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ABSTRACT 

 
This study used the finite element method 

(FEM) and assumed mode method (AMM) to refine 
the disk-transverse, blade-bending, and shaft-torsion 
coupling vibration phenomenon of a multi-disc 
system with multi-mistuned or multi-disordered 
blades. The authors explore and compare the change 
regulations of the natural frequencies and mode 
shapes in the rotor system. Numerical calculation 
results show that the number of mistuned or disorder 
blades, as well as their symmetry, will affect the 
natural frequencies. In a quantitative case, the authors 
set blade (1) at 10% mistune, and blade (2) has 
mistune from -10% to +10%. The frequencies of 1a11 
and 1b12 to 1b15 modes are unchanged in the length 
error of blade (2) variation. The frequencies of 1b11 
(SDB) modes decrease from 100.63 Hz to 67.50 Hz, 
with a blade (2) length error increasing from -10% to 
10%. The rotation effect is also explored, and it is 
found that the mistuned effect becomes complex and 
unstable. 
 

INTRODUCTION 
 
 
 
 
 
 
 
 

 

Rotor vibration has been a problem in the 
industry and science for more than 100 years.  
High-speed rotors appeared with the development of 
industry. They often work in a flexible state, so the 
problem of vibration and stability is important. 
Manufacturing errors can cause the center of mass of 
each segment of a rotor to deviate slightly from the 
axis of rotation. The resulting centrifugal force will 
cause transverse vibration during rotation, which is 
unusually strong at some speeds. Mistuning and 
disorder problems of rotors are of great concern to 
scholars. 

There has been much research in this field. 
Gennaro and Leonardo (2004) used artificial neural 
networks of genetic algorithms to analyze structurally 
mistuned configurations. They found that leading to 
the maximum amplitude of the blade vibration with 
the structural mistuned. Chen and Shen (2015) 
explored cyclic symmetric rotors with slight mistune. 
They found that some mode localization phenomena 
are similar to the authors' work. Li et al. (2014) 
adopted the finite element method (FEM) to establish 
models of shaft-disk-blades, blade-disks, and blades. 
Their results show that some modes are caused by 
strongly split and coupled vibration. The mistuned 
cause and affect different coupled vibrations of 
blades between the disk-blades and the 
shaft-disk-blades model. Yasharth and Alok (2012) 
developed a multistage rotor with geometric 
mistuning via a model. They found two interesting 
results. First, geometrically mistuned blades can have 
a reduced-order model. Second, natural frequencies 
of the two-stage rotor and the statistical distributions 
of peak maximum amplitudes were produced from 
Monte Carlo simulations for different patterns of 
geometric mistuning. Paolo and Giovanni (2012) 
applied homogenization theory to explore a 
continuous model of the in-plane vibrations of a 
mistuned bladed rotor. They also studied localization 
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phenomena and the frequency split arising in the 
imperfect structure. Alok (2007) formulated an 
accurate reduced-order model for the development of 
geometrically mistuned disk-blades. The method was 
based on the proper orthogonal decomposition of 
coordinate measuring machine data on blade 
geometry and the vibration modes of various tuning 
systems. Hiroki and Akihiro (2012) investigated the 
effects of a complex pattern on the natural 
frequencies and frequency response of a mistuned 
disk-blade system. They found that excitation with 
the wave number k excites only the vibration modes 
with the same wave number in the tuned system, and 
excites all of the vibration modes in the mistuned 
system. They used sensitivity analysis to achieve the 
variations of the natural frequencies due to the 
mistuning pattern. Han (2015) used Floquet theory 
and the harmonic balance method to analyze isotropic, 
anisotropic, asymmetric, and general rotors. They 
found that the modes’ corresponding critical speeds 
are second dominant over the synchronous modes, 
and the modal line due to weight crosses over the 
weak modal lines. Lee et al. (2011) utilized a 2-D 
unsteady vortex lattice method to predict the gust 
excitation to reach higher engine-order excitation, 
and determined the forced response characteristics of 
mistuned bladed disks. Raeisi and Ziaei-Rad (2013) 
aimed to predict the worst response of a mistuned 
bladed disk and to develop an integrated method by 
genetic algorithms and artificial neural networks. 
They investigated the effect of mistuning on the 
modulus of elasticity and length of blades on a 
mistuned blade-disk system. Bai et al. (2014) used 
hybrid interface substructure component modal 
synthesis to explore the vibration characteristics of a 
mistuned blade. They observed that the localization 
of modal shape is riskier because of mistuned 
geometric dimensioning. Bai et al. (2015) increased 
the computational efficiency of a mistuned disk-blade 
system under the condition of meeting the 
computational accuracy for a large amount of 
calculation based on hybrid interface substructure 
component modal synthesis (IHISCMS). Kwon and 
Yoo (Kwon et al., 2011, 2015) explored the vibration 
localization phenomenon of a multi-bundle 
blade-rotor system. They found that mistuning may 
cause a significant increase in the forced vibration 
response of the blade in a multi-package blade system. 
Critical fatigue problems often occur in mistuned 
systems, and the forced vibration response of a 
mistuned system is often significantly larger than that 
of a tuned system. The above references focus on two 
subsystems coupled without coupling of the whole 
multi–disk rotor system. 

