutch to study the
driving dynamics and riding comfort during gear shift-
ing. Ma et al. (2022) established a dynamic model of
a two-speed transmission system equipped with plan-
etary gears and toothed band brakes and investigated
the impact of shifting strategies on the dynamic char-
acteristics of the system. Li et al. (2023) have
constructed a new type of mechanical-electro-
hydraulic coupling system for electric vehicles to
improve the stability of system operation. Long et al.
(2022) conducted a whole vehicle dynamics simula-
tion of PEVs to optimize the optimal dynamic shift
point based on the relationship between acceleration
and speed. Al Tayari et al. (2020) presented a non-
linear dynamic model of SST for PEVs that consists of
16-DOF, including most of the non-linear factors in
which the equation of motion was solved by the
Runge—Kutta method. the effects of backlash, pinion
rotating speed, torque fluctuation, and torsional stiff-
ness on the dynamic behavior of the SST system were
studied. Ma et al. (2018, 2019) developed a 14-DOF
dynamic model including TVMS, damping, backlash,
and transmission error to study the non-linear dynamic
response analysis of the SST space driving mechanism
under a large inertia load. Walha et al. (2009) pre-
sented a 12-DOF dynamic model to investigate the
non-linear dynamic responses of an SST system by
applying the technique of linearization to decompose
the system from non-linear to linear. The effect of
variable tooth friction and stiffness, localized tooth
crack, geometrical errors, and pitch and profile errors
on the 26-DOF dynamic model was studied by Jia et
al. (2003). The influences of gear eccentricity on trans-
verse and torsional dynamic responses and the
dynamic transmission errors were investigated (He et
al., 2019). Walha et al. (2011) proposed a dynamic
model of 27-DOF considering spline clearance,
double-stage stiffness, and dry friction path to investi-
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gate the non-linear dynamic response of the system
coupled with an automotive clutch. Mo et al. (2019,
2018) presented a dynamic analysis and control of a
three-speed PEV with a harpoon-shift synchronizer as
an alternative to the traditional cone clutch synchro-
nizer, where the transient responses of the driveline
system during the gear-shifting process of the harpoon
shaft was investigated. To guarantee driving comfort
and vehicle drivability and enhance the overall effi-
ciency of electric vehicles, power and shifting control
of a novel transmission for PEV studies was performed
by Liang et al. (2018), where the effectiveness of the
proposed shifting strategy is verified by a detailed
mathematical model of multi-speed transmission sys-
tem equipped with two motors. To enhance gearshift
quality and ride comfort of electric vehicles, a practi-
cal dynamic and kinematic analysis of a power shift
five-speed AMT equipped with a wet clutch study was
presented by Galvagno et al. (2011). To reduce rattle
noise in an automotive transmission, a calculation and
simulation of the rattle noise of a five-speed gearbox
helical gear were held based on the design parameters
(Bozca, 2010) and an empirical model (Bozca and
Fietkau, 2010).

To the best of our knowledge, most of the
research in previous literature mainly focuses on the
non-linear dynamic modeling analysis and gear-
shifting strategy of the TST system that is equipped
with various applications. Yet, limited studies have
curry out the effect of gear non-linear dynamic
response of TST equipped with synchronizer used in
PEVs. This paper presents a non-linear dynamic
model with 20-DOF of a TST system equipped with a
two-way synchronizer to investigate the pinion's
rotating speed, TVMS ratio, supporting stiffness, and
STE amplitude on the dynamic response. The com-
parison with the established electric drive two-speed
transmission test bench indicates the effectiveness of
the established model. Finally, some key conclusions
are summarized to guide the design of vibration and
noise reduction for the two-speed transmission system.

Two-Way Synchronizer Model

To achieve a smoother gear shift in multi-gear
transmissions, a synchronizer is used to align the speed
of the transmission target shaft and the output gear
(Chen and Tian, 2016). To seize the main actuation
characteristics of the double-side synchronizer, its
mechanism is simplified to include only the speed
synchronization stage of engagement. The post-
synchronization is considered to be completely locked,
ignoring other states of engagement (Walker and
Nong,2012).

Therefore, the synchronizer model is reduced to
only a cone clutch, where the cone clutch torque is
calculated as follows

TSi — upRcFaxial (1)

sina
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here, Ts;represents the friction torque of the synchro-
nizer's cone clutch. up, F,iq and a represent the
dynamic friction coefficient, the synchronizer load,

and the cone angle. The parameters of the synchro-
nizer components are mentioned in Table 1.

Table 1. The parameters of the two-speed synchronized gearbox and electric vehicle components.

Parameter Value Parameter Value Parameter Value
Im (kg:m?) 0.04 Cn(Nm-s/rad) 0.0015 K11(N-m /rad) 3.3134x107
Is (kg:m?) 0.0113 Co (Nm-s/rad) 10 Ki2 (N-m /rad) 3.3134x107
Ip1 (kg-m?) 7.619x10-5 C11 (Nm-s/rad) 2.0916 Kz (N-m /rad) 30000
Ip2 (kg-m?) 0.009 C12 (Nm-s/rad) 2.0916 K3 (N-m /rad) 13600
Ioo (kg-m?) 1.372x10-4 Cmi1 (N-s/m) 0.8064 Ks (N-m /rad) 1920.8
Ig1 (kg-m?) 0.006 Cm2 (N-s/m) 0.8064 Ko (N-m /rad) 10000
lg2 (kg-m?) 8.711x10-5 Crmo (N-s/m) 3.2918 Km1 (N/ m) 4.676x108
lqo (kg-m?) 0.036 Ci (Nm-s/rad) 0.01 Km2 (N/ m) 5.256x108
I (kg-m?) 1.398 Ci (N-s/m) 500 Kmo (N/ m) 6.623x108
Iy (kg-m?) 135.120 C2 (Nm-s/rad) 10 kijy (N/ m) 3.5x107
Tm(Nm) 250 Cs (Nm-s/rad) 100 b 0.3
Ticad (NM) 254.702 Rc¢(m) 0.0475 a(°) 7

The synchronizer mechanism is usually con-
trolled in an on-off manner, where the applied load is
used to power the mechanism. The balance of force
and torque during actuation can quickly achieve
engagement without the need for closed-loop control
(Alizadeh and Boulet, 2014). This eliminates the need
to model complex electro-mechanical systems to
engage synchronizer mechanisms and simplify the
need for complicated synchronizer models. The
constant positive and negative load is controlled to
simulate the control of the engagement. The possible
participation states are as follows

P  Engaging
Foxiar =4 0 Neutral (1)
—P Disengaging
here, P represents the magnitude of the automatic load
applied.

This article only considers the synchronizer
mechanism control in the simplest form, and the P
value is consistent with the typical value of 350 N
found in (Walker and Zhang, 2011). It is assumed that
the synchronizer mechanism will be successfully
engaged when energized, which is the typical situation
according to reference (Lovas et al., 2006). Therefore,
use the on/off control to energize the synchronizer or
release the synchronizer and move it to the neutral
position.