The authors’ previous research adopted an 
assumed mode method to study a mono-flexible disk 
system with mistuned blade lengths (2007), a 
disordered straggle angle blade (2008), and a crack 
(2008). In 2017, the authors (Zhou et al., 2017; Chiu 

et al., 2017) used FEM to investigate a multi/single 
flexible disc-rotor system with springs. The authors 
used an experimental method to confirm the results of 
the finite element and assumed mode methods (Chiu 
et al., 2017; Yu et al., 2019). 

The current research investigates the coupled 
phenomenon among blade-bending, disk-bending, 
and shaft-torsion. Based on our previous research 
(Chiu et al., 2007; Chiu et al., 2008; Chiu et al., 2008; 
Zhou et al., 2017; Chiu et al., 2017; Chiu et al., 2017; 
Yu et al., 2019), we focused on coupled vibration of a 
multi-disc system based on mistuned blades length or 
disordered straggle angle. The blades are considered 
an Eular type with stagger angle, and the discs are 
supposed to be flexible in this turbine rotor system. 
We employed ANSYS engineering software and 
FEM to analyze it. We discuss the rotor change 
regulations of mode shapes and natural frequencies. 
This research aims to provide a qualitative and 
quantitative overview for the multi-flexible disc 
system. 

 
THEORETICAL ANALYSIS 

 

 
 

(a) (b) 

  
(c) (d) 

Fig.1. (a) A general multi-disc rotor with mistuned 
and disordered blade; (b) straggle angle; (c) 
length mistuned blade; and (d) angle disorder 
blade. 

 
A general rotor system with mistuned and 

disorder blades is shown in Figure 1. The rotor 
includes four subsystems, such as shaft, 
multi-flexible disc, blades and the blades with length 
mistuned blade and disorder. The blades have a 
straggle angle. The mistuned-length blades are 
marked with an asterisk, and the coordinates are 
given as follows: 

),1(*
lbbb rrrr ε+=∆+=  (1) 

Where lε is the mistuned blade deviation ratio, negative 
or positive. 

The blade of disorder stagger angle is indicated 
by an asterisk, and is written as follows: 

),1(*
aεββββ +=∆+=  (2) 
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where aε  is the disorder error, positive or negative. 
The shaft-disk subsystem torsion energy 

equations are as follows (Chiu et al., 2007): 
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where ),( tZφ  is the displacement of torsion in a 
rotating frame; the shaft length, inertia polar moment, 

and torsion rigidity are respectively Ls, Is and Gs Js; 
and the polar moment of inertia of the disk is Id .The 

upper dot indicates the time derivative, and subscripts 
d and s indicate disk and shaft, respectively.  
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Fig 2. Coordinates and geometry of rotating disk 
 

Figure 2 shows a disk, free outside and fixed 
inside, rotating at a constant speed Ω. The outer and 
inner radius of the disk are rd and rs, respectively, and 
hd is the disk’s thickness. 

The disk’s transverse vibration energy 
equations are as follows (Chiu et al., 2007): 
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The disk’s transverse displacement uses wd. The 
bending rigidity uses D . 2∇  is the Laplacian; the 
initial radial stresses due to Ω  use 

rσ , and the 

circumferential directions use 
θσ

. 

The following are the terms: 
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Figure 3 shows a rotating cantilevered blade on 
a flexible disk with stagger angle β . The (X,Y,Z) 
coordinate system is the inertia frame, and the 
(x1,y1,z1) frame rotates at a constant speed Ω. The 
(x2,y2,z2) frame rotates at straggle angle β relative to 
the (x1,y1,z1) frame, and the (x3,y3,z3) frame is 
clamped to the root of the blade. 

 
 
Fig 3. Blade deformation and coordinate builds. 
 

The blade’s kinetic and strain energies 
equations are as follows (Chiu et al., 2007): 
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The y2 and z2 directions of transverse 
displacements use vb and wb. IA is the area moment of 
inertia about the z3 axis, and Ib is the polar moment of 
inertia. 

The total blade displacements vb(x,t) and wb(x,t) 
are the shaft’s torsion displacement ),( tZdφ ; the 
transverse displacement of the disk uses wd  and the 
bending blade displacement ),(ˆ txvb

. The kinematic 
relations between these displacements are as follows: 

,sin)(cosˆ),( ββφ
ddd rdrdZbb wxwxvtxv ︳︳︳ ′+−+=  (13) 

.cos)(sin),( ββφ
ddd rdrdZb wxwxtxw ︳︳︳ ′++=  (14) 

The assumed mode method (AMM) is used to 
discretize the continuous system: 
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The mode shapes of the bending blade, 
transverse disk, and torsion shaft use { } i

s
i

c
ii WWV Φ,,, . 
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ik
s
i

c
ii ξζζη ,,,  are the participation factors. 

ns,nd,nb are subscripts of the corresponding sub-units, 
are the modes number seemed suit for permissible 
accuracy. (nb,nd,ns)=(11,10,8) is good for yield 
accuracy up to 10-5 Hz in this paper. These modes are 
as follows: 
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where )(rRi
 is the radial function of the disk and 

choose the beam function. 
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is a beam function for a blade with 
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The above equations alter the Lagrange 
equations yields employment and the energy 
expression. The discretizated equations of motion in 
matrix notation are as follows: 

,0])[][]([][][ 2 =Ω−++Ω− Ω qKKKqPqM ie  (24) 
[ ]PΩ− induces natural frequency bifurcation, obtained 

from the Coriolis effect. Note, if the disk is flexible 
and [P] is not zero. So, the disk is flexible and the 
frequency could be bifurcating. ][ eK  is observed 
from the elastic deflection at low rotational speed. 

][ iK  is the stiffness form rotation with initial stress. 
][2 ΩΩ− K , observed from the rotor rotation, softening 

it becomes very obvious at high speed. That is 
significant to the rotor stability effect. The matrices 

][],[],[],[],[ ΩKKKPM ie  are displayed in the appendix. 
The above matrices have dimension 

)2()2( bbdddsbbddds nNNnNnnNNnNn ××+×+×××+×+

, and Nb and Nd are the numbers of blades and disks, 
respectively. The items of the above matrices are 
shown in the appendix. q is a generalized vector:  

,}\\{ 21
TT

N
TTsTcTTq ξξξζζη =  (25) 

Free vibration analysis in an ordinary way, that 
is a hypothetical solution which is of the form 

{ } tecq λ=  with { }c  the undetermined coefficient 
vector and λ  is the eigenvalue. 
 

FINITE ELEMENT METHODS 
 

 
 

Fig 4. Gerneral FE mesh of multi-disc rotor 

Three kinds of FEM software were used to 
simulate a rotor system (Chiu et al., 2017; Chiu et al., 
2017). Based on the results, we found ANSYS best, 
with errors less than 1%, and we use FEM and 
ANSYS to calculate the shaft-disk-blade system in 
this paper. Table 1 shows the material and geometric 
parameters used in AMM and FEM. Figure 4 is a 
general FE mesh. The element types of the subsystem 
in the rotor system were simulated many times to 
obtain results for different frequencies. The perfect 
element types are that the blades, disks and shaft are 
chose 3D hexahedral solid elements. The single-disk 
rotor system used 70,000 nodes and 60,000 elements, 
and the two-disk rotor system used 110,000 nodes 
and 100,000 elements. The shaft torsion vibration 
boundary condition is clamped-free. 