Modeling of meshing helical gear pair

The modeling of meshing helical gear pairs in
the TST system is introduced here. A meshing helical
gear pair of the TSHG system is shown in Figure 1.
The STE e;(t) is spread out into Fourier series with
the meshing frequency as the fundamental frequency
(Raghothama and Narayanan, 1999), which can be
expressed as
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ej(t) = eg; + Xoo1[Ecnj cos(wyt +

®Ocnj) + Egpj sin(wpjt + @) 2
here, e,; is the constant amplitude of STE, S is the
Fourier series. E.; and Eg,; are the cosine and
sinusoidal components of STE. ¢.,; and ¢, are the
phase angles of the cosine and sinusoidal components.
The gear pair's excitation meshing frequency w,; is
determined as follows (Zhao and Ji, 2015)

Dyi Zyi
Wpj =—p6]0 H 3

Where, Z,; and (2,,; represent the teeth number and
rotational speed of pinion.

The TVMS k,;(t) is considered as periodic-
waveforms under mesh frequency and expanded into
Fourier series according to Ishikawa’s method
(Kahraman and Singh, 1991), and expressed as
follows

kmj(t) = koj + Z§=1[Ackj cos(wy;t + @ej) +
Agiej sin(wp;t + Q)] 4)

here, k,; is the mean value of mesh stiffness. A ; and
Agj are the cosine and sinusoidal components of
stiffness fluctuation amplitude. ¢.,; and ¢y ; are the
phase angles of the cosine and sinusoidal components.
Then, the mean value of the meshing damping c,,,; can
be written as

2.2 o
_"i"gi 'vilgj
mj (.2 a2 )

(CIr )

Cmj = 2(;‘ Q)
Generally, the damping coefficient {; is
calculated as Rayleigh damping (Bozca, 2018) in the
range of (0.03-0.17). j = (1,2,0) denote the first,
second, and fixed-gear pairs transmission.
If x,, denotes the gear's relative meshing-
displacement under the impact of the gear’s non-linear



backlash s; (Bozca and Fietkau, 2010), the backlash
function can be expressed as the following

Xmj — Sj Xmj > Sj
f(xmj) = 0 —Sj < xmj < Sj (6)
Xmj +Sj Xmj < Sj
ijx = aijmj'
Fyiy = a,iF,;
_ . pjy yj-mj»
ij = kmj(t)f(xmj) + CmjXmj, F . =a,F,:
vjz zj-mj»
here, Ay = sin(—ay;) cos(f;) , ay; =

cos(—ay;) cos(B;), and a,; = sin(B;) represent the
angles first and the second gear pair i = (1,2). a,, =
sin(@,g — ) cos(—B,) Ay = cos(ayy —
) cos(—By) , and a,, = sin(—pB,) represent the
angles of the (final) fixed-gear pair. 8;and «,,; denote
the helix angle and pressure angle. (Fy ., Fyjy, Fpjz)
and (F,jx Fyjy, Fyj,) represent the dynamic mesh
force of both pinion (driving wheel) and gear (driven
wheel) at the coordinate directions X, y and z ,

respectively.

Fig. 1. Meshing model of a helical gear pair.

Dynamic model of the TSHG system

The research object of this paper is the inte-
grated structure of a TST. This section adopts the
equivalent concentrated mass method to simplify the
vehicle transmission dynamics system, so the follow-
ing assumptions are made:

(1) The rotational inertia of each component in the
transmission system is regarded as a rigid inertial
element, and the connection of the mass shaft is
ignored.

(2) The flexural-torsional coupled vibration of rotating
components is not considered.

(3) Ignore the influence of the quality of the drive shaft
and the drive half shaft.

(4) It is assumed that there is no slip and slip between
the wheel and the ground.

F gjx
Fgjy =
F, gjz
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The dynamic mesh force Fy,; of gear-pair along
the line-of-action (LOA) can be represented by a series
of meshing damping and TVMS as the following

—Fpjx
_ijy (8)
= —Fpjz

(5) Ignore the influence of oil stirring resistance
during gear shifting.

Synchronizer

P
7 alf ohe I

Vehicle Wheel hub  Halfshaft = _~ BTt e
Fig. 2. Powertrain model of the two-speed electric

vehicle equipped with a two-way synchronizer.

The TST powertrain system of the PEV
equipped with a two-way synchronizer shown in
Figure 2 is established as a multi-body model. The
input shaft of the two-speed transmission is directly
connected to the electric motor. In contrast, the output
side of the gearbox assembly contains vehicle equiva-
lent inertia, wheel hub, half shaft, the final drive, dif-
ferential, etc. (Liang et al., 2018; Walker et al., 2017).

To represent the flexibility of the transmission
input and output shaft, tires, and half-shaft, four spring
dampers were employed in the model. In particular,
there is no slip between the road and the belt (Bartram
et al., 2010) due to the assumption that the tire belt is
considered to be perfectly coupled to the road. The
flexible connection between the rim and the tire's side-
wall is denoted by a fixed stiffness and damping of a
linear torsion spring damper (rather than a complex
non-linear model). This model considers the rotational
motion and does not consider the longitudinal and ver-
tical movement of the tire and other PEV components.

To reduce the computational cost of the PEV
dynamic model, it is assumed that the two branches
(left and right half shafts and wheels) are symmetrical.
As a result, when different synchronizers are engaged,
the powertrain's rotational inertia and degrees of free-
dom will change. These inertial changes can be used
to define the state of the powertrain. Taking the non-
shifting state as an example, different states can be
defined as follows:

Based on the assumption that there is no eccen-
tricity in the transmission system and free body
diagram, the differential equation of the input equation
is derived as:
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Imém = Tm - Ko(gm - 95) - Co(ém - 05) - Cmém ISéS = Ko(gm - 95) + Co(ém - 95) - KSQS - TSl -

@ T (10)
where [,,, represents the inertia of the motor, C,, here, Ty; is the torque produced from the synchronizer
denotes the viscous damping coefficient of the cone, K is the synchronizer stiffness, I is the inertia
motor.8,, represents the angular displacement, and its of the synchronizer, and 6, is the torsional

second derivative represents the rotation velocity and displacement of the synchronizer.
acceleration of the motor. C, and K, represent the For half-axle tires and vehicle tires, since they
damping and stiffness coefficients of the motor's shaft. are symmetrical and the equations on both sides are the

In the state of not shifting, the synchronizer is same, only one side is described as
not fully engaged, and the dynamic equation of the
synchronizer is as follows.

{Ihéh = K,(840 — 6n) + C2(0g0 — 01,) — K3(6, — 6,) — C3(6,, — 6,,)
Ivev = K3 (eh - 01/) + C3 (Qh - 01/) - TLoad

here, I, represents the equivalent inertia of the wheel coefficients of where i = (2,3) denote the half-shaft

hub. I, is the vehicle equivalent inertia, including tire and tire-wheel hub shaft, respectively.

inertia. 6, and 6, represent the torsional displacement The lumped dynamic equations of these transmission

of the synchronizer and vehicle tires, respectively. C; stages y;, ¥, and y5 can be summarized as
and K; represent the damping and stiffness

Iplépl + Fip17p1 cos(By) ) . . . .