 
Table 1. Geometric and material properties 

Shaft 

 density: ρs  7850 kg/m3 

 shear modulus: Gs  75 Gpa 
 shaft length: Ls  0.6 m 
 radius: rs  0.04 m 

Disk 

 density: ρd  7850 kg/m3 

 Young’s modulus: Ed  200 Gpa 
 location: zd  0.3 m 
 outer radius: rd  0.2 m 
 thickness: hd  0.03 m 
 Poisson’s ratio: ν 0.3 

Blade 

 density: ρb  7850 kg/m3 

 Young’s modulus: Eb  200 Gpa 
 blade outer end: rb  0.4 m 
 cross-section: Ab  1.2×10-4 m2 

area moment of inertia: IA  1.92×10-9 m2 
Straggle angle: β  30° 

 
NUMERICAL RESULTS 

 
Table 2 lists the natural frequencies (NFs) of 

subunits on coupled vibration. These are used as 
numerical results for interpretation and verification. 
 

Table 2. NF (Hz) of subunits 

 
Its range is from the root of the blade (0) to its 

tip (1). Figures 5−16 and Tables 2−6 bewrote at no 
rotation (Ω =0). The reasons are that the shaft torsion 
vibration boundary condition is clamped free. If the 
boundary is different, then the selected modes could 
be transformed. The modes of a rotating rotor system 
are called the traveling modes of its non-rotating 
modes. 
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Table 3. Six modes of NF (Hz) of five blades and 
single flexible disk with mistuned blades (±10%) 

using two methods 
 

 
 

This study is based on the research (Chiu et al., 
2007; Chiu et al., 2008), whose results we expand by 
researching the more complex phenomena in a 
multi-disk system. And in order to make the 
phenomenon obviously appear, this study adopts 
larger error. For example, mistuned blades length 
adopted ±10% and disordered straggle angle adopted 
+30°. Tables 3 and 4 show the six/seven modes of 
natural frequencies of a five-/six-blade and single 
flexible disk system with mistuned blades by two 
methods. Fig.5 shows how the frequency varies with 
a five- or six-blade system with mistuned blades in 
the rotor. 

 
Table 4. Seven modes of NF (Hz) of six-blades and 

single flexible disk system with mistuned blades 
(±10%) using two method. 

 

 
 
 
 

For a five-blade and single flexible disk system 
(Chiu et al., 2007), the coupling modes can be 
displayed in three groups: SDB, DB, and BB. The BB 
repeated modes were of Nb /2 and (Nb-1)/2 for even 
and odd numbers of blades. The 1a11 to 1b13 modes 
belong to one group led by the blade’s first mode. 
1c11 mode is led by the shaft’s first mode. These 
mistuned blades locate in asymmetric places. 1a–1b 
modes are groups in which the blade’s first mode 
predominates in a five-blade system. Note that the 
modes change phenomena, and that this Fig.5 is not 
drawn to a linear scale. It has two reference marks, 
=ω 81.538 and 207.43, which indicate that the 

system frequencies predominate by cantilevered first 
bending of the blade and first torsion of the shaft 
(Table 2). 

 

 
 
Fig. 5.  Frequency variation based on asymmetric 

mistuned blade in a six-/five-blade and 
single-disk system. 

 

 
 

Fig. 6.  Seven modes of a six-blade and single-disk 
rotor using AMM. 

 
Three phenomena are found in Fig.5 and Tables 

3 and 4. First, when a mistune appears in a blade, the 
shaft-disk-blade system only has two types of 
coupled modes, which are SDB and BB. Disk-blade 
(DB) modes vanish because the mistune  destroys  
the system  symmetry and  the  balance between 
disks and blades no longer exists. The second is that 

 

Natural frequencies (Hz) 
81.538 207.43 

5 Blades 

6 Blades 

Tune 
Mistune (1) 

  Blades’s first mode leads 
 Shaft’s torsional mode  leads 

SDB   
(1a 11 ) SDB 

(1c 11 ) DB  
(1b 11 ) 

BB  
(1b 13 ) 

(2) 

Mistune 
(1,2) 

Tune 
Mistune(1) 

Mistune  
(1,2) 

SDB 
(1c 11 ) 
SDB 
(1c 11 ) 

BB  
(1b 13 ) 

(2) 
BB  

(1b 13 ) 

SDB  
(1b 11 ) 

SDB  
(1b 11 ) 

SDB   
(1a 11 ) 

SDB   
(1a 11 ) 

DB  
(1b 12 ) 
SDB  
(1b 12 ) 

SDB  
(1b 12 ) SDB  

(1b 14 ) 

SDB   
(1a 11 ) 

SDB 
(1c 11 ) 

SDB  
(1b 11 ) 

BB  
(1b 14 ) 

(2) 
SDB 
(1c 11 ) 
SDB 
(1c 11 ) 

BB  
(1b 14 ) 

(2) 
BB  

(1b 14 ) 

DB  
(1b 11 ) 

SDB  
(1b 11 ) 

SDB   
(1a 11 ) 

SDB  
(1b 15 ) SDB   

(1a 11 ) 

DB 
(1b 12 ) 

SDB 
(1b 12 ) 

SDB 
(1b 12 ) SDB 

(1b 13 ) 

SDB 
(1b 13 ) 

DB 
(1b 13 ) 
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two mistune blades appear in two asymmetric blades, 
the frequencies of 1a11, 1b11 and 1b12 modes drop 
again. The repeat frequencies of BB modes are 
bifurcated as one SDB mode and one BB mode. 
Third, if the number of mistune blades is more than 
the number of BB modes, then the BB modes do not 
exist. For example, a single-disk and six-blade rotor 
system has three asymmetric mistune blades, and all 
modes are SDB (see Table 3). Fourth, with different 
tune systems, the error shows a negative deviation in 
the mistune blade rotor when using ANSYS. Finally, 
1c11 (SDB) modes of the shaft predominates is not 
affected by mistune blades. 
 

 
 
Fig 7. Seven modes of six-blade and single-disk rotor 

with one blade mistune +10% using AMM. 
 

 
 
Fig. 8. Seven modes of a six-blade and single-disk 

rotor with one blade mistune +10% using 
FEM. 

 
Figures 6-10 show the mode shapes of single 

flexible disks and six-blade with mistune blades by 
AMM and ANSYS. The x−y figure shows the shaft 
torsion displacement. The deflections of the blade 
and disk are shown in the diagrams. The mode type 
and NF are indicated at the upper-right and upper-left 
on each plot. Figs.8 and 10 show the modes by 
ANSYS, and the others show the modes by AMM. 
The results from these figures and Tables 3 and 4 
show some interesting phenomena. Most notable is 
that all outcomes match using AMM and ANSYS. 

 
 
Fig. 9. Seven modes of a six-blade and single-disk 

rotor with two blades (1,2) mistune +10% 
using AMM 

 
We understand why the methods are somewhat 

different (Chiu et al., 2017; Chiu et al., 2017). First, 
we knew the numbers of frequencies that the blade’s 
first mode leads is Nb and the shaft’s first mode 
predominates 1c11 are 1 (one). Second, when using 
the assumed mode method, the rotor is a torsional 
shaft of fix free, transverse disk of clamp free and 
bending blade of fix free. From the numerical results, 
we find that the disk deformation is much smaller 
than that of the blade and shaft; these are 

43 10~10/ −−≈bd vw and 43 10~10/ −−≈φdw , respectively. 
Because the NF changes, the disk mode cannot be 
ignored. Using FEM, the deformation is less than the 
error of the set, and it can be ignored. So, the modes 
are right in the assumed mode method. Third, in the 
1a11 and 1c11 modes, from blade deformation 
situation; it is convinced that there are SDB modes, 
although 1a11 mode has no disk deformation in 
Figs.8 and 10. The 1b14 modes are repeated modes in 
these figures. The NF of two modes are close, and the 
blade deformation is similar; hence, we could say that 
there are repeated BB modes in Table 3. After 
comparison, we could say that our results are right. 
The numbers of mistune blades increase and the 
disk’s deformation becomes more complex. 1c11 
(SDB) modes of the shaft predominate, the blade 
joined coupled slightly and the disk maintains the 
invariable symmetric mode. Finally, let us see Figs. 8 
and 10. We could not find different situations from 
the disk between the tune system and mistune blade 
system. We could say that FEM is not suitable to 
analyze these complicated change phenomena of 
coupling vibration in a multi-disc rotor with multi 
mistune blades.  
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Table 5. Six modes of NF (Hz) of a five-blade and 

single flexible disk with disorder angle blades 
(+30°) using two methods. 