= TSl + TSZIglggl + Cll(ggl - gpo) + Kll(egl - gpo) + C12 (egz - gpo) + KIZ (egz - Hpo)

+ Fnitga cos(By) =0
Ipzépz + FipaTp cos(f2) ) . . . .

= TSl + TSZIgZQgZ + C12 (9g2 - gpo) + KIZ (egz - gpo) + Cll(egl - gpo) + Kll(egl - Hpo)

+ FinaTyz cos(Bz) = 0
Ipoépo - C11(9g1 - épO) - K11(9g1 - 9100) - C12(ég2 - épo) - K12(9g2 - on)_Fmorgo cos(— o) =0
Igﬂégo — FnoTyo cos(— Po) = —K; (ng —0p)— G (9g0 - gh) - Ctégo (12)
where [;; is the equivalent inertia related to the trans- damping coefficient. y; represents the transmission
mission ratio, i = (p,g) denote the driving gear ratio of j, and j = (0,1,2) represents the gear ratios of

(pinion) and driven gear (gear).j = (0,1,2) represent the first gear, the second gear, and the final gear
the transmission ratio of the final drive, first, and reduction, respectively.

(11)

second gear-pair, respectively. C, and K,, represent Considering the new DOF mentioned above to
the damping coefficient and stiffness coefficient of the the previous coordinate vectors of the two-stage gear
low-speed n = 11 and high-speed n = 12 intermedi- reducer, the generalized coordinates vectors of the
ate shafts, respectively.Cs and K are the damping co- two-speed gearbox non-linear dynamic model
efficient and stiffness of the tire, and C, represents the increased to 20-DOF and defined as follows

{Qm} = {H‘m' 95' gh' 917' epn' xpn' an' an' egn' xgn' an' Zgn' epO' xpO' ypO' ZpO' ng, ng' ng' ZgO}T (13)

where X; , Y; and Z; denote the translations of ~ Speed gear transmission, motor, synchronizer, half-

. q | q axle, and vehicle tire, respectively. n = (1,2) denotes
pinion and gear along axes X, y and Z. 6y, 6y, 6, the first and second gear shifting conditions. The
8, and 9, represent the torsional-displacement around parameters of the PEV and its transmission
the axis z of the (pinion p and gear g ) at low- components are mentioned in Table 1 and Table 2.

Table 2. Continued-The parameters of the two-speed synchronized gearbox and electric vehicle components.

Parameter Value Parameter Value
B B, o (°) 21.25, 21.25, 16.65 Zp1, Zp2, Zpo 25, 86, 29
A, ¢, ¢ (°) 18.5,18.5, 16.5 Zg1, Zg2, Zg0 77,34,91
Fg1, Fg2, Fgo (M) 0.0658, 0.0340, 0.0960 g1, bg2, bgo (M) 0.021, 0.022, 0.028
Ip1, Fp2, Fpo (M) 0.0214, 0.0861, 0.0306 bp1, bp2, bpo (M) 0.0225, 0.0235, 0.030
Mz, Mz, M3 (m) 0.00169, 0.00198, 0.00212 €1, €2, e (um) 20
S1, S2, So (1m) 40
Considering the first gear shifting condition (low- and synchronizer 2 (S,) is open, as shown in Figure 3.
speed transmission), synchronizer 1 (Si) is engaged, While synchronizer 2 (Sy) is engaged, synchronizer 1
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(S1) is open at the second gear shifting condition (high- gear pair in Formula (12) are combined into Formula
speed transmission), as shown in Figure 4. After a (14). Then, the torsional displacement of the synchro-
complete synchronization process, the transmission is nizer 6,, and pinion &, are also combined into one

rigidly (closed) connected, and the lumped inertia of torsional displacement.
the synchronizer in Formula (10) and the first/second

(Ipl + Is)épj = _Fmirpi COS(ﬁi) + (KO + KS)(em - epi) + (CO + Cm)(ém - 9pi) + TSL' (14)

Synchronizer

Co

(@)

Gear transmission

Fig. 3. The powertrain model of the electric vehicle system and gear pair transmission at the (low) first-speed
transmission condition

Co Synchronizer

Motor A
Ks
m m

(a) (b)

Gear transmission

Fig. 4. The powertrain model of the electric vehicle system and gear pair transmission at the (high) second-
speed transmission condition

After organizing the previous equation of the the first/second transmission condition are listed as
first gear shifting condition, the rotational and transla- follows
tional motion equations of the two-speed gearbox at
Imém =Ty — (KO + Ks)(em - epi - (CO + Cm)(ém - épi) - TSi(Ipi + Is)épi
= _Fmirpicos(ﬁi) + (KO + Ks)(em - gpi) + (CO + Cm)(ém - épi) + TSiIgiégi
= _Cli(égi - épo) - Kli(egi - 91)0) - Fmirgicos(ﬁi)lpoépo
= C1i(9gi - épO) + Kli(egi - 91)0) + Fmorpocos(_ﬁo)lgoégo
= FinoTpocos(—fo) — K; (HgO - 9h) - (G + Ct)(égo - éh)lhéh
=K, (9g0 - 9h) +(C, + Ct)(égo - 9h) - K306, —6,) — C3(9h - év)lhéh
=K; (Hh - 91;) + G (eh - 91;) — TLoad
(15)
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mpijépi + Cxpixpi + kxpixpi - axiFmi
mpij}pi + Cypiypi + kypiypi + ayiFmi
mpizpi + Czpizpi + kzpizpi + aziFmi =
mgijégi + ngixgi + kxgixgi + axiFmi
mgij}gi + Cygiygi + kygi.Vgi - ayiFmi =
mgizgi + ngizgi + kzgizgi — AuiFy =
mpojépo + Cxpoxpo + kxpoxpo - axOFmo =0
mpoypo + Cypoypo + kypoypo + ayOFmO =0
mpoZpo + CzpoZpO + kpoZpO - azOFmO =0
mgoijégo + ngoxgo + kxgoxgo + ayoFmo =0
mgoj}go + CngYgo + kygoygo - ayOFmO =0
mgOZgiO + ngOZgO + kngZgO + azOFmO =0

© 0o @ oo

™)

where m,,,, indicates the mass v = (p, g) in the first
and second stages w = (i, 0) , respectively.

The relative displacements of the first stage x4,
the second stage x,,,, and (final) fixed stage x,,,
along the LOA are defined as

Xmi = [(_xpi + xgi) Sin( - ani) + (yPi -
Vgi) €0S(— Apy) + (1pibp; + 14i04)] cos(B;) +
(Zpi — 2gi) sin(By) — e;(t)

Xmo = [(_xpo + ng) sin(apo — ) + (Ypo
- J’go) COS( QAno — 7T) - (rpoepo
+ rgoego)] cos(—Bo) — (Zpo
- ZgO) sin(— Bo) — eo(t)

(®)

For analytical convenience, a dimensionless
form of the system equations above is derived by
applying the following non-dimensional parameters as

_Mj oy _ Yy _ Zij
Xy =0V =702y =50

¢® ©)
-

Xb=%,E]-(‘r)= ,T = Wyt
J J

where w,; = \/ko;j/m.; indicates the natural fre-
quency and me; = I,j1,;/ (1,72 + 1y;75;) represents
the equivalent mass of the gear pair. The small and big
letter of each variable indicates the derivative to time
t and dimensionless time 7, respectively.