 

 
 
Table 5 shows the six modes of NFs of a 

five-blade and single flexible disk with disorder angle 
blades (+30°) using two methods. The phenomenon 
of disorder angle blades system has the same 
situation. But the frequencies change slightly from 
the system with mistuned blades. 

The next case study discussed frequency 
variation due to symmetric mistune blade in a 
six-blades and a single disk rotor is displayed in 
Table 6 and Figure 11. When the mistune blades 
appear in the symmetric blade, the phenomenon of 
coupled vibration is interesting and different. First, 
the modes of predominates by cantilevered first 
bending of blade display order are; SDB (1a11), DB 
(1b11), SDB (1b12), DB (1b13) and repeat BB (1b14) 
modes in mistune blades locate in numbers 1 and 4 
blade of the rotor system. If the mistune blades locate 
in number 1, 3 and 5, the modes arise order are SDB, 
DB, SDB, DB and repeat BB (1b14) modes bifurcate 
SDB and BB modes. If the mistune blades locate in 
number 1, 2, 4, and 5, then the mode sequences are 
SDB, DB, SDB, DB, SDB, and DB, and the BB 
mode disappears. Finally, the 1c11 (SDB) modes of 
the shaft predominate and are not affected by the 
mistune blades. 
 

 
 
Fig. 10. Seven modes of a six-blade and single-disk 

rotor with two blades (1,2) mistune +10% 
using FEM. 
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Fig. 11. Frequency variation based on symmetric 

mistuned blades in a six-blade and single-disk 
system.  

 

 
 
Fig. 12. Seven modes of a six-blade and single-disk 

rotor with two blades (1,4) mistune +10% 
using AMM 

 

 
 

Fig. 13. Seven modes of a six-blade and single-disk 
rotor with two blades (1,4) mistune +10% 
using FEM 

 
Figures 12 and 13 show the mode shapes in the 

case of a six-blade and single flexible disk with 
symmetric mistune blades by AMM. Although the 
disk's balance is destroyed because of mistune 
damage, we find a new equilibrium from the 
symmetry of mistune, such as 1b11 and 1b13 modes. 
These always are DB modes. 1c11 (SDB) modes of 
the shaft predominate, the blade joined coupled 
slightly, and the disk maintains the symmetric mode. 
Finally, we compared Figs. 8 and 10, and found that 
we can hardly distinguish mode shapes or frequencies 
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different from the mistune or tune system using 
ANSYS. So, FEM is not a good method for these 
studies. 
 
Table 6. Seven modes of NF (Hz) of a six-blade and 

single flexible disk with mistune (+10%) blades 
in the symmetric system using AMM 

 

 
 

 
 
Fig. 14. Night modes of a five-blade and two-disk 

rotor with three blades (*) mistune and 
disorder using AMM 

 

 
 
Fig. 15. Night modes of a five-blade and two-disk 

rotor with three blades (*) mistune and 
disorder by FEM 

 
 

Fig. 16. 1a and1b mode frequency changes with 
length error of blade for a six-blade rotor 

 
Figures 14 and 15 show the mode shapes of a 

five-blade and two flexible-disc with three mistune 
and disorder blades by AMM and ANSYS. The first 
disk has disorder angle blades (+30°) located in the 
marked (*) blade, and the second disk has two blades 
(1,2) mistune +10% in the marked (*) blades. The 
upper x-y figure shows the shaft torsion displacement. 
The deflections of blade and disk are illustrated in the 
diagrams. The mode type and NF are indicated on 
each plot’s middle line. The two cases are compared 
in Tables 3 and 5, from which it is seen that the 
system will retain mode shapes and frequencies in a 
single-disk system and will combine with each other. 
In other words, they are linear relations. At the same 
time, we can hardly distinguish mode shapes or 
frequencies that are different from mistune (disk 2) 
and disorder (disk 1) systems using ANSYS software. 