Hence, the non-linear backlash function in the

dimensionless form in Formula (7) becomes as

FXm)) = 0 1< Xy <1 (10)

The dimensionless motion equation of the TST
gear system in matrix form is expressed as
[MI{Q:n} + [CU{Qum} + [K]{Q@m} = {Fq} (11)
where [M], [C],[K],{Q.} and {F,} represent the
mass matrix, damping matrix, stiffness matrix,
coordinate vectors, and the external excitation force
vectors of the dimensionless TST system. Their
specific forms can be found in APPENDIX A.
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Experimental Validation

This chapter takes the two-stage gear of the elec-
tric drive transmission as the experimental object,
where the transmission vibration test bench is built ac-
cording to the required design. We performed a
dynamic vibration experiment on the test bench to ver-
ify the obtained theoretical analysis's validity. In the
actual project, the system's vibration is generally
reflected by the acceleration of the system or system
components. Therefore, we use vibration acceleration
to validate the theoretical model rather than transmis-
sion error.

This experiment adopts the vibration test and
data collection analysis of "(the transmission box
equipped with an acceleration sensor) (data collection
system) (testing computer) (data processing and
analysis)". The experimental setup and design scheme
of the test bench are illustrated in Figure 5. Where the
main structure of the test bench includes 1 input motor,
2 big belt pulley, 3 small belt pulley, 4 torque & speed
sensor, 5 two-stage gearbox and 6 load motor. In this
vibration experiment, the data collection part uses the
SCM data acquisition system and related software
designed and developed by LMS to measure and
analyze the system's vibration data. The specific
parameters of the test bench are shown in Table 3.

According to the chapter Dynamic model of the
TSHG system, the dynamic modeling equation of the
gear transmission system of the electric drive trans-
mission is solved, and the vibration characteristics of
the system under various simulation conditions are
theoretically analyzed. Solving the dynamic equations
in MATLAB can provide us with the system's vibra-
tion displacement and vibration velocity under various
working conditions. Analyze the speed from 500-3000
rpm, taking an analysis speed every 250 rpm. The x-
axis and y-axis represent the radial direction, and the
z-axis represents the axial direction. The results of pre-
dicted and measured vibration accelerations concern-
ing the rotational speed of the pinion are shown in
Figure 6.

Table 3. Continued-The parameters of the two-speed
synchronized gearbox and electric vehicle

components.
Parameter Value
Rated torque 95 Nm
Maximum load level Level 13
Motor rated power 30 KW
Temperature control accuracy +2°C
Temperature adjustment range 0-100 C

Motor speed 10-3000 r/min
Test gearbox capacity 18L
Test machine size 1500x900x800 mm
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Compared with the experimental results, when
the rotational speed is greater than 1750 rpm, the RMS
amplitude of the vibration acceleration of the three
shafts obtained by theoretical analysis gradually de-
creases. It can be seen from Figure 6 (2) that the meas-
ured and predicted results of the vibration characteris-
tics in the x-axis direction at low speed correspond
well. Consequently, the difference between the pre-
dicted and measured vibration acceleration is rela-
tively large as the rotating speed increases along to
3000 rpm, which may be related to the design of the
actual gearbox transmission and testing method.
However, compared with the input and intermediate
shafts' vibration, the measured vibration acceleration
of the output shaft corresponds well with the predicted
vibration acceleration. In conclusion, it can be seen
from the experimental results that the vibration of the
system is the most severe when the speed is 1750 rpm.
With the increase of rotating speed, the vibration ac-
celeration of the three transmission shafts gradually
increases, but the vibration acceleration decreases at
750, 1500, and 2500 rpm.
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In the y-axis direction, the vibration of each
shaft is shown in Figure 6 (b). When the rotating speed
is low, the vibration acceleration value obtained from
the theoretical analysis of the input shaft is quite dif-
ferent from the experimental measurement result.
When the rotation speed is lower than 1250 rpm the
predicted vibration acceleration of the shafts is larger
than the measured vibration acceleration. At the rotat-
ing speed of 1000, 1250, and 1500 rpm, the measured
acceleration vibration is in good agreement with the
predicted vibration acceleration. After the rotating
speed of 2000 rpm, the variation gap between the the-
oretical result and experimental result increases
enlarges again, while the measured vibration accelera-
tion is larger than the predicted vibration acceleration.
The measured vibration acceleration of the output
shaft corresponds well with the predicted vibration ac-
celeration within the entire experimental speed range.
The predicted and measured vibration accelerations in
x-axis direction appear to be in good arguments when
compared with the vibration acceleration in the y-axis
direction.
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The comparison figure of the predicted and
measured vibration acceleration in the z-axis direction
is shown in Figure 6 (c). It can be noticed that the the-
oretical analysis results and experimental measure-
ment results of the three shafts of the system are
consistent in trend, but there is a certain deviation in
the result value. The theoretical calculation results of
the output shaft and the experimental results are con-
sistent at low speeds up to 1500 rpm, while the
measured vibration acceleration of the input and inter-
mediate shafts is lower than the predicted one. The the-
oretical and actual results of the output shaft show
different trends at 2000 rpm and 2500 rpm. Even at
2500 rpm, the experimental result is about 3 times the
theoretical calculation value. It may be related to the
pasting direction of the acceleration sensor and the
experimental environment.

In general, the vibration test results at each test
point are consistent with the theoretical analysis and
calculation results, and the vibration acceleration of
each drive shaft has inevitable fluctuations at different
speeds. However, as the speed gets higher, the trans-
mission shaft's vibration and gearbox get more severe,
proving that the dynamic analysis method and process
obtained in the previous Chapter are correct and
feasible.

RESULTS AND DISCUSSION

The effect of the rotating speed on the tow-speed
gearbox transmission
The effect of the rotating speed on the tow-speed
gearbox at the (low) first-speed transmission condition
The dimensionless motion equations are solved
by applying the fourth-order Runge-Kutta numerical
integration method in MATLAB (ODE-45 solver).
The bifurcation diagrams are useful tools for observ-
ing the dynamic responses of the system (Wang et al.,
2019). Figure 7 (a) and (b) show both forward and
backward bifurcation characteristics in the dimension-
less displacement of the system Xm1 with the pinion
rotating speed variation.
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Fig. 7. The vibration diagrams of the system Xm1 of
the first-speed transmission using (1 as a controller
parameter: (a) forward bifurcation map, (b) backward
bifurcation map, (c) PPV, (d) RMS.

To comprehend the dynamic behaviors more
clearly, different diagrams such as amplitude-fre-
guency spectrums, time response diagrams, and phase
plane maps with poincaré points are presented. At the
first gear shifting condition, when the pinion's rotating
speed is low, it can be indicated that the response of
Xm1 is in a quasi-periodic motion and persists until it
reaches 15700 rpm, where the phase portrait and poin-
caré map show shifted and thick response results, as
displayed in Figure 8 (a). As the pinion’s rotating speed
increases to the range {3101-4915} rpm, the corre-
sponding displacement of Xu1 enrages, as displayed by
the enlarged range of both poinceré points and phase
plane, the fluctuation of time-domain history and the
existence of the sidebands after the dominant peak 1 fy,
in FFT (Fast Fourier Transform) spectra, as displayed
in Figure 8 (b). When the rotating speed is within the
range {15800-16470%} rpm, the system enters a chaotic
region through a quasi-periodic motion route. The am-
plitude-frequency spectrum is infinite continuous
components (W. Chen et al., 2019), the phase plane
diagram and time domain response diagram also show
irregular motions that result in a chaotic response, and
the poincaré point does not repeat itself in any pattern,
as demonstrated in Figure 8 (c). When the rotating
speed has increased to 16850 rpm, the system turns
back to quasi-periodic motion and remains in the state
with the decreasing of the displacement range until
20000 rpm. As shown in Figure 8 (d), the poincaré
map's return points form a closed orbit and the phase
plane diagram has a thick curve. These characteristics
prove that the system is a quasi-periodic motion
(Wang et al., 2019). Considering the backward bifur-
cation shown in Figure 7 (b), it is evident that the sys-
tem response has the same trend compared with the
forward bifurcation. The difference in the backward
one is that the chaotic motion is enlarged and shifted
forward to the speed range from 15320 rpm to 16090
rpm. A high amplitude of displacement exists at a very



high speed at 19700 to 20000 rpm. While the poinceré
points perform a thick linear line with shifted cycles
that appear in one side of the phase plane, that is due
to the fluctuation of the upper displacement amplitude
of time-domain history, and a single synchronous fre-
guency appears in the FFT plot, as shown in Figure 8
(e). These phenomena indicate that the system has the
most impact at high rotating speed.

The peak-to-peak value (PPV) and root mean
square (RMS) curves of the system X1 at the first con-
dition concerning rotating speed are illustrated in
Figure 7 (c) and (d). The dynamic response has many
prominent sub-harmonic peaks (B. Fan et al., 2018)
occurring at {2241, 3482, 4246, 8638, 9497} rpm. In
response to the non-linear system, the phenomenon of
“frequency hopping’ usually exists in the bifurcation
diagram. In the case of the forward sweep, a
“frequency hopping’ phenomenon is obtained around
the response frequency of speed at 15700 rpm,
whereas another ‘frequency hopping’ phenomenon oc-
curred around 14650 rpm in the case of the backward
sweep. Moreover, a hysteresis loop (Chen et al., 2019)
can be observed in PPV and RMS curves, and two
apparent bistable response regions are noted around
{15230-15700} rpm and {18100-20000} rpm.
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(d)The dynamic response of the forward sweep system
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Fig. 8. The dynamic response of the system Xm1

With the variating of rotating speed, the system
Xmo behaves as quasi-periodic motion that remains in
this state from 1000 rpm to 15400 rpm, as shown in
Figure 7 (a) and (b). In this case, the phase plane dia-
gram has a thick track circle where the return points in
the poincaré section corresponding to 1000 rpm show
a loop with a closed phase. The meshing frequency fn
was still the dominant response where the combination
components and frequency multiplication of variable
frequencies were observed. The above characteristics
indicate that the system is in a quasi-periodic motion
(Pan et al., 2019), as illustrated in Figure 10 (a). After
a long quasi-periodic motion state, the system turns
into chaotic motion rapidly at a high-speed range from
15510 rpm to 17450 rpm. The time-domain response
diagram and phase plane diagram show chaotic attrac-
tors with random distribution characteristics. The
return points in poincaré maps form an unordered
point set. The meshing frequency f, was no longer the
dominant response where the FFT spectra show a con-
tinuous broadband response. These vibration features
prove that the system is in a state of chaos, as shown
in Figure 10 (b). After undergoing the chaos state, the
system turns back into quasi-periodic motion until the
speed reaches 20000 rpm. Here, the phase plane por-
trait is trajectory torus with phase-locked loops shown
in the poincaré section, non-integer multiple of mesh
frequency appears in FFT spectra, and the time domain
response diagram shows fluctuated periodic motion.
These characteristics prove that the system is in quasi-
periodic motion, as shown in Figure 10 (c).

The PPV and RMS curves of the system Xmo at
the first condition with respect to rotating speed are

illustrated in Figure 7 (c) and (d). The dynamic system
response has many noticeable (resonant motion) sub-
harmonic peaks occurring about {2241, 3387, 4342,
8638, 9497} rpm. During the forward sweep, a jump-
down phenomenon was observed around the response
frequency of speed 14560 rpm, while a jump-up one
occurs around the response frequency of speed 15510
rpm. Due to the disparity of backward bifurcation’s
characteristics, hysteresis loops occur in PPV and
RMS maps while the bistable response regions are de-
terment within {14560-15510} rpm and {19050-
20000} rpm.

In summary, the dynamic responses of the sys-
tems Xm1 and Xmo Of the first condition are identical.
Under the variation of the rotational speed, both
systems behave as a quasi-periodic motion. Excluding
when the speed at the range of {14650-16090} rpm for
system Xm1 and {14560-17420% rpm for system Xmi,
both systems become unstable and change into chaotic
motions. Comparing the forward and backward bifur-
cation, the range of chaotic response of both systems
Xm1 and Xmo during the forward sweep enlarges and
shifts forward during the backward sweep, as proven
by the bistable response regions and amplitude of PPV
and RMS maps.
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Fig. 9. The vibration diagrams of the system Xmo of
the first-speed transmission using Qp1 as a controller
parameter: (a) forward bifurcation map, (b) backward

bifurcation map, (c) PPV, (d) RMS.
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Fig. 10. The dynamic response of the system Xmo

The effect of the rotating speed on the tow-speed
gearbox at the (high) second-speed transmission
condition