 

 
(a) 

 
(b) 

 
Fig. 17. Variation of eigenvalues with rotation speed 

for a five-blade in two disk rotors. (a) tune 
system and (b) two mistuned and a disorder 
blades system. 
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We explored how frequencies change with 
length error of a blade for a six-blade system, as 
shown in Figure 16. We set blade (1) at 10% mistune, 
and blade (2) has mistune from -10% to +10%. From 
Fig.16, we find two results. The frequencies of the 
1a11 and 1b12 to 1b15 modes are unchanged in the 
length error of blade variation. It is seen that the 
frequencies of 1b11 (SDB) modes decrease from 
100.63 Hz to 67.50 Hz with increasing blade (2) 
length error. In other words, the mistuned and 
disorder affect frequency and mode in the multi 
mistuned blades rotor system, respectively. 

In our last case, we describe the rotor’s natural 
frequencies as they vary with rotation. The numerical 
results are normalized with respect to the first-order 
natural frequency (ωb1) of the cantilever blade, that is, 
ω*=ω/ωb1, Ω*=Ω /ωb1. Figure 17 explores the 
two-disk and five-blade rotor system. In Fig.17, the 
system frequency bifurcates at modes (see Figs. 14 
and 15). For forward and backward frequencies close 
to each other, when the rotation increases, the 
frequencies merge and ultimately become one. At this 
merge point, the system has a possible instability. Fig. 
17(a) shows a tuned system. Fig. 17(b) shows two 
mistuned and a disorder blades system. Comparing 
these two figures, we can find that variation of 
eigenvalues with rotation speed with a mistuned 
effect can become complex and unstable. 

 
 

CONCLUSIONS 
 
Based on previous research, we completely 

consummated the blade-bending, shaft-torsion and 
disk-transverse coupled vibration phenomenon of the 
multi-flexible-disc rotor system. The blade subsystem 
has mistuned blade lengths or disordered straggle 
angle blades. We mainly used the AMM and FEM is 
the complementary one to analyze the system. We 
compared their results. The research started with the 
modes change resulting from a five/six blades and 
flexible disk rotor. The coupling modes could be 
displayed in three group’s types, the SDB, DB and 
BB. Two of the most interesting things are that 
symmetry of mistuned blades or disordered straggle 
angle will cause balance, which get misjudgment of 
frequency and model. As the numbers of 
mistuned/disordered blades increase, the disk’s 
deformation become more complex. 

After comparing the results of AMM and FEM 
(using ANSYS), we can confirm our previous 
research. But the results from ANSYS had some 
shortcomings. For example, we could not see the 
disk’s deformation, and we could not observe that 
inter-blade (BB) modes are repeated modes. So, we 
hardly distinguish mode shapes or frequencies which 
are different from mistune or disorder by using disk 
mode shapes. For these reasons, we could say that 
FEM is only complementary when we analyze these 

complicated change phenomena of coupled vibration 
in a multi-disc rotor with multiple mistune or disorder 
blades. 

We found two quantitative results. The 
frequencies of the 1a11 and 1b12 to 1b15 modes are 
unchanged in the length error of blade variation. The 
frequencies of 1b11 (SDB) modes seem to decrease 
from 100.63 Hz to 67.50 Hz with increasing blade 
length error. The rotation effect was also explored, 
and the authors found that the mistuned effect would 
become complex and precarious. 
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葉片長度失調及攻角角度

失序的多盤轉子耦合振動

線性和非線性現象研究 
 
邱亦睿    趙亞正    李曉雲    楊嘉豪 

于國飛    葉誠偉 
廈門理工學院機械與汽車工程學院 

 
 

摘 要 
本文採用了有限元法和假設模態法，研究具有

多個失諧或失序葉片的多圓盤系統的圓盤橫向、葉

片彎曲和軸扭轉耦合振動現象。本文對轉子系統固

有頻率和振型的變化規律進行了研究和比較。數值

計算結果表明，失諧或失序葉片的數量以及對稱性

都會影響葉片的固有頻率。在定量分析中，作者將

葉片(1)設置為 10%的失諧，葉片(2)的失諧範圍為

-10%到+10%。當葉片(2)長度有誤差時，1a11和 1b12

至 1b15 模態的頻率是保持不變的。葉片(2)長度誤

差從-10%增加到 10%，1b11(SDB)模態的頻率從

100.63Hz 下降到 67.50 Hz。最後，本文還探討了旋

轉效應，發現失諧效應會變得複雜和不穩定。 
 