Considering the forward bifurcation map of the
second condition that is shown in Figure 11 (a), it is
detected that the system Xm2 undergoes quasi-periodic
motion at low speed within {1000-3250} rpm. The
phase plane diagram is a disorder with a closed orbit
formed by poincaré points (Gritli and Belghith, 2018),
which is proved that the system X2 behaves as quasi-
periodic motion, as shown in Figure 12 (a). Then the
system turns into chaotic motion through the quasi-
periodic route at the speed range of {3291-3578} rpm.
As illustrated in Figure 12 (b), the phase plane diagram
shows irregular periodic motion. In general, the
system Xm2 keeps transforming between quasi-periodic
and chaotic motions under the increasing of the
rotational speed, where the system is in a state of chaos
at the range speed of {4819-6156} rpm, {8065-8829}
rpm, and {11030-11500} rpm. When the speed is
about 11030 rpm and 11500 rpm in forwarding
bifurcation, it is detected that the system Xm2 contains
both chaotic and quasi-period motion responses (Pan
et al., 2019; Zhou et al., 2016; Gao et al., 2018). As
proved in Figure 12 (c), at the rotating speed of 11025
rpm, the phase planes exhibit a relatively thick
periodic mation, and the poincaré section shoes two
clustered point set. Hence, the system Xm2 is in the state
of 1/2 subharmonic resonance (Wang, 2018). The
system goes into chaotic regions through the quasi-
periodic route around the range of {11030-11500} rpm.
As illustrated in Figure 12 (d), the phase plane shows
a highly disordered shape with discrete points created
in the poincaré section. These vibration features
demonstrate that the system Xm2 exhibit chaotic motion.
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The system Xm2 turns into quasi-periodic motion
again and persists at the speed range of {11600-20000}
rpm. As seen in Figure 12 (e), the phase plane diagram
shows regular unrepeated curves motion causing the
poincaré points to form a virtual circle shape Hopf
circles (Zhang et al., 2008). Where the motions of the
Hopf bifurcation points are quasi-periodic routes
(Xiang et al., 2016). However, the pinion's rotating
speed affects the responses of Xmo. The responses at
the speed of 17000 rpm show a shifted phase portrait
forming a two curve of poincaré point sets, which
indicates that the response of X2 is quasi-periodic
motion (Zhao and Ji, 2015), as shown in Figure 12 (f).
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It is observed that the response characteristics of
the forward and backward bifurcation map of the sys-
tem Xm2 are identical. Considering the backward bifur-
cation map shown in Figure 11 (b), the chaotic motion
range gets wider, especially at the corresponding speed
range of {7683-8638} rpm, while new chaatic regions
were detected at {12740-14270} rpm and {19710-
20000} rpm. The chaotic motion range is diminished
at a low speed of 3387 rpm. A ‘frequency hopping’
occurs at the speed of 14750 rpm during the backward
sweep. These variations are also proven by apparent
bistable found in the PPV map in Figure 11 (c) and (d).

During the backward sweep, the highest rotating
speed within {19720-20000} rpm impacts fiercer at
system Xmz. At a high-speed range within {19720-
20000} rpm, the system starts at a highly disordered
vibration response in the phase plane plot with non-
periodic motion, translating the chaotic response, as
shown in Figure 12 (g).

Both phase plane and poincaré section have
shifted and unrepeated responses at 19714 rpm (Zhao
and Ji, 2015), as demonstrated by Figure 12 (h). Thus,
the system X2 enters a chaotic region {19720-20000}
rpm through quasi-periodic motion. With the decreas-
ing of the pinion’s rotating speed, two attracting invar-
iant curves emerge associated with quasi-periodic
dynamics in the poincaré section as the rotating speed
decrease within {14750-15320} rpm, hence the system
Xmz2 performs a quasi-periodic solution (Liu et al.,
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2017), as displayed in Figure 12 (i).

The PPV and RMS responses curves of the sys-
tem Xm at the second condition are illustrated in
Figure 11 (c) and (d), where the controller parameter
is the pinion rotational speed. With the increase of
rotational speed from 1000 rpm to 20,000 rpm (as
forwarding sweep frequency), the amplitude value
contains many jumps-up phenomena at {3291, 4819,
8065, 11030} rpm then turns into chaotic motions. The
system also contains many jumps-down phenomena at
{10260, 13980} rpm then turns into quasi-periodic
motions. Moreover, hysteresis loops are observed
clearly in PPV map; it is noted that there are three
apparent bistable response regions at {7683-8065}
rpm, {9975-10260} rpm, {12740-13980} rpm and
{14750-16850%} rpm. Considering the backward sweep
frequency, the rotational speed of the pinion decreases
from 20,000 rpm to 1000 rpm. The system keeps in a
quasi-periodic state at high speed. With the decreasing
of rotational speed, jumps up phenomena detected at
{14180 and 55774} rpm then turns into chaotic
motions, whereas jump up at 10450 rpm and goes into
chaotic and periodic-2 motion; the system also
contains many jumps down phenomena at {19900,
14750, 12740, 11030, 9975, 7683, 4819} rpm then
turns into quasi-periodic motions.
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controller parameter: (a) forward bifurcation map, (b)
backward bifurcation map, (c) PPV, (d) RMS.
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Fig. 14. The Phase plane and poincaré point of the
system Xmo

Figure 13 illustrates the forward and backward
bifurcation, PPV, and RMS diagrams of the system
Xmo at the second shifting condition. Considering the
forward bifurcation map shown in Figure 13 (a), it is
observed that the system response characteristics
range is identical to the backward bifurcation map in
Figure 13 (b). The chaotic motion range gets narrow,
especially at the corresponding speed range of {3101-
3387} rpm, {11030-11600%} rpm, while its range gets
wider at {11600-14180%} rpm. Moreover, forward bi-
furcation has no chaotic motion at a high-speed range
of {19710-20000} rpm compared with the chaotic
response that exists in the backward bifurcation map,
which is also proven by apparent bistable found in the
PPV map in Figure 13 (c) and (d).

It is evident that the system Xmo is in quasi-
periodic motion at low speed, where the system be-
haves as a quasi-periodic motion at a speed range of
{1000-3100} rpm, {3578-4915} rpm, {6156-7870}
rpm, and {8925-11030%} rpm, as shown by the bifurca-
tion diagrams in Figure 13 (a) and (b). As displayed in
Figure 14 (a), the phase plane diagram has some
closed-twisted and thick curves, the poincaré map also
shows closed virtual curves. These results demonstrate
that the system Xmo is in a quasi-periodic response. A
short jump up and down phenomenon appears at
10260 rpm and 10550 rpm, respectively.

With the increase of the rotation speed, the sys-
tem Xmo abandons the quasi-periodic motion comes
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into chaotic motion, and remains in chaos state at the
range of {3196-3578} rpm, {4915-6156} rpm, {7970-
8925} rpm, {11030-11690} rpm and {13980-14370}
rpm. In this case, the phase planes are highly disor-
dered with many discrete points shown in the poincaré
section, as shown in Figure 14 (b). However, the
system is in quasi-periodic-2 impact motion at the par-
ticular speed of 10260 rpm, as seen in Figure 14 (c).
The phase plane exhibits a thick periodic motion, and
the poincaré section shows two clustered points (Gritli
and Belghith, 2018; Liu et al., 2017; Luo, 2004; Wen
etal., 2008).

Considering the backward bifurcation, it is ob-
served that the system Xuo is in a chaotic motion state
within the speed range of {10930-11600} rpm and
{12740-14180} rpm. Where the phase plane diagram
is disordered with many discrete points shown in the
poincaré section, as displayed in Figure 14 (d).
However, when the speed is at the range of {14370-
19620} rpm, the system undergoes quasi-periodic mo-
tions, where the poincaré maps form an unenclosed
loop (Hu et al., 2018;C.W.Chang-Jian,2010) com-
bined with several trajectories lined sets (Wang and
Zhu, 2021) showed in the phase portrait, which proves
the system Xmo has a quasi-periodic motion, as demon-
strated in Figure 14 (e). All these characteristics indi-
cate that the system Xmo enters the limit cycle motion
(Hopf circles) (Zhang et al., 2008; Xu and Ji, 2019; Lv
et al., 2021). Finally, the system Xmo ends with chaotic
motion at a high-speed range of {19700-20000} rpm.
The chaos state is detected due to the disordered shape
in the phase plane, the scattered points shown in the
poincaré section, as illustrated in Figure 14 (f).

The PPV and RMS responses of the system Xmo
are shown in Figure 13 (c) and (d), where the control-
ler parameter is the pinion rotational speed. With the
increase of rotational speed from 1000 to 20,000 rpm
(as forwarding sweep frequency), the amplitude value
has many jumps up phenomena at {3291, 4915, 7970,
11030, 12840, 14080} rpm then turns into chaotic
motions. Furthermore, hysteresis loops are observed
clearly in PPV and RMS map. It is noted that there are
three apparent bistable response regions in the system
at {7588-7970}rpm, {8543-10260}rpm, {12740-
14080} rpm and {19710-20000%} rpm. Considering the
backward sweep frequency, the rotational speed of the
pinion decreases from 20,000 to 1000 rpm. The system
Xmo 1S in a chaos state at high speed {19710-20000}
rpm range then turns into quasi-periodic until 14180
rpm. With the decreasing of the rotational speed,
jumps-up phenomena are detected at {11600, 14270}
rpm then the system Xmo turns into chaotic motions.
The system also contains many jumps-down phenom-
ena at {12740, 11030, 8543, 7588, 4724, 3005} rpm
then turns into quasi-periodic motions.

In summary, the dynamic response of the system
Xmz2 and Xmo of the second condition are identical.
Under the variation of the rotational speed, both sys-
tem response fluctuates between the quasi-periodic
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and chaotic motion. Comparing the forward and back-
ward bifurcation, the range of chaotic response of both
systems Xmz and Xmo is smaller at the forward bifurca-
tion and gets broader in the case of backward bifurca-
tion, as proven by the apparent bistable response re-
gions on PPV and RMS maps in Figure 13 (c) and (d).

The effects of system parameters on the tow-speed
gearbox transmission

In this chapter, the effects of TVMS, bearing
support stiffness, and STE amplitude on the response
of the two-speed transmission system are analyzed to
guide the optimization of the system's dynamic
response.

To present the extent of variation in Formula (5),
we execute the bifurcation diagram of the relative dis-
placement of the first and second stage gear pair at the
second condition under the variety of TVMS ratio
ko/Ax within (3.33-20), as shown in Figure 15 (a) and
(b). The motion of the system Xm2 and Xmo is chaotic
when the mesh stiffness ratio ko/Ax is small within
(3.33-13.72). On the contrary, when the amplitude of
the mesh stiffness ratio ko/Ax increases within (13.72-
20), the dynamic response of both system Xm2 and Xmo
turns into quasi-periodic motion. In summary, we
conclude that the TVMS is considered a significant
factor in the dynamic behavior of the TST gearboxes.
Strong non-linear characteristics of the system's
motion were revealed when the amplitude of the
TVMS ratio Ko/Ax is small within (3.33-13.72) that is
due to the low hardness of the gear surface; whereas
the quasi-stable motion is easy to achieve when the
TVMS ratio ko/Ax is high within (13.72-20). According
to this concept and in the actual engineering practice,
high mesh stiffness can be reached via effective meth-
0ds, such as strengthening surface hardness and appro-
priate tooth profile design.

Since supporting stiffness is a significant
parameter that affects the system's dynamic response,
it is essential to study the influence of support stiffness
on TST's dynamic characteristics. The pinion’s
rotating speed (i and stiffness of bearing ki are
assigned as control parameters. i = (x,y,z) are the axis
directions. j = (p,g) represent the pinion and gear. i =
(1,2,0) donate the first, second, and (final) fixed gear-
pair, respectively. Figure 16 shows the maximum
Lyapunov exponents diagrams of the vibration
displacement Xm2 and Xmo when the supporting
stiffness ki is set to vary from low to high values
1x108 N/m, 3.5%107 N/m, and 8x10° N/m, respectively.

The maximum Lyapunov exponents depict that
at low stiffness of 1x10° N/m the dynamic response
has a more significant influence on the dynamic
behaviors of both systems Xmz and Xmo. That is proven
by the highest Lyapunov value corresponding to the
speed range within {3101-3482} rpm, {7874-8447}
rpm, and {10640-11310} rpm as for the system Xm2, as
shown in Figure 16 (a); excluding the speed range of
{3101-3482} rpm as for Xmo as shown in Figure 16 (b).



These high Lyapunov values indicate that the system
response is chaotic and unstable, and the lower values
close to the zero-line indicate the quasi-periodic
motion. When the support stiffness increases to
3.5x107 N/m, the dynamic response of both systems
corresponding to the previous rotating speed ranges
has fewer effects compared with the dynamic response
of lower stiffness of 1x10° N/m. However, the
Lyapunov exponents of Xmo are greater corresponding
to the speed range of {3101-3482}rpm and {5869-
6347} rpm. When the support stiffness ki = 8x10°
N/m, the chaotic motions under the mentioned critical
speed range disappear and turn into quasi-periodic
motion. Meanwhile, new chaotic responses of both
systems are revealed within the speed range of {6538-
8065} rpm, as proven by the red curve shown in Figure
16. These dynamic response variations of both systems
indicate that the support stiffness has a significant
influence on the meshing state of the gear teeth. Hence,
the bearing stiffness must be designed accordingly to
eliminate the severe fluctuations of the system’s
dynamic response.

In short, the dynamic behavior of the gear
system underwent an extensive range of chaotic
motion at low bearing stiffness. However, the high
amplitude (chaotic motion) of maximum Lyapunov
exponents diminishes as the bearing stiffness increases,
then entirely disappears and turns into quasi-periodic
motion when further increasing bearing stiffness. This
proves that the support stiffness could control the noise
and vibration of the system in the practical engineering
application. Hence, the obtained results reveal the sig-
nificance of considering the non-linear effect of sup-
port gear when evaluating the dynamic response of a
practical gearbox.

Figure 17 shows the maximum Lyapunov expo-
nent plots under three different STE amplitudes. When
the STE amplitude is equal to 20 um, the chaotic
motion regions are observed under the rotating speed
of {3196-4724} rpm, {3578-6060} rpm, {7683-8543}
rpm, and {10930-11600%} rpm and proven by the high
amplitude of the Lyapunov exponents. When the STE
amplitude increases to 120 um, the amplitude of the
maximum Lyapunov exponents of both system Xz
and Xmo turns higher corresponding to the speed ranges
of {3578-6060} rpm and {7683-8543} rpm, as dis-
played in Figure 4. The increases in the maximum
Lyapunov exponents' amplitude indicate that the
ranges of chaotic motion corresponding to these rotat-
ing speed ranges were enhanced. However, the chaotic
region of the system Xm2 corresponding to the speed
ranges of {3578-6060} rpm {3578-6060} rpm en-
larges, and the amplitude of Lyapunov exponent rases
when the STE is increased to 300um. Meanwhile, the
range of chaotic motion of the system Xmo enlarges
corresponding to the rotating speed of {4437-6251}
rpm; the Lyapunov amplitude also rases under the
speed of {3101-3482} rpm and {10930-11600} rpm,
indicating that the range of chaotic motion was
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strongly enhanced.

In short, the TVMS ratio has more effect on the
dynamic behavior of gearbox components compared
to the other internal excitation source such as STE.
When the STE amplitude is low (for instance E; =20
um), the response of both systems Xmz and Xmo seems
relatively stable. When the STE amplitude is increased
to 120 pm, the chaotic response of both systems
becomes enhanced. When the STE amplitude is further
increased to 300 um, the chaotic motion response of
both systems becomes more excited and enlarged, and
the system's stability becomes worse. This conclusion
is in agreement with the actual engineering practice.
Hence, the gear’s installation precision and manufac-
turing must be improved to achieve the system’s
stability.
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CONCLUSIONS

In this paper, a multi-freedom non-linear
dynamic model of a TSHG transmission equipped
with a two-way synchronizer used in PEV was estab-
lished. Which considers the TVMS, mesh damping,
STE, transmission errors, gear backlash, and torsional
damping and stiffness. An electric drive two-stage
gear transmission test rig was established, and the
effectiveness of the established dynamic model was
verified through comparison. The non-linear dynamics
of the gear system under two transmission condition
was analyzed with the help of a global bifurcation map,
maximum Lyapunov exponents, FFT spectra, poincaré
map, time-domain history, phase portrait, RMS, and
PPV. Where the effect of the pinion’s rotating speed,
TVMS ratio, and supporting stiffness on the system’s
dynamic responses was also analyzed. The obtained
results provide a helpful reference and understanding
of designing such systems. The following conclusions
can be summarized as follows:

(1) From the study of the pinion’s rotating speed and
the dynamic response of the gear system at the
second (high) speed transmission condition, it was
found that the system exhibited complex non-
linear dynamic characteristics compared with the
first (low) speed transmission one. The results
indicate the high speed over 14000 rpm affects the
natural frequency of the gear pair system during
the low-speed transmission condition. On the
contrary, in the high-speed transmission condition,
the system is hardly excited and reveals many
chaotic regions corresponding to the pinion’s
rotating speed below 14000 rpm. It is found that
the system enters into chaos via the quasi-periodic
and double quasi-periodic routes. Where both
systems exhibit various dynamic responses and
phenomena such as quasi-periodic motion, double
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quasi-periodic motion, chaotic motion, Hopf
bifurcation, frequency hopping, sub-harmonic, and
hysteresis loop response.

(2) Based on the influence mechanism of TVMS on
the dynamic response, it is noteworthy that the
non-linear characteristics crisis on the system’s
motion were revealed when the amplitude of the
TVMS ratio is small (3.33-13.72) due to the low
hardness of the gear surface. The quasi-stable
motion is easy to achieve when the TVMS ratio is
higher about (13.72-20). According to this concept,
in practical engineering practice, the mesh
stiffness can be improved by effective methods to
suppress vibration.

(3) According to the influence mechanism of bearing
stiffness on the dynamic response, it was
concluded that the changes in bearing stiffness
have a significant influence on the meshing state
of the gear teeth. The dynamic response underwent
an extensive range of chaotic motion at low
bearing stiffness. However, when the bearing
stiffness increases, part of the chaotic motion
decreases then disappears completely or even
becomes quasi-periodic motion. Due to the
significant influence of support stiffness on the
gear system's meshing state, the bearing stiffness
must be designed accordingly to eliminate the
severe fluctuations of the system’s dynamic
response, hence, achieving the purpose of
vibration control and extending the system life.

(4) Compared to the internal excitation source such as
TVMS, the STE has less influence on the
vibrations of gearbox components. It was found
the increases of STE amplitude to 300 um could
enormously enhance and enlarges the chaos
response of the gearbox system, leading the
system’s stability to become worse. Hence, the
gear's installation precision and manufacturing
must be improved to achieve the system’s stability.
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APPENDIX A

The mass matrix [M] can be expressed by
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! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O
0 1 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 O
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O
0 0 0 1 0 0 0 0 0 0 0 0O 0 0 0 0 O0 O
0 0 0 0 1 0 0 0 0 0 0 0O 0 0 0 0 0 O
0 0 0 0 0 1 0 0 0 0 0 0O 0 0 0 0 O0 O
0 0 0 0 0 0 1 0 0 0 0 0O 0 0 0 0 O0 O
0 0 0 0 0 0 0 1 0 0 0 0O 0 0 0 0 0 O
0 0 0 0 0 0 0 0 1 0 0 0O 0 0 0 O0 0 O
[M] = 0 0 0 0 0 0 0 0 0 1 0 0O 0 0 0 O0 0 O (A1)
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 O
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 O
0 0 0 0 0 0 0 0 0 0 0 0 01 00 0O
0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0O
0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 00O
m m, mgy my mg mg 0 0 0 0 0 0O 0 0 0 O0 1 O
L 0 0 0 0 0 0 my mg mgq my my;y my, 0 0 0 O 0 1l
Here,
My = —Qyj, My = Ay, M3 = Agg, My = Ay, My = — Ay, Mg = —0gj, My = —Uyo, Mg = Ay,
Mg = —0z0, M10Axp, My1 = Ay, M2 = Ay (A2)
For the sake of simplicity, the damping matrix [C] and the stiffness matrix [K] are expressed by [Acx] as
the following
A4, 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 A, 07
0 4 0 0 O 0 0 0 0 0 0 0 0 0 0 0 A, 0
0 0 A 0 O 0 0 0 0 0 0 0 0 0 0 0 Ag 0
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00 0 0 0 0 0 0 O 0 0 0 0 0 Ay Ay 0 0
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[0 0 0 0 0 0 O O O 0 0 0 0 Ay Asg 0 0 Ay
where [A, ] represents the damping and stiffness of ki = _ayOKmO(T)’ - —kzpo ’
the block i =1,2,---,40, which can be expressed by po@no Mpo@no
the following equations 8= M = ~kpo
w2, T myw?,
_kxpi axiKmi(T) _kypi p0“n0 907790
ky = A 2 ks = — A0 Kmo (T) _kypo
My Wy Mpi Wy My Wy koo = 2 21 = R
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ky = — 2 5= 2 6 = 2 ayOKmO(T) _kpo
Mpi Wy My Wy My Wy 22 = 2 K23 = 2
xpi _axiKmi(T) _kypi MMgo®go Mgo®go
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Mg Wy Mg Wy; Mg Wy; kyy=—7"75—
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gini git~oni gLni 25 — 7 2 + 2 )
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ki3 = 0wy 14 = I 15 = Mooy, ke = K ()15 cos(By)
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2
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The simplified coordinate vectors {Q,,} and the

vector force {F,} can be written as
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